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Summary 
Immunoglobulin (Ig) E is the principal Ig involved in immediate hypersensitivities and chronic 
allergic diseases such as asthma. Helminths are the most potent infectious agents known for 
their capacity to stimulate IgE production during the course of infection. In rats, the nematode 
Trichinella spiralis typically elicits a strong parasite-specific IgE response during infection, and 
this IgE antibody has been shown to be protective against the parasite in passive transfer experiments. 
The study reported here analyzed the fate of 125I-labeled myeloma IgE (1R162) in normal and 
T. spiralis-infected rats after intravenous injection. T. spiralis infection induced a capacity for specific 
binding to the gut wall of 125I-IGE rather than 125I-IGG1, as well as the transport of IgE, but 
not IgG1, into the gut lumen. Peak intestinal uptake and transport of 125I-IGE occurred during 
the first and second weeks after injection but was not elevated in the fourth week, that is, after 
intestinal adult worms had been expelled. Neither 125I-IgE uptake in the gut wall nor transport 
to the lumen could be ascribed to tissue damage or vascular leakage. Luminal transport occurred 
in the small intestine and not the liver, which only transports low molecular weight degraded 
125I-IgE. Calculations based on the amount of intact IgE in the lumen suggest that, in a 24-h 
period, up to 20% of injected 125I-IGE can be transported to the gut lumen during the peak 
transport period, between 6 and 14 d after infection. The intestinal IgE binding and transport 
response can be adoptively transferred with T. spiralis immune CD4 § OX22- (CD45RC-) 
lymphocytes, which are protective, but not the nonprotective sister population CD4 + OX22 § 
(CD45RC +) of lymphocytes isolated simultaneously from thoracic duct lymph of infected rats. 
The intravenous infusion of recombinant rat interleukin 4 also elicited significant intestinal uptake 
of t2sI-IgE. We also present evidence for the presence of CD23 on rat intraepithelial lymphocytes. 
These data provide evidence for a novel, inducible, intestine-specific IgE uptake and transport 
mechanism. 

lergic diseases such as asthma, allergic rhinitis, atopic 
dermatitis, and food allergy afflict up to 20% of the 

human population in most Western countries and are believed 
to be increasing in prevalence (1). Overall, allergic diseases 
are the most common form of human immunologic disorder; 
asthma is the most frequent chronic disease (2), and the only 
chronic disease whose prevalence is increasing despite treat- 
ment (3). The etiology of allergic reactivity and its basis in 
IgE-mediated pharmacologic processes of a variety of cell popu- 
lations such as mast cells and eosinophils is well recognized 
(4, 5). The critical role of IL-4 in regulating IgE production 
is also now established, as are the sources of IL-4 in Th2- 
type T cells and mast cells (6-8). However, the factors that 
direct initial Th2 cell differentiation leading to IgE overproduc- 
tion or that concentrate allergic reactions at mucosal surfaces 
are still poorly understood. 

In humans living in tropical countries (9-11) or in ex- 

perimental animals (12, 13), high specific and nonspecific (14, 
15) IgE levels are a recognized consequence of infection with 
helminthic parasites, particularly nematodes. Most frequently, 
these organisms reside in the intestine, but they may inhabit 
many extraintestinal sites in the body (e.g., fdaria). Paradoxi- 
cally, individuals chronically infected with intestinal nema- 
todes and with high total IgE levels may have lower titers 
of antigen-specific IgE and less dermal allergic reactivity to 
common allergens than helminth-free individuals in the same 
environment (16). The complexity of the relationship between 
helminthic infection, specific IgE titers, and allergic disease, 
combined with the difficulty in experimentally demonstrating 
host protection with IgE, have raised questions regarding the 
protective role of IgE for the host (17, 18). Nevertheless, there 
is direct evidence that IgE can be protective against nema- 
tode infection in that passive transfer of purified Trichinella 
spiralis-specific IgE or IgE-rich immune serum in conjunc- 
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tion with T. spiralis-specific T cells will lead to rejection of 
the parasite (19). Indirect evidence also exists for a role of 
IgE in schistosome infections based on in vitro experiments 
and field epidemiological data (20-22). Despite this growing 
body of evidence that attests to a protective role of IgE, no 
in vivo effector mechanism involving IgE has been defined 
for any of these parasites. The site of protection during IgE- 
mediated rapid expulsion of T. spiralis is believed to be the 
mucosal epithelial layer, the site of larval residence. During 
a challenge infection with T. spiralis, the transfer of IgE-rich 
immune serum can be delayed for up to 6 h after the larval 
parasite has entered its intestinal niche in epithelial cells and 
still elicit rapid expulsion of the parasite (23). This evidence 
suggests that IgE-mediated processes induced by the parasite 
take place in the outer cellular layer, comprising the epithe- 
lial cells (EP) 1 and intraepithelial lymphocytes (IEL), rather 
than in the gut lumen. Reactions taking place in the lamina 
propria (LP) or beneath the basement membrane, which could 
involve mast cells, are also possible candidates for effector 
processes. To delineate potential sites of function of IgE against 
T. spiralis, we used the passive transfer of t25I-IgE to monitor 
the systemic and intraintestinal behavior of IgE in T spiralis- 
infected rats. We also used infection-free systems based on 
the transfer of activated T. spiralis immune CD4 § cells and 
recombinant rat IL-4. The data show that there is an induc- 
ible IgE-specific uptake and transport system in the gut, which 
results in the passage of intact, high molecular weight plasma 
IgE into the gut lumen. 

Materials and Methods 
Animals and Infection. Adult male or female AO rats 6-8 wk 

of age and weighing 150-250 g raised in the J.A. Baker Institute 
vivarium were used in these experiments. Food and water were 
provided ad libitum. In any given experiment, rats of only one sex 
were used. The parasite, T. spiralis, was maintained in the labora- 
tory by serial passage in irradiated rats. For infections, 2,000 infec- 
tive larvae isolated by pepsin-hydrochloric acid digestion of infected 
muscles were given orally to rats (24). 

Radiolabeling oflgE and IgG1. Rat myeloma IgE (IR162), pre- 
pared as previously described (25), and affinity-purified normal serum 
IgG1 were labeled with 12sI (Amersham Corp., Arlington Heights, 
IL) by the iodogen method (26). For labeling, "~1 mCi of 12sI was 
used per milligram of protein. The reaction took place in 100-200 #1 
of Dulbecco's PBS (DPBS) using from 100 to 200/xg IgE or IgG1. 
After iodination, samples were loaded on to a desalting column 
(GF-5; Pierce Chemical Co., Rockford, IL) to collect the high mo- 
lecular weight fraction according to the manufacturer's instruc- 
tions. Free label comprised <5% of the final labeled protein. The 
purity and molecular integrity of the labeled protein was checked 
by running the samples in a nondenaturing gel followed by autora- 
diography. Specific activity (cpm/milligram protein) was calculated 
from the total 12sI count of the samples and their known protein 
concentration. For tracer studies, 10-20/xg of radiolabeled protein 
('~500,000-700,000 cpm) was injected intravenously through the 
tail vein of each rat. 

1 Abbreviations used in this paper: CM, conditioned media; DPBS, 
Dulbecco's PBS, EP, epithelial ceils; FBS, fetal bovine serum; IEL, 
intraepithelial lymphocytes; LP, laminia propria; RBL, rat basophilic 
leukemia cells; SAS, saturated ammonium sulphate. 

Affinity Chromatography. Affinity columns were used to purify 
T spiralis antigen (TSL-1) defined by monoclonal antibody 9D4 (27), 
rat anti-T, spiralis IgE, and IgG1 from normal rat serum as previ- 
ously described (28). The monoclonal antibodies used [anti TSL-1, 
9D4; A2 anti-rat IgE (29) and RGll/39 anti-rat IgG1 (30) were 
precipitated from ascitic fluid by 40% saturated ammonium sul- 
phate (SAS) treatment. The dialyzed antibodies (0.1 M sodium bi- 
carbonate and 0.5 M sodium chloride, pH 8.0) were coupled to 
cyanogen-bromide-activated Sepharose 4B gel (Pharmacia Fine 
Chemicals, Piscataway, NJ), washed, and poured into a column. 
After prewashing the column, the antigen or antibody mixture 
was applied in borate-buffered saline (0.1 M boric acid plus 0.3 M 
sodium borate in 0.85% saline, pH 8.3) and eluted with glycine/HC1 
buffer (0.05 M glycine in 1 M NaC1, pH 2.5). The acid eluate was 
concentrated by negative pressure while being dialyzed against 
DPBS, then stored frozen at -70~ until use. 

Collection of Tissue and Body Fluids. In experiments examining 
12Sl-IgE or lzsI-IgG1 half-life in serum, blood samples (0.5 ml) 
were collected from each rat at 5 rain and thereafter at intervals 
of 6 h after injection of 12Sl-IgE or nsI-IgG1. In most other ex- 
periments, animals were euthanized 24 h after nsI-IgE injection, 
and tissues and body fluids were taken for weighing and counting. 
In some experiments, this involved collecting all tissues and organs 
of the body except the head. Small-intestinal fluid was obtained 
by flushing the lumen with 30 ml PBS, but the large intestine was 
counted with its contents intact. In experiments that monitored 
total body loss of radioactive counts, animals were housed individ- 
ually to collect urine and fecal samples during the 24-h period. 
In these experiments, counts of samples of muscle, skin, and bone 
were multiplied by the percent contribution to total body weight 
of that tissue based on the data of Foster and Frydman (31). Radio- 
active counts in individual tissues or fluids were measured by use 
of a gamma counter (3,-8000; Beckman Instruments, Inc., Fullerton, 
CA). Depending on the experiment, 125I-IGE localization is ex- 
pressed as total organ count or cpm/gram of tissue. 

Bile Duct Cannulation. Bile duct cannulation was performed 
aseptically as described by Waynforth and Flecknell (32). Briefly, 
after opening the abdominal wall, a short section of bile duct above 
the entry of the pancreatic ducts was cleared of most of the sur- 
rounding tissue and loosely ligatured anteriorly and distally. A trans- 
verse cut was made between the ligatures, and a 0.5-ram polyeth- 
ylene cannula was introduced into the bile duct and tied in place. 
The distal end of the cannula was brought out of the lateral perito- 
neal wall. After surgery, the animals were housed in individual re- 
straining cages, and bile was collected every 2.5 h on a fraction 
collector (Trac-300; Pharmacia Fine Chemicals). In some experi- 
ments, bile was collected in tubes that contained 3 ml SAS to precipi- 
tate proteins in bile as they were collected. 

Adoptive Transfer of Cells. Thoracic duct lymphocytes were ob- 
tained from rats 3 d after infection by cannulation of the thoracic 
duct and collection of lymph for 20-24 h (33). Cells were washed 
twice in RPMI 1640 medium (GIBCO BILL, Gaithersburg, MD) 
with 5 % fetal bovine serum (FBS; Harlan Bioproducts for Science, 
Inc., Indianapolis, IN) and separated into different subsets (B cells, 
CD8 +, CD4 § CD45RC + , and CD4 ~ CD45RC-) by panning 
as described earlier (34). Antibodies used for panning were affinity- 
purified sheep anti-rat F(ab')2 made at the Baker Institute; mouse 
anti-rat CD8 (OXS) mAb (35); mouse anti-rat CD45RC (OX22) 
mAb (36), and affinity-purified sheep anti-mouse Ig (25/~g/ml) 
produced at the Baker Institute. In transfer experiments, 2 x 10 s 
CD4 § CD45RC + or CD4 § CD45RC- cells were injected intra- 
venously through the tail vein. 

Detection of lgE in Intestinal Wash Fluids and Bile. Radioimmu- 
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noassay was performed in Costar 96-well plates (Fisher Scientific 
Co., Pittsburgh, PA) using a modified ELISA technique. Briefly, 
the wells were coated overnight at 4~ with the anti-rat IgE anti- 
body A2, and the vacant binding sites were blocked with 1% BSA 
(Sigma Chemical Co., St. Louis, MO). 100 #1 intestinal wash fluid 
or bile sample was transferred to triplicate wells and incubated at 
room temperature for I h. After incubation, the wells were washed 
three times with PBS and counted in a gamma counter. Serial dilu- 
tions of 125I-IgE of known concentration were used as standards. 
To determine whether intestinal wash fluids or bile contained en- 
zymes that degraded IgE, a known amount of 12sI-IgE was added 
to some intestinal fluid or bile samples and incubated for 1 h at 
room temperature. Recoverability of the added ~25I-IgE was then 
measured by radioimmunoassay. 

Electrophoretic Separation of Proteins in Intestinal Wash Fluids. To 
determine the presence of IgE in the intestinal lumen, proteins in 
intestinal wash fluids were precipitated first with 40% SAS to re- 
move IgG and other proteins and centrifuged at 1,000 rpm in a 
7" rotor for 10 min in a centrifuge (Sorvall RT 6000; DuPont, 
Boston, MA). The supernatant was reprecipitated with SAS at a 
final concentration of 60% for 1 h at 4~ and centrifuged at 12,000 
rpm in a 2" rotor for 10 min in a microfuge (Beckman Instru- 
ments, Inc.). The supernatant was removed and the precipitate 
resuspended in 20 #1 PBS and counted in a gamma counter. For 
electrophoretic separation, the precipitates were then diluted with 
sample buffer, and equal counts were loaded onto an 8-20% gra- 
dient gel (Phast system; Pharmacia Fine Chemicals). The proteins 
were separated under nondenaturing conditions. After the run, the 
gels were stained, dried, and autoradiographed. 

Collection of EP, IEL, and LP Cells. EP, IEL, and LP cells were 
isolated from the intestine by standard procedures (37, 38). After 
removing the Peyer's patches and mesentery, the intestine was split 
open longitudinally, cut into small pieces (2-5 cm) and incubated 
for 30 rain at 37~ in 1.3 x 10 -4 EDTA (in CF + Mg 2+ free 
HBSS), and then vortexed briefly. This procedure separated the EP 
and IEL. The cell suspension was then collected and passed through 
a glass wool column to remove mucus and debris. The eluate was 
then layered over 35% Percoll in HBSS and spun at 400g for 20 min. 
EP were collected from the interphase and IEL from the bottom 
of the tubes. 

To recover LP cells, intestinal tissue remaining after removal of 
the epithelial layer was incubated for 4 h at 37~ in RPMI 1640 
containing 25 mM Hepes (Sigma Chemical Co.), 0.01% collagenase 
(GIBCO BRL), 0.01% deoxyribonuclease (Sigma Chemical Co.) 
and 0.01% soybean trypsin inhibitor (Sigma Chemical Co.). After 
incubation, the suspension was passed through gauze to remove 
mucus and debris. The cells in the suspension were sedimented by 
centrifugation at 200 g for 10 min, resuspended in 30% Percoll 
in RPMI, and layered over 67.5% Percoll. The gradient was then 
centrifuged at 600 g for 20 min and the cells at the interface col- 
lected. This procedure separated mast cells, which pass through 
the 67.5% Percoll layer (38), from the rest of the LP cells. After 
separation, the EP, IEL and LP were washed twice in RPMI con- 
taining 10% FBS, their viability checked by trypan blue dye exclu- 
sion, and their purity determined after staining cytospin prepara- 
tions. The IEL preparation had 1-5% EP contamination, and the 
LP preparation contained no toluidine blue-staining cells. 

Binding Assays. To measure l~sI-IgE binding to cells, 106 EP, 
IEL or LP cells suspended in 200 #1 RPMI were incubated with 
2 #g 12sI-IgE for 2 h at 37~ After incubation, 100/~1 of the cell 
suspension was layered over 200/~1 of phthalate oil (60% dibutyl 
phthalate, 40% Bis 2-ethylhexyl phthalate; Eastman Kodak Co., 
Rochester, NY) and centrifuged at 10,000 rpm for 1 min. The 

aqueous phase with the free label remained on top of the phthalate 
oil and the cells passed through. The fluid phase was then aspirated 
off, and the tip of each tube was snipped off to count the cell- 
associated radioactivity in a gamma counter. The specificity of IgE 
binding was determined by incubating target cells with cold IgE 
(20-50/~g/106 cells) for 1 h before adding t~sI-IgE (2 #g). To iden- 
tify the type of receptor involved in the binding of IgE, cell ali- 
quots were incubated for 2 h with anti-rat FceRI antibody [Cd3; 
a gift from Dr. D. Holowka, Cornell University, Ithaca, NY (39)] 
at a concentration of 3 #g/106 cells in 100/zl or with polyclonal 
rabbit anti-murine FceRII antibody (anti-murine CD23 but cross- 
reactive with rat; a gift from Dr. D. Conrad, Virginia Common- 
wealth University, Richmond, VA) at a concentration of 20 #g 
or 50 ~g/106 cells in 100 #1 before addition of 12sI-IgE. Rat 
basophilic leukemia (RBL-H2) cells and rlL-4-stimulated (for 24 h) 
spleen B cells were used as positive controls for FceRI and FceRII, 
respectively. 

Conditioned Media. Thoracic duct lymphocytes from rats in- 
fected 3 d previously with T. spiralis were separated into CD4 § 
CD45RC § and CD4 + CD45RG- cells by panning (33). After 
separation, the cells were resuspended at 2 x 107 cells/ml in RPMI 
medium containing 2 mM glutamine (GIBCO), 0.04% NaHCO3 
(Sigma Chemical Co.), 1 mM sodium pyruvate (GIBCO), 25 mM 
Hepes, 50 mM 2-ME (Fisher Scientific Co.), 15% heat-inactivated 
FBS, 10/zg/ml gentamicin, and 100/~g/ml T. spiralis antigen that 
had been affinity purified on a 9D4 column (28). The cell suspen- 
sion was then transferred (1 ml/well) into 6-well culture plates 
(Corning; Fisher Scientific Co.) and incubated for 24 h at 37~ 
with 5% COs in air. Culture supernatants [conditioned media 
(CM)] collected after 24 h incubation were filtered through a 0.22- 
#m filter (Costar Corp., Cambridge, MA), aliquoted, and stored 
at -70~ until use. 

In Vivo Recombinant IL4 Treatment. In these experiments, three 
rats were injected intraperitoneally with 2.5 ml culture superna- 
tant of rat IL-4-transfected CHO cells (40). This supernatant was 
generously donated by Dr. A. McKnight (Oxford University, Ox- 
ford, U.K.). IL-4 activity in the CHO supernatants was confirmed 
by upregulation of class II expression on splenic B cells, whereas 
the mock CHO supernatants had no effect (40). CHO-IL-4 super- 
natant consistently induced IgE class switching in LPS-stimulated 
rat splenic B cells, whereas the mock CHO supernatant did not 
(41). Three control rats received 2.5 ml culture supernatant from 
mock-transfected CHO cells. 3 d later, 6.49 #g of 125I-IgE (sp act 
77,000 cpm//~g protein) was injected intravenously through the 
tail vein, and the tissues and body fluids were collected as above. 
In addition, we tested the capacity of antigen-stimulated CM from 
CD4 ~ OX22 § and CD4 § OX22- ceils. Three rats were injected 
intraperitoneally with 5 ml each of the respective CM and injected 
3 d later with 125I-IgE in parallel with the rats receiving r.IL-4. 

Statistical Analysis. All values are expressed as the mean _+ SD. 
The statistical significance of the means of comparable groups was 
tested by use of a one-way analysis of variance. Probability values 
~5% were considered significant. 

Results 

Tissue Distribution of l2sI-IgE in T. spiralis-infected Rats. In- 
fection with T. spiralis induces a strong T cell response that 
results in elevated IgE levels (19). The  IgE-dependent im- 
mune process leading to elimination of larval T. spiralis, rapid 
expulsion, is expressed by the end of the 1st wk  after infec- 
tion and reaches its peak around 4 wk  after infection. To ana- 
lyze the behavior of  IgE during this period, 125I-IGE was in- 
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Table 1. Recovery of '2sI Counts from Different Organs/Fluids of Rats 24 h after Intravenous Infusion of 20.65 ltg '2sI-IgE 
(sp act 24,216 cpm/tgg IgE) through the Tail Vein 

Tissue Infected Control 

Lung 
Small intestine 
Large intestine 
Mesenteric lymph nodes 
Intestinal wash fluids 
Other intestine (cecum and stomach) 
Other viscera (liver, spleen, kidneys, 

heart, and peritoneum 
Thyroid 
Muscle (40% of total mass)S 
Skin (12% of total mass)S 
Urine and feces 
Total recovered 

5,278 _+ 237* 
12,034 + 4,739' 
4,957 _+ 742* 
2,557 _+ 836~ 

27,882 _+ 7,264* 
46,086 _+ 8,506 

21,685 _+ 1,734 
5,131 _+ 347 

27,994 _+ 7,340 
38,474 _+ 4,978 

204,291 _+ 49,198 
396,327 _+ 57,368 

1,648 _+ 209 
3,712 + 1,130 
2,907 + 169 
1,216 +_ 114 
1,842 _+ 856 

45,812 +_ 9,481 

20,998 _+ 1,238 
4,994 _+ 215 

32,537 + 4,955 
41,574 _+ 5,937 

227,252 _+ 53,277 
384,503 _+ 66,004 

Rats were infected 7 d earlier with 2,000 muscle-stage larvae of T. sviralis. 
Significant at p <* 0.05; ~ 0.01. 
S Estimate based on Foster and Frydman (31); n = 4. 

jected at different time points after infection. A typical 
experiment (Table 1) shows a significant (p ~<0.01) increase 
in the recovery of 1251 from the lung, small intestine, large 
intestine, mesenteric lymph nodes, and small-intestinal wash 
fluid of rats infected 7 d previously with T. spiralis, compared 
with uninfected control animals. In this experiment, the total 
body distribution of 125I-IGE was determined quantitatively 
by sampling every organ and collecting feces and urine. The 2~000 
results are expressed as total counts per organ to reflect the 
overall distribution of 125I-IGE. Approximately 80% of in- 
jected counts were recovered from both experimental and con- 

20000 trol groups. However, the proportion that entered the gut 
(total gut = stomach, small and large intestine, cecum, in- 
testinal wash, and feces) was 50% higher in infected rats than 
in controls, with the small intestine t2sI count accounting ~ l s000 

o 
for 86% of this difference. The primary site of disposal of o 
125I-IGE was the urine, which accounted for 36-41% of total E 
counts after 24 h. 

To analyze whether the distribution of IgE in the intes- ~ 10000 
O 

tine was altered throughout the course of infection, we mea- ~- 
sured 24-h 125I-IgE tissue recovery from rats that had been 
infected 1, 2, 3, or 4 wk previously. Increased recovery of ~000 
radiolabel in the intestinal tissue and fluids was significant 
during the first 2 wk after infection but usually not at/>3 
wk (Fig. 1). These results were reproducible in infected animals 
4-14 d after infection, but were more variable after 2 wk in 0 
that intestinal 125I-IgE uptake was sometimes still elevated 
at 3 wk. Further analysis showed that 125I-IgE counts peaked 
in the small intestine 4-6 d after infection (data not shown). 

Specificity of Intestinal Uptake of lgE. Previous work had 
shown that IgE and IgG1 would both transfer rapid expul- 
sion of T. spiralis to the intestine under appropriate, but 
different, conditions (19, 42). We therefore determined whether 

IgG1 behaved like IgE in intestinal tissue. The presence of 
equivalent amounts of 12sI-IgG1 or t25I-IgE might indicate 
that parasite-induced damage or inflammation caused a gener- 
alized leakage of plasma proteins into the gut. To do this, 
we injected t2sI-IgE or -IgG1 in comparable amounts into 
different rats infected 2 or 4 wk earlier. Significantly elevated 

* *  [ ]  control 

�9 1 week 
[ ]  2 weeks 
[ ]  3 weeks 

[ ]  4 weeks 

5 Zz  

intestine intestinal fluid 
O r g a n  examined 

Figure 1. Uptake of nsI-IgE in the small-intestinal wall and its trans- 
port to the intestinal lumen of rats infected with 2,000 muscle-stage larvae 
of T. spiralis 1, 2, 3, or 4 wk earlier. The counts were made 24 h after 
intravenous transfer of ",,12/~g lzsI-IgE (sp act 42,000 cpm/#g protein). 
* *Significant at p <0.01 compared with uninfected controls. Groups of 
four rats _+ 1 SD. 
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Figure  2. Rate of loss of (a) t2sI-IgE or (b) 12sI-IgG1 from the blood 
in rats over 24 h after intravenous injection. Points represent means of 
three rats that were infected 1, 2, 3, or 4 wk before and controls. None 
were significantly different from controls. 

*2sI-IgE levels were found 24 h later in the small intestine 
(12,517 _+ 5,086), mesenteric lymph node (1,136 _+ 608), 
and lungs (2,389 + 562) compared with uninfected controls 
in the 2 wk-infected groups (1,355 + 1,275; 282 _+ 87; and 
358 _+ 209, respectively). However, there was no significant 
increase in 125I-IGG1 counts in any organ of infected rats at 
either 2 or 4 wk after infection. This was true whether the 
counts were expressed as total counts per organ or cpm per 
gram of tissue (data not shown). Intestinal wash counts at 
24 h in 12sI-IgG1 recipients were 1,113 _+ 664 (2 wk) versus 
control, 1,216 _+ 472 (not significant) whereas for IgE 
recipients, the counts were 6,239 _ 4,556 (2 wk) and con- 
trol, 826 -- 254 ~ <0.05). 

The Half-Life of 'esI-IgE in Blood. T. spiralis infection in- 
duces elevated serum IgE levels (19) and, as the above data 
suggest, increased levels of IgE in the gut. Under these con- 
ditions, it seemed possible that the rate of IgE clearance from 
serum could be reduced as has been found in patients with 
hyperimmunoglobulin E syndrome (43). In normal rats, the 
half-life of IgE in serum is ~12 h (44) but it has never been 
estimated in experimental animals infected with nematodes. 

In T. spiralis-infected rats, the half-life of 125I-IGE in cir- 
culating blood was calculated by use of the 5-min blood value 
as the point of equilibration of extravascular and intravas- 
cular pools (0% loss). Approximately 50-60% of the total 

200 

150'  

100 o 
E 

50- 

in test inal  f lu id  

Intestine 

M L N  

heart 

l u n g  

~ l e e n  

hvcr 

hours post intravenous lgE injection 

Figure 3. Kinetics of accumulation of lZSl counts in various organs of 
rats injected with 12sI-IgE 7 d after infection with T. spiralis. Data are the 
means of four rats per time point. The 8-h time point has been normalized 
to 100% for each organ, and subsequent counts are expressed as the per- 
centage of the 8-h count. 

label was lost from the blood 6 h after intravenous injection 
in both infected and uninfected animals (Fig. 2 a). By 24 h, 
the loss was 70-77%. There was no difference in the rate 
of loss of 125I-IgE between infected or uninfected animals. 
In contrast, the loss of lzsI-IgG1 from the blood, also based 
on the 5-min value as the point of equilibration, showed that 
only 10-15% of counts were lost by 6 h and 38-50% by 
24 h in both infected and uninfected animals (Fig. 2 b). 

Kinetics of lgE Uptake in Various Organs of T. spiralis-infected 
Rats. The above experiments detailing body distribution of 
125I-IGE had all been conducted 24 h after the injection of 
labeled Ig. To analyze the behavior of transferred IgE in in- 
fected rats during the first 24 h after injection, groups of four 
rats were killed at 8, 16, and 24 h after 125I-IGE transfer. 
125I-IgE counts in each organ during the 24-h period after 
injection of 125I-IGE showed a characteristic loss of label with 
time from most organs (heart, lung, liver, spleen). In con- 
trast, 12sI-IgE accumulated during the 24-h period in the in- 
testine, intestinal fluid, and peritoneal fluid (Fig. 3). These 
observations are significant, as all other tissues displayed a 
25-75% decrease in label recovery by 24 h after injection com- 
pared with the normalized 8-h value. The rate of decline in 
counts associated with the heart, liver, lung, and spleen par- 
alleled that previously found in the blood. 

Molecular Weight of Luminal leSl-IgE. High 125I counts in 
the intestinal lumen suggested that IgE might be transported 
to this site or that it could be a site of degradation of plasma 
IgE. To analyze this, we determined the molecular weight 
of labeled material in the lumen of infected rats whose bile 
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ducts had been cannulated and exteriorized. Bile duct cannu- 
lation was used to derive an independent estimate of possible 
transport of IgE via the liver. The rats were injected with 
10/zg 125I-IgE (sp act 77,000 cpm/#g) intravenously im- 
mediately after cannulation, and the bile was collected for 
a 25-h period at 2.5-h intervals. A mock bile duct cannula- 
tion through a laparotomy was performed on control infected 
and uninfected rats. When killed at 25 h, a significant (p 
<0.01) and equal increase in 125I counts in the small intes- 
tine and small-intestinal wash was evident in both bile 
duct-cannulated and bile duct-intact infected rats, compared 
with uninfected controls. To ascertain the proportion of 125I 
counts in the intestinal wash fluid or bile that were protein 
bound, we precipitated these samples sequentially with 40 
and 60% SAS. The intestinal wash (60% SAS precipitate) 
of bile duct-cannulated infected animals contained 4,004 cpm 
that were protein bound (0.5 _+ 0.1% of that infused), whereas 
the bile duct of cannulated uninfected animals had 146 cpm 
in the precipitated material (not above background 152 cpm). 
In bile duct-intact infected animals, the recovery of protein- 
bound counts in the intestinal fluids was 5,244 cpm (0.7 +_ 
0.1%) of that infused. In bile duct-intact uninfected animals, 
the recovery of protein-bound intestinal wash counts was at 
background levels. Overall, from 9 to 29% of the intestinal 
wash counts recovered from infected animals were due to 
immune-reactive precipitable IgE. No counts were precipitable 
in the bile of either infected or uninfected animals. When 
the precipitated proteins from intestinal washes were run on 
a nondenaturing gel, high molecular weight intact IgE was 
detected in the intestinal wash fluids (Fig. 4) of bile duct-in- 
tact or bile duct-cannulated rats. Only low molecular weight 
125I material migrating with the dye front was detected in 
bile (unprecipitated sample). 

Radioimmunoassay for IgE in Intestinal Wash Fluids and Bile. 
To confirm the presence of IgE in intestinal wash fluids, 
an ELISA-based radioimmunoassay was performed. Using 
125I-IgE of known specific activity as the standard, we used 
a capture ELISA to measure the amount of IgE in intes- 
tinal wash fluids and bile. This assay will measure down to 
"~5 ng/ml IgE. The results showed that 79.5 _+ 45.1 ng IgE 
(0.8% of that injected) and 61.1 _+ 23.3 ng IgE (0.6% of 
that injected) was present in the intestinal wash fluids of bile 
duct-cannulated and bile duct-intact T. spiralis-infected ani- 
mals, respectively, 24 h after intravenous injection of 125I-IgE. 
Uninfected rats had <5/zg/ml IgE in intestinal washes. Al- 
though significant 1251 counts were present in bile of both 
infected and uninfected animals (data not shown), no IgE 
could be detected in bile by radioimmunoassay (data not 
shown). Over 94% of the spiked 12sI-IgE added to normal 
samples was measured by ELISA in both intestinal fluids 
(94 _+ 1.5%) and bile (97 + 1.1%), suggesting minimal degra- 
dation of the protein after 1 h incubation at room temperature. 

Intestinal Cell Binding oflgE. The transport of IgE to the 
intestinal lumen, demonstrated above, suggested cellular 
binding of free 125I-IgE in the intestine. To determine which 
cell populations were involved, we first examined sectioned 
material by autoradiography. This was unsuccessful because 
of the low counts of thin paraffin sections. An alternative 

Figure 4. Detection of intact 
IgE in the intestinal lumen. Elec- 
trophoretic separation of proteins 
in small intestinal wash fluids and 
bile of rats that received 1251-lgE 
(sp act 77,000 cpm/#g) intrave- 
nously 24 h earlier. Equal 125I 
counts of proteins that had been 
precipitated with 60% SAS were 
separated in an 8-20% gradient 
gel under nondenaturating con- 
ditions. After the run. the gel was 

dried and autoradiographed. (Lane a) l~sI-IgE that was used for infusion; 
(lane b) 60% SAS precipitate of the small-intestinal fluids of sham-operated 
rats; (lane c) 60% SAS precipitate of the small-intestinal fluids of bile- 
duct--cannulated rats; (lane d) nonprecipitated bile. Molecular weights of the 
proteins were calculated from standards run parallel to the samples. The 
low molecular weight labeled material in lanes b and d is migrating with 
the dye front. 

approach was to isolate various intestinal cell populations from 
infected rats and measure their capacity for 12sI-IgE uptake 
in vitro. Isolated cell populations from the gut of infected 
and uninfected rats were incubated with 125I-IGE. Increased 
binding of IgE to IEL and LP cells collected from T. spiralis- 
infected animals compared with uninfected controls was evi- 
dent (Table 2). However, in two separate experiments, it was 
difficult to reproducibly measure IgE binding to enterocytes 
from infected animals because of heavy mucus production 
induced by the infection. In all cell populations from infected 
rats, unlabeled IgE inhibited binding by >--80%; only unin- 
fected IEL did not show inhibition. 

To further characterize the receptor(s) involved in the 
binding of lzsI-IgE to IEL or LP, the cells were incubated 
with antibodies against FceRII (mAb Cd3) or FceRI (poly- 
clonal anti-CD3) before the binding assay in the above ex- 
periment. Prior incubation of cells with Cd3 reduced 125I-IGE 
binding to LP cells by 40% and also blocked binding of 
125I-IGE to tLBL (Table 2) by 81%. Prior incubation of cells 
with anti-CD23 at 20 /xg/106 cells significantly blocked 
125I-IGE binding to LP (42 _+ 18%; p g0.05) and IEL (87 _+ 
4%; p ~<0.01). At a concentration of 50/zg/106 cells, anti- 
CD23 blocked 125I-IGE binding to LP by 95.3% (p ~< 0.01) 
in cells collected from T. spiralis-infected animals (Table 2). 
No significant blocking was observed with IEL from con- 
trol animals, but high level blocking occurred with LP cells. 
Anti-CD3 also significantly (35 _+ 0.1%; p <0.05) blocked 
binding of 125I-IgE to IL-4-stimulated rat spleen B cells (data 
not shown). 

IgE Uptake in the Intestine is Upregulated by Adoptive Transfer 
of Immune T Cells. The above data indicated that an intesti- 
nally based IgE uptake and transport process could be in- 
duced by a T. spiralis infection. Previously, we demonstrated 
that passively transferred immune IgE was unable to confer 
protection unless a population of activated thoracic duct 
CD4 § OX22- (CD45RC-)  T cells was transferred before 
the IgE (19, 45). To determine whether intestinal IgE uptake 
might be induced by the reactive CD4 + cells that transfer 
IgE-dependent worm expulsion, we measured IgE uptake in 
the gut of naive rats 7 d after adoptive transfer of 3-d CD4 + 
CD46RC-  (protective) or CD4 + CD45tLC + (nonprotec- 
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Table 2. Role of Specific IgE Receptors in '2sI-IgE Uptake by Intestinal Cell Populations 

t2sI-IgE 

12sI-IgE + 12sI-IgE + 125I-IgE + 
cold IgE anti FcgtLI anti FceRII 
(50 /~g) (20 /~g) (50 /~g) 

Enterocytes Infected 2,776 _+ 871 ND ND 1,658 _+ 138 
Control 1,528 _+ 421 761 _+ 253 1,350 +_ 465 1,471 +_ 272 

IEL Infected 2,949 _+ 509* 265 _+ 109 2,225 _+ 614 373 _+ 230* 
Control 1,567 _+ 350 1,494 _+ 470 1,452 _+ 256 1,053 _+ 38 

LP Infected 2,369 +_ 30* 339 _ 89t 1,386 _+ 180' 141 + 29I 
Control 1,657 _+ 138 414 + 69* 1,309 _+ 150 158 + 12' 

RBL 3,038 _+ 50 226 + 62* 574 _+ 39* 3,116 _+ 35 

Cell populations were isolated from rats infected 10 d earlier and immediately used in assays. RBL cells were grown from stock for 72 h in vitro 
before use. Significance comparisons are for * infected vs. control animals or t test inhibition (IgE or antibody) vs. 125I-IgE (column 1). All proba- 
bilities are ~<0.05. Values without  an asterisk are not significant. Assays done in triplicate. 

tive) cells. When  measured 24 h after the intravenous injec- 
tion of 125I-IGE, there was a significant (p ~<0.01) increase 
in the recovery of radiolabel from the intestine and mesen- 
teric lymph nodes of  rats that received CD4 + C D 4 5 R C -  
ceils compared with those that received CD4 + C D 4 5 R C  + 
cells or no cells (Fig. 5). A consistent finding was a small 
but significant increase in recovery of radiolabel in the intes- 
tinal fluid of  animals that received CD4 + C D 4 5 R C -  cells. 

IgE Uptake Can Be Induced by r.IL-4 Treatment. Earlier 
experiments demonstrated that CD4 + C D 4 5 R C -  cells iso- 
lated from the thoracic duct of rats 3 d after infection secreted 
substantial amounts of  IL-4 (41). To determine whether  
changes in IgE distribution could be produced by IL-4, we 
infused rats with rat r.IL-4 (40) and conditioned medium 
from in vitro-stimulated CD4 + OX22* and CD4 § OX22-  
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[ ]  CD4+ CD45RC+ recipient 
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Figure  5. Uptake of 12sI-IgE in the small-intestinal wall and its trans- 
port into the intestinal lumen of rats that received 2 x 10 s protective 
(CD4 + CD45RC -)  or nonprotective (CD4 + CD45RC + ) cells. 7 d after 
adoptive cell transfer, 12 #g lzsI-IgE (sp act 42,000 cpm//xg protein) was 
injected intravenously through the tail vein, and 24 h later, 1251 counts 
in the tissue and body fluids were measured. * *Significant at p <0.01 
compared with sham-operated controls. Groups of four rats -+ 1 SD. 

cells and then injected 125I-IGE 3 d later. The results (Fig. 
6) showed a significant increase in total small-intestinal t251 
counts of 10,945 _+ 918 (IL-4 recipients) versus 6,065 _+ 1,338 
(mock supernatant) and intestinal wash counts 3,416 _+ 852 
(IL-4) vs 1,042 + 27 (mock supernatant). There was no overall 
increase in intestinal t2sI-IgE uptake in recipients of  super- 
natants from CD4 + C D 4 5 R C -  or R C  + cells stimulated in 
vitro, but there was an 80% increase (1,402 + 213 cpm vs. 
777 _+ 158 cpm) in total 12sI counts in the small-intestinal 
wash of rats that received C M  from CD4 § C D 4 5 R C -  cells 
compared with C M  from CD4 § C D 4 5 R C  + cells. No sig- 
nificant differences were observed in the recovery of tz51 
counts in other organs or body fluids between the two groups. 

20000 y [  �9 rlL-4 SN 
J [  [ ]  Mock SN 

~176176176 j 
lung intestine intesIinal penloneal 

fluids fluids 

Figure 6. Uptake of 12sI-IgE (sp act 77,000 cpm//~g) in the small in- 
testine of rats treated 3 d previously with an intraperitoneal injection of 
a culture supernatant from rat r.I/c4-transfected C H O  cells, mock- 
transfected C H O  cells, or TSL-1 antigen-stimulated CD4 + (CD45RC + 
or CD45RC -)  cells. The CD4 + subsets were collected from the thoracic 
duct of rats infected 3 d earlier with  T. spiralis. After collection, the cells 
were panned and stimulated in vitro with TSL-1 (100/zg/ml) for 24 h. 
II~4 activity in transfected C H O  cell supernatants and in CD4 + subset 
supernatants was determined earlier by appropriate bioassays. Significant 
at *p <0.05% or * *p <0.01% compared with mock-transfected superna- 
tants. Groups of four rats -+ 1 SD. 
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Discuss ion 

Despite its prominent pathological effects, it has proved 
difficult to establish a beneficial role for IgE. Over the last 
few years, both direct and indirect evidence has accumulated 
suggesting that protection against various helminth infec- 
tions can be attributed to IgE (19-22), through as yet undefined 
mechanisms. Unique biological features of IgE include its 
low concentration in serum, a conspicuously short half-life 
in plasma (12 h), but .a long half life (7.4 d) (44) when bound 
to the high affinity receptor (FceRI) now known to be ex- 
pressed on a variety of cells (20, 46, 47). Cell binding ap- 
pears to be a prerequisite for function, and the short plasma 
half-life is thought to be due to the presence of two catabolic 
pathways that act on free IgE (48). The results of this study 
further our understanding of IgE by demonstrating an in- 
ducible capacity for uptake of plasma IgE by intestinal cell 
populations, that intact IgE is preferentially transported into 
the intestinal lumen, and that gut uptake of IgE can be in- 
duced by the adoptive transfer of purified T. spiralis immune 
CD4 § OX22- cells or the intravenous injection of rat 
r.IL-4. 

Previous studies have suggested that IgE may be a secre- 
tory immunoglobulin (49) based on the simple detection of 
IgE in intestinal fluids (49-52) or respiratory and nasal 
washings (49, 53-55). The ratio of IgE to total protein or 
serum albumin indicated that more IgE was present in gut 
an lung fluid than could be accounted for by diffusion from 
serum (49, 54, 55). However, questions regarding the radio- 
immunosorbant test IgE assay system used (56) and the in- 
ducible secretion of IgG in pancreatic fluid (51) cast doubt 
on the view that IgE was a secretory immunoglobulin. Fur- 
thermore, no evidence for IgE secretion was found in a quan- 
titative study of the perfused gut of normal human volun- 
teers in which IgG, IgA (polymeric and monomeric), IgM, 
albumin, and orosomucoid levels were measured (57). IgE 
in secretions is not combined with secretory component (58) 
nor does IgE combine with secretory component in vitro 
(59). Thus, if IgE is a secretory Ig, then its mechanism of 
uptake and transport will likely differ from the poly-Ig receptor 
mechanism of slgA (60). Most observers have associated 
elevated IgE levels in mucosal fluids with underlying inflam- 
matory or allergic processes and have suggested that diffusion 
from an enriched local source of IgE-secreting plasma cells 
could account for their findings (49, 51, 54, 55). This is con- 
sistent with a concentration of IgE-containing cells in the 
intestinal and respiratory mucosae and their draining lymph 
nodes in primates and parasite-infected rodents (61, 62). How- 
ever, this conclusion has also been challenged, by studies that 
have failed to find IgE-containing cells in the intestinal LP 
(63) and evidence that many IgE-bearing cells in the gut of 
nematode-infected rats were mast cells (64, 65). Thus, while 
the existence of IgE in fluids at mucosal surfaces appears es- 
tablished, whether or not this is due to selective transport 
has not been established. 

Plasma IgE transport to mucosal fluids has not been mea- 
sured in nematode-infected rodents, despite the well-recognized 
elevated serum IgE response (13-16, 19). We therefore ap- 
proached the question of how IgE might function in the gut 
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by quantitatively defining its behavior after intravenous in- 
jection in T. spiralis-infected rats. Analysis of the distribu- 
tion of 12sI-IgE myeloma protein showed a reproducible pat- 
tern of localization of whole-body counts in that active parasitic 
infection of the gut led to elevated 125I-IgE counts in the in- 
testine. In >50% of these experiments, lung counts were also 
elevated. Usually, counts associated with the small intestine 
tissue (the site of residence of T. spiralis) were elevated three- 
to fivefold over normal rats. Large-intestine counts were typi- 
cally elevated by twofold or so lower, absolutely, than small- 
intestine counts. Small-intestinal wash fluids from infected 
rats contained high counts, and these could be as much as 
10-15-fold higher than the comparable level of normal rats. 

It was important to determine whether luminal counts rep- 
resented degraded IgE or intact, high molecular weight IgE. 
Since, in rats, the liver is important in IgA transport (66), 
we determined the contribution of bile transport to total lu- 
minal counts. At the time of killing, the last 2.5-h collection 
of bile contained 283 counts, less than half of which would 
remain in the lumen at the point of killing because the transit 
time in the small intestine is 45-60 min (~142 cpm). This 
is a negligible contribution to the overall recovery in the wash 
fluid 24 h after 125I-IGE injection, which ranged between 
8,000 and 28,000 cpm, depending on the amount of 125I-IGE 
injected and the day of infection. Furthermore, the counts 
in bile fluid were all low molecular weight, and no high mo- 
lecular weight material was detectable by PAGE analysis in 
bile samples, although it was evident in the gut lumen wash. 
An average of ~20-25% of intestinal wash counts were due 
to high molecular weight IgE in infected rats. At 24 h, be- 
tween 0.3 and 0.8% of total injected IgE was recoverable 
as intact IgE (mean 0.7%). With a small-intestine transit time 
of 45 min, over a 24-h period, ~22% of the injected dose 
oflgE (24 h x 0 .7% - 0.75 h) will have entered the lumen 
of the gut. This assumes that the transport of IgE remains 
constant throughout this period. In reality, at 24 h, ~45% 
of total initial counts have been lost in the urine and feces. 
Transport into the intestinal lumen is thus likely to be less 
at this point than earlier, when high lzsI-IgE levels are present 
in plasma. The estimate of 22% of the injected dose indi- 
cates that a substantial fraction of plasma IgE is likely to have 
entered the intestine. Since considerable local synthesis of IgE 
in the gut wall is taking place concurrently in infected rats 
(Richards, E. M., C. H. Wang, and R. G. Bell, unpublished 
results), it seems reasonable to expect that exogenous 125I- 
IgE would have to compete with endogenously produced IgE 
for access to gut transport mechanisms. 

The data further suggest that it is unlikely that intestinal 
transport was due to local damage or inflammatory processes. 
T. spiralis infection produces local damage to enterocytes (67), 
hyperemia (68), acute inflammation (69), and lymphocyte in- 
vasion (68) at the site of infection, albeit in temporally dis- 
tinct sequences. Despite these underlying changes, 12sI-IgG1 
failed to appear in intestinal wall tissues or intestinal wash 
fluids at any higher rate in infected rats than in control unin- 
fected rat tissues. This indicates processes that are selective 
for IgE rather than simple plasma leakage. Since IgG1 is smaller 
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(mol wt = 155,000) than IgE (mol wt = 190,000), we would 
have expected 20-30% more IgG1 than IgE in the intestinal 
lumen if inflammation-related diffusion were the main de- 
terminant of immunoglobulin movement. In fact, the levels 
we found for IgG1 were usually <20% of the value observed 
for IgE. Presumably, uptake of IgE by the gut tissues reflects 
the appearance of IgE receptors on as yet undefined cell types. 

We did not attempt to determine the actual site of intes- 
tinal transport of IgE except to show that bile transport was 
unimportant. IgE in the gut lumen of infected rats was the 
same molecular weight ('~190,000) in nondenaturing gels 
as that injected, indicating that luminal IgE was not bound 
to a receptor. Both CD23 (70) and 6~P (71) have been identified 
in gut epithelial cells, and either could be involved in uptake 
or transport processes. We found little evidence to support 
a role for FceRI in any intestinal cell population. Perhaps 
most Fc~RI receptors were already occupied but, due to the 
high affanity of binding, they are unlikely to be involved in 
transport. Expression of CD23 on enterocytes is increased 
in patients with enteropathies (70). While IEL possessed 
receptors for IgE that could be blocked by anti-CD23 anti- 
body, it seems anatomically unlikely that IEL could trans- 
port IgE into the gut lumen. Our techniques for demon- 
strating CD23 on enterocytes by in vitro binding were 
compromised by the large amounts of mucus produced by 
goblet cells in this site during parasite infection. 

Intestinal uptake of transferred 12sI-IgE was at least par- 
tially an inducible property of specifically immune lympho- 
cytes. Previous work from this laboratory has documented 
the protective functions of CD4 + OX22- cells isolated from 
the thoracic duct of rats infected 3 d previously with T. spiralis 
(19, 23, 33, 34, 41). These cells can transfer two distinct forms 
of anti-T, spiralis immunity, rejection of adult worms (33), 
and rapid expulsion (19). Their presence is an essential pre- 
requisite for the passive transfer of rapid expulsion with specific 
IgE (19), but their precise role in this has not been defined. 
Adoptively transferred CD4 + OX22- cells do not stimulate 
an intestinal mastocytosis, but rather an eosinocytosis (34). 
This raises the very interesting possibility that cells other than 
mast cells or even eosinophils may be important in the IgE- 

dependent rapid expulsion process. The induction of IgE 
uptake by the nonparasitized gut after cell transfer further 
supports the view that intestinal binding oflgE is not a con- 
sequence of parasite-induced local damage or inflammation. 
The experiment with IL-4 further demonstrates that IgE 
binding in the gut is a process that can be influenced by a 
single cytokine and thus constitutes a significant new func- 
tion for IL-4. While a lack of rat reagents hampers a more 
comprehensive examination of the role of IL-4 or that of other 
potential contributors (e.g., IL-10), the effect was neverthe- 
less striking. 

While the details of inducible intestinal IgE uptake and 
transport remain to be defined, we suggest that both processes 
open new avenues for the exploration of the role of IgE in 
protection against helminth infections and in allergic disease. 
The likelihood that comparable processes operate in lung was 
suggested by several of our experiments, which showed elevated 
uptake of intravenously transfused 125I-IgE in lung tissue. If 
confirmed, this is significant for allergic disorders of the re- 
spiratory tract. Furthermore, the indication that IEL, a granu- 
lated cytotoxic cell population, have inducible IgE receptors, 
CD23 in this case, suggests new functions for this cell popu- 
lation. Finally, the amount of IgE transported from the plasma 
into the gut after its appropriate stimulation represents a sub- 
stantial proportion of the total amount of IgE injected. This 
suggests that the gut, when stimulated, plays a minor role 
in determining the overall IgE balance sheet. In the introduc- 
tion, the association between parasitic infections in humans 
and the low incidence of allergic disease in tropical countries 
was discussed. The data presented here indicate that intes- 
tinal nematode infections induce high activity in a gut-specific 
IgE transport process concurrently with infection, and that 
this is influenced by IL-4, the cytokine principally involved 
in upregulating IgE production. Intestinal nematode infec- 
tions are ubiquitous in humans and other mammalian popu- 
lations in natural settings. This suggests that the physiology 
and metabolism of IgE may be very different under condi- 
tions of chronic intestinal parasitism than it is in Western 
Europe and North America, where parasitic infections of the 
gut are rare but allergic disease is common. 
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