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ABSTRACT

Recently, newly developed ribosome profiling meth-
ods based on high-throughput sequencing of
ribosome-protected mRNA footprints allow to study
genome-wide translational changes in detail. How-
ever, computational analysis of the sequencing data
still represents a bottleneck for many laboratories.
Further, specific pipelines for quality control and
statistical analysis of ribosome profiling data, pro-
viding high levels of both accuracy and confidence,
are currently lacking. In this study, we describe au-
tomated bioinformatic and statistical diagnoses to
perform robust quality control of ribosome profiling
data (RiboQC), to efficiently visualize ribosome posi-
tions and to estimate ribosome speed (RiboMine) in
an unbiased way. We present an R pipeline to setup
and undertake the analyses that offers the user an
HTML page to scan own data regarding the following
aspects: periodicity, ligation and digestion of foot-
prints; reproducibility and batch effects of replicates;
drug-related artifacts; unbiased codon enrichment
including variability between mRNAs, for A, P and
E sites; mining of some causal or confounding fac-
tors. We expect our pipeline to allow an optimal use
of the wealth of information provided by ribosome
profiling experiments.

INTRODUCTION

The translation of genetic information into polypeptide se-
quences is a cellular process common to all kingdoms of
life, involving a multitude of orchestrated interactions be-
tween mRNAs, translation factors, ribosomes and tRNAs.
Translation is a highly regulated and fine-tuned process,
which enables a fast response to metabolic and environ-
mental changes and its regulation balances the pool of pro-
teins actively translated from mRNAs (1). While mRNAs

and proteins can be measured by RNA-seq and mass spec-
trometry, respectively, ribosome profiling allows to directly
measure protein synthesis by detecting the position of ri-
bosomes on mRNAs (2,3). As a result, Ribo-seq provides
a quantitative profile of the translatome at high resolution,
i.e. the set of mRNA species under active translation. More
specifically, Ribo-Seq is based on the isolation and retrieval
of mRNA fragments (footprints) when they are protected
by a ribosome, followed by deep sequencing-based identifi-
cation of ribosome footprints. Adequate alignment of these
footprints allows to determine the position of translating ri-
bosomes on mRNAs at single-codon resolution (3,4). This
method has quickly been adopted by many laboratories, but
at present, data analysis requires computational expertise
(5), and the analysis so far has used visualization methods
but few dedicated statistical estimates or quality diagnos-
tics. Bioinformatics tools like Rqc (6) centered on quality
assessment of reads (data structure, contaminants, etc.) can
be used to assess the quality of sequencing but are not in-
formative on the artifacts and batch effects detected on ri-
bosome profiling datasets (Table 1). In this study we com-
pared the performance of RiboVIEW with other existing
tools dedicated to ribosome profiling analysis, like Gwips-
viz (7), RiboProfiling (8) and riboSeqR (9). This compar-
ison is presented in Table 2 and also includes tools with
some quality control capabilities like RiboViz (10), mQC
(11), RiboTools (12) and Ribo-TISH, (13) though none of
these methods provides the full array of controls and visu-
alization that we propose.

RiboVIEW visualizes translation elongation at codon
level and provides relevant quality properties. Furthermore
RiboVIEW provides unbiased estimates of codon enrich-
ment, detects some (causal or confounding) covariates (Ta-
ble 1, Supplementary Figure S1).

MATERIALS AND METHODS

Data preparation

Sequenced reads are submitted to adapter re-
moval, using cutadapt (v1.8.1) with options ‘-a
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Table 1. Artifacts and batch effects in ribosome profiling experiments

Category Impact Ref

Replicate concordance Single codon-level analysis (ORF, etc.) (23)
Drugs Leakage, ribosome run-off, biased codon occupancy (15,29–31)
Experimental conditions Ligation-digestion: end base bias, ambiguous FP location, loss of periodicity (21,30)

Hybridization-subtraction: bias on codon enrichment (9)
EDTA: loss of information from large RPFs
RiboZero: loss of rRNA-like mRNA segments
Drop-off due to unwanted amino acid starvation, monitoring with metagene (32,33)
RNAse digestion (34)

Organismal specificities Footprint loss through size selection in s.cerevisiae (28)
CHX leakage in S. cerevisiae and S. pombe (15,29)

PCR, seq., post-treatment Sequence preference, Biased counts due to inefficient alignment (21)
Information loss (35)

Other batch effects Non-relevant variability for one or all estimates (21)

Table 2. Comparison of ribosome profiling tools

RiboView RiboViz Gwipsviz/RUST TripsViz riboSeqR RiboProfiling mQc RiboTools Ribo-TISH

Quality control and normalization

Lengths footprint count
Table for +/-

20nt on A-site
Yes Yes

Table for frame 
0/1/2

Barplot Yes Yes Yes

Periodicity
Recurrence plot 

and barplot 
On START and 
STOP coding

Max triplet 
periodicity score

Count per frame
+/-20nt window 

around A-site
In coding 
sequence

Count per frame Count per frame 

Replicates concordance Yes
Meta-

information

Ligation bias
Nucleotide 

logoplot 
Nucleotide 
frequencies 

at 5’

Metagene coverage Yes Yes Yes
Partly, at 5' and 

3' ends
Yes Yes

start –stop  and UTR coverage Yes Yes Yes Yes
By pie chart and 

by frame 
Ratio 3'UTR to 

CDS

Drugs biases
Off-A 

enrichment
Specific reads 
distribution 

RUST
profile

Frame 
distribution 

Using metagene

Nucleobase effects
Linear 

regression 
Nucleotide 
frequencies 

Nucleotide 
composition 

Results and visualization

Codon occupancy A/P/E sites
In A, P and E 

sites
In A, P and E 
sites and tAI

In A, P and E 
sites

In P-site
In A, P and E 

sites

Codon enrichment Yes

Single mRNA footprint tracks Yes
Gene based tab

Yes Yes Yes
Frame 

distribution
Yes

Genome footprint tracks
RiboSeq and 

RNA-seq tracks
mRNA shared between 

conditions
Venn diagram RPKM 

Single
transcript plot

Separation of samples (PCA)
On codon 

enrichment
On codon 
coverage

Translation efficiency Not directly Differential plot
In RiboGalaxy

adaptation

Galaxy Yes Yes Yes Yes

Available at
https://github.co

m/carinelegrand/R
iboVIEW

https://github.co
m/shahpr/RiboViz

https://gwips.ucc.i
e/index.html

https://trips.ucc.ie

http://bioconduct
or.org/packages/re
lease/bioc/html/ri

boSeqR.html

https://bioconduc
tor.org/packages/r
elease/bioc/html/
RiboProfiling.html

https://github.co
m/Biobix/mQC

https://testtoolshe
d.g2.bx.psu.edu/vi
ew/rlegendre/ribo

_tools

https://github.co
m/zhpn1024/ribot

ish

AGATCGGAAGAGCACACGTCT–error-rate=0.1 –
times=2 –overlap=1’. Resulting reads are trimmed using
Trimmomatic (v0.36) with 30 as minimum quality score,
minimum length 11nt and maximum length 36nt (options
-phred33 LEADING:30 TRAILING:30 MINLEN:11
CROP:36). Remaining reads are depleted of rRNA and
other non-nuclear mRNA by aligning using Bowtie on
a depletion reference (rRNA, tRNA and mitochondrial
RNA sequences), with options –seedmms 2 –seedlen 11
–maqerr 70 –tryhard -k 1. Finally, reads that do not align
to the depletion references are aligned to the transcriptome,
using Bowtie with options –seedmms 2 –seedlen 11 –maqerr
70 -m 1.

Fasta-format mRNA and ncRNA reference, as well
as GTF-format annotation, were downloaded from En-

sembl FTP-download page https://www.ensembl.org/info/
data/ftp/index.html. A template for data preparation under
UNIX/Linux systems is provided in the Supplemental In-
formation.

Workflow

Once the aligned reads are generated in a bam format, the
next step is done using R command line. A template work-
flow is provided in the Supplementary Information. In this
template, the user can define the addresses of the input files
and the experimental conditions. Then, a set of commands
generates results including the two HTML pages Results-
QC.html and Results-MINE.html where the results can be
viewed. All is coded as custom R and Python scripts. As

https://www.ensembl.org/info/data/ftp/index.html
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a general rule, replicates of a same condition are either in-
tegrated or all shown. In some cases, this would have been
impractical; the resulting plots are then saved to the output
folder and only one replicate is shown in the HTML pages.

Calculating periodicity

The number of footprints which align close to the start of
the annotated sequence of an mRNA are counted (regard-
less of codon identity). Tables of this coverage, stratified by
footprint length and by position in a window of 20nt 5′ of
the A in AUG-codon to 20nt on the 3′ side, are generated.
Those tables are used to display periodicity using a recur-
rence plot (14), R function recurr from R package tseri-
esChaos, adapted for RiboVIEW). Recurrence plot usually
represents time autocorrelation in dynamical systems, while
it is used here to represent spatial autocorrelation. The re-
currence plot is generated for each footprint length, along-
side with a barplot, which shows the coverage achieved for
each footprint length.

Selecting adequate footprint lengths

Recurrence plots per footprint length are displayed one at
a time (function selectFPlen), after which an interactive di-
alog prompts the user to select a minimum and maximum
footprint length which comply with recurrence every 3nt,
starting at −12nt.

Metagene

A metagene is generated using the coverage in A site for
each available position along each mRNA in one sample,
which is calculated in enrichment.py and stored in output
files *.metagene. Positions are normalized to the following
metagene coordinates: [−1; 0] for the 5′ UTR, [0; 1] for the
CDS and [1; 2] for the 3′ UTR. Coverage counts are nor-
malized so as to add up to unity, and binned at 0.1 reso-
lution (option res1 in function ‘metagene.all’). These nor-
malized and binned values constitute the metagene profile.
The percentage of reads in the UTRs relative to the CDS is
calculated and informs possible selection artifact (indicative
cutoffs of 1% and 10% are used). The percentage of reads
in the first 15 codons stretch at CDS start, including the
AUG codon, is calculated and compared to an indicative
threshold of 1% for possible inflation around AUG. Leak-
age is examined at AUG and STOP codon. For AUG, a ro-
bust linear fit is applied to the metagene profile at and after
AUG (metagene coordinates [−0.1; +0.3]). If the slope from
this fit is positive and has a significant P-value at 0.05 level
(respectively, 0.1), this yields an indication of strong (respec-
tively, mild) leakage after AUG. Similarly, leakage at STOP
is calculated as the percentage of metagene coverage after
the STOP codon relative to shortly before (segments [1; 1.3]
and [0.9; 1] in metagene coordinates). A percentage larger
than 5% (respectively, 1%) triggers strong (mild) indication
of STOP leakage.

Ligation biases if any are highlighted in logoplots at the
nucleotide and codon level. These plots are automated from
coverage counts at nucleotide and codon level as derived
from enrichment.py and from adapted scripts from the R

package ggseqlogo. A significant nucleotide or codon se-
quence bias is here indicated not by a P-value, but by the
information content, measured in bits. Cutoffs of 0.2 (or
0.4) are used to indicate possible (or strong) bias on a se-
quence.

Correlation between replicates

Counts per mRNA per replicate are displayed in an RPKM
plot for each set of replicates of the same condition, along
with the Spearman correlation at gene level. Additionally,
stretches of 3–100 codons are scanned for Spearman corre-
lation higher than 0.4, or better, 0.6 between replicates. The
relevant stretch, or 100 if none fulfills this criterion, is used
to display a codon-level RPKM plot.

A heatmap with hierarchical clustering is produced for
the full set of samples. Hierarchical clustering is compared
to the actual experimental conditions and replicates using a
Spearman correlation.

Codon enrichment, relative codon enrichment and codon oc-
cupancy

As a rationale for unbiased codon enrichment calculation,
we considered the pool of mRNA actively translated, from
which footprints derived. Focusing on a codon with iden-
tity c, we look for footprints where this codon appears at
a certain offset i from the A-site (Supplementary Figure
S2). For example, this offset i could be four codons away,
downstream (5′ side) of the A-site. If there is no specific
pausing or acceleration of this codon c at offset i, then one
would expect codon c at offset i to appear in ribosome foot-
prints at a frequency, which simply reflects its codon usage.
Based on this rationale, unbiased codon enrichment is cal-
culated as the observed codon usage relative to the expected
codon usage. In practice, in the Python script dedicated to
enrichment calculation sums first the observed codon us-
age at mRNA level and second over mRNAs, using weights.
Weights by mRNA are defined as the number of reads per
mRNA. Furthermore, we make the assumption that the ex-
pected codon usage is independent of the position, except in
domains near AUG and STOP codons, which are excluded
(15 codons near AUG, 5 codons near STOP codons). This
yields equation (1), where in particular weights are simpli-
fied out when one sums over all mRNAs:

Ēc,i =
∑

g nc,i,g∑
c

∑
g nc,i,g · codon usageglobal

c

(1)

where Ēc,i is the codon enrichment for codon identity c at
position i (with, especially, i = 0 at A-site, i = 1 at P-site),
averaged over mRNAs, nc,i,g is the number of codons c ob-
served at position i in mRNA g, and global codon usage is
defined by equation (2):

codon usage global
c =

∑
g nc,0,g · codon usagec, g∑

c

∑
g nc,0,g

(2)

Under the assumptions mentioned, enrichment Ēc,i is un-
biased at unity (Supplementary Figure S2). This relies on
the fact that, if codon c is nether paused nor accelerated and
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if the assumption that the expected codon usage is indepen-
dent of the position holds, then the observed codon usage
converges to the expected codon usage, as the coverage in
the experiment becomes large enough, as in Equation (3):

lim
coverage→∞ codon usage(FP)

c,i = lim
coverage→∞ codon usage(FP)

c

= codon usage(global)
c (3)

As a consequence, still in the case when codon c is nei-
ther paused nor accelerated, enrichment Ēc,i, the ratio of
observed to expected codon usage, should converge to 1, as
coverage becomes large enough.

Standard deviation of codon enrichment is calculated
similarly, using the number of reads as weights. This sim-
plifies into equation (4):

ŜD
2 (

Ec,i )
) =

∑
g(n2

c,i,g /
∑

c nc,i,g)
∑

c

∑
g nc,i,g · (codon usageglobal

c )
2 − Ē2

c,i

(4)

Standard error of the average codon enrichment across
mRNAs is taken as the standard deviation of codon enrich-
ment divided by the square root of the number of mRNAs.

Relative codon enrichment is calculated as described pre-
viously by Hussmann (15). Relative codon enrichment for
arginine codons are produced for each replicate and dis-
played in RiboQC. The full table of values for all codons
is provided in the results folder.

A comparison of main differences in the calculation of
enrichment in this study and in Hussmann et al. (2015) is
given in Supplementary Figure S3).

Bulk codon occupancy corresponds to the counts of foot-
prints stratified by codon identity. We provide the codons
present in A-site, P-site and E-site, as well as three positions
downstream and upstream of the ribosome. The rationale
to assign a specific position for each codon was described
previously (16). Briefly, the A-site is assigned at the foot-
print 5′ start +15nt, relaxed by ±1nt to match the closest
codon in the main reading frame.

Enrichment per experimental condition

Enrichment in one condition is calculated as the weighted
mean and standard deviation over replicates, where the
weight associated to one replicate is 1/SE2(Ēc,i). Standard
error across replicates is taken as the standard deviation
across replicates divided by the square root of the number of
replicates. Enrichment per condition is displayed in Results-
Mine.html for each codon, along with an error bar corre-
sponding to ±standard deviation.

Enrichment between experimental conditions

Enrichment in condition (a) relative to condition (b) is cal-
culated by bootstrapping possible quotients from replicates
in condition (a) relative to replicates from condition (b).
This procedure yields the mean and standard error of the
quotient of enrichments. This quotient is shown in Rresults-
Mine.html, with error bars corresponding to the standard
error.

mRNA tracks

Coverage in the A site is displayed in a barplot along the
coding sequence of an mRNA, in every sample. By default,
an mRNA with sufficient coverage is picked at random.
Tracks for a specific mRNA can be requested using the op-
tion ‘mRNA=’ in RiboVIEW function visu.tracks.

Venn diagram

RiboView automatically retrieves the number of footprints
per mRNA and per replicate for one condition and creates a
Venn plot using R package VennDiagram. This is restricted
to up to five replicates per condition (limitation of VennDi-
agram package).

Group effects

Group effects are evaluated using a principal component
analysis on codon enrichment. A P-value for significant
principal component is derived by bootstrapping 10000
times the elements of the matrix of occupancies for all sam-
ples. The PCA plot is displayed along with this P-value for
interpretation as a batch effect (separation of replicates), or
as a functional role (separation of conditions) by the user.
Additionally, a tSNE plot is generated, using the average
number of replicates to set the parameter ‘perplexity’.

Second, a linear regression is applied to codon occupancy
with nucleobases a, c, g or u as explanatory variables. The
slope, standard deviation and P-value are retrieved to pro-
duce a barplot for display in Results-Mine.html. Error bars
signal the standard deviation, while a significant P-value
is indicated in the text associated to this plot, for the user
to identify, if either a batch effect between different repli-
cates or a functional effect between different conditions is
present.

RiboQC HTML page

Text and plot files are retrieved from R data files corre-
sponding to each theme ‘Periodicity’, ‘Replicates’, ‘Selec-
tion’ and ‘Drugs’, and to each category within these themes.
This hierarchy of themes and categories is specified via
a nested list. The output page Results-Qc.html is gener-
ated in three phases: (i) HTML (Hyper Text Markup Lan-
guage) commands for page initiation, definition and header
are written to Results-Qc.html. This includes a style sheet
‘output-style’ written in CSS (Cascading Style Sheets) lan-
guage. (ii) A loop for each theme generates one rounded
box-frame per theme. Inside this frame, a nested loop gen-
erates one tab per category, containing one plot and corre-
sponding text with relevant values. Plots are included as a
character string using Python package ‘base64’. (iii) Footer
and closing HTML commands are written to Results-
Qc.html.

RiboMine HTML page

The procedure and structure is the same as for RiboQC
HTML page. The different content is entirely defined by the
hierarchy of themes and categories and by the correspond-
ing R-data files loaded.
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Tests

Using a Python script, synthetic mRNAs were generated
and annotated. Following different relevant scenarii (foot-
print periodicity present or absent, enrichment or not at a
specific codon, ribosome leakage or not), footprint reads
were sampled from the pool of synthetic mRNAs and writ-
ten to BAM files. These files were used as input into Ri-
boVIEW in order to check its different functionalities. A
checklist of functions and expected outputs was established.

RESULTS

Preparatory work and input

RiboVIEW is meant to be easily integrated into a general
ribosome profiling workflow (Figure 1A). Cells could be
treated with cycloheximide, or with different drugs or sim-
ply flash-frozen to arrest translating ribosomes. Cytoplas-
mic extracts from these cells are then treated with RNase
to digest regions of mRNAs not protected by ribosomes.
80S monosomes, that mainly protect a ∼30-nucleotide foot-
print, are purified using a sucrose gradient or alternatively
with a sucrose cushion. Nucleotide footprints are then size-
selected and processed for Illumina high-throughput se-
quencing (Figure 1A).

Besides the analysis pipeline, we also provide, in the Sup-
plementary Methods, our in-house experimental protocol
adapted from (17,18).

The next steps are computational: first the footprints are
trimmed from adapter and low quality bases, and depleted if
they align to rRNA (or further RNA sequences which could
be ambiguously aligned to mRNA, like tRNA for example).
Remaining reads are mapped to the transcriptome.

We routinely use Bowtie (19) with a seed region of 20 nu-
cleotides and one mismatch allowed. We chose Bowtie be-
cause it is fast and dedicated to short read alignments up
to 50 bp, which is compatible with the length of a ribo-
some footprint, for which it is faster and/or more sensitive
than Bowtie2 that was developed for reads longer than 50
bp (http://bowtie-bio.sourceforge.net). STAR aligner (20)
could be a valid alternative. Mapping should preferably be
unique (21), which results in the loss of some coverage, but
avoids skewed codon enrichment or artifacts in translation
efficiency (#FP/#mRNA) results.

Afterwards, the resulting BAM files, reference mRNA se-
quences (fasta format), and annotation of their coding se-
quence (table format, generated from a gtf file) can be en-
tered in RiboView. We show here example results of the
analysis of our in-house samples (16), obtained from HeLa
cells treated with the elongation inhibitor cycloheximide
(Supplementary HTML files).

1.5 to 2.4 M reads for minus queuine medium samples
(denoted L) and +queuine medium (denoted L+Q) samples
(category) aligned to known CDS regions. This corresponds
to 88.3–92.7% of remaining reads after depletion of rRNA,
tRNA and mitochondrial RNAs (7.6–12.3M reads were de-
pleted).

We further validated RiboVIEW using independent
datasets. An example obtained from c. elegans samples (22)
is provided in Supplementary Figures S4 and S5 and Sup-
plementary HTML files.

RiboQC

Reproducibility and quality control are a concern for any
experimental procedure. RiboQC offers a collection of tools
to scan own data for the most relevant aspects of ribosome
profiling quality control.

Periodicity. For any given mRNA, ribosome footprint se-
quences should mainly correspond to the protein coding
portion of the transcript, extending from the start codon to
the stop codon. Footprint-allocated position of the A-site
should also show a strong preference for the first nucleotide
position within each codon, in agreement with the read-
ing frame. In order to monitor these aspects, we propose
both the classical coverage representation (barplot, Figure
1B), which represents well the coverage obtained from dif-
ferent footprint lengths, and a recurrence plot, which is an
unsupervised way to display recurring patterns in a series
(14). Recurrence plot was previously developed for dynam-
ical systems and can be adapted in a straightforward way to
ribosome profiling data. A recurrence plot is robust to non-
periodic coverage variations, and preserves the positional
information, whereas a Fourier transform would yield a
summary value over all positions, and methods based on
coverage in 0, +1 or +2 frames lose positional information
and could be biased for outlier peaks. Sufficient periodic-
ity is attained if a peak at −12nt is present on the recur-
rence plot (−12nt corresponding to AUG initiation in P-
site), and distinct recurrence patterns occur every 3nt, at
−9nt, −6nt, etc. We call ‘distinct’ a recurrence black band
centered around −12, −9, . . . , −18 nt and separated of the
next band by grey to white bands. In our demonstration
dataset, the peak at AUG initiation is clearly visible as a
dark band at −12nt and recurrence starting at −12nt is
shown by dark bands at −12nt, −9nt, . . . , +18nt, each well
separated by a lighter band (Figure 1C left panel). This was
the case for footprints of length 27–30nt. By contrast, foot-
prints of length 32nt possess a diffuse peak at −12nt (en-
compassing positions −13nt and −12nt), and lack recur-
rence at positions −9, +3, +9, +12, +15, +18 nt (Figure 1C
right panel).

Metagene. A metagene profile is an average of quantita-
tive ribosome density of all mRNAs, along a normalized
transcript. In our examples the metagene profile showed the
restriction of footprints to the genes coding region (Figure
1D), indicating sufficient monosome selection, and absence
of drop-off. Further, there were no indication of inflation
around AUG or leakage either at AUG or STOP codon, as
indicated by detailed zoom and diagnostic values around
AUG and STOP (Figure 1D, Supplementary Figure S4B).

Ligation. We assess the frequency of specific nucleotide
or codon sequences at the 3′ end and 5′ end of ribosome-
protected fragments likely resulting from ligase specificity,
or due to PCR amplification of cDNA that may selec-
tively amplify certain sequences, thus distorting the rela-
tive abundance of reads. To this aim, we propose a logo
nucleotide and codon analysis (Figure 1E, Supplementary
Figure S4C). The reduction of last a and over representa-
tion of a, c, u, further signaled by an information content
larger than 0.4, suggests a bias. However, this corresponds

http://bowtie-bio.sourceforge.net
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Figure 1. RiboQC: Periodicity, metagene and ligation analysis. (A) Ribosome profiling workflow including the major steps of the ribosomal profiling
approach. (B) Periodicity and A site identification: (top) Anatomy of a ribosome footprint, with P-site offset for 30 mer reads indicated. (bottom) Sum
of the footprints aliened at the start codons, used for identifying the A-site. Footprints were first stratified by length (26–32nt). The first nucleotide of
each footprint at the 5′ terminus that mapped to the proximity of its start codon was summed for the annotated mouse genes. The 0 position is the first
nucleotide of the start codon. The highest peak for this representative read length of 30nt is 12nt before the start (P site). Hence, the A site for reads of 30
nt in this sample was identified as +15 from the start of the footprint. (C) Recurrence plots for footprints of length 28nt (left) and 32nt (right) with blue
arrow indicating presence and red arrow absence of initiation peak at −12nt. Further, blue triangles indicate 3nt recurrence and red triangles no recurrence
at positions −9nt, −6nt, . . . , +18nt. (D) Representative metagene plot of 27–30 mer ribosome footprints at coding start and stop site. (E) Logo nucleotide
analysis of 5′ and 3′ footprints ligation sites.
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to adapter trimming which leads to the systematic removal
of a terminal a in the footprint. This distortion is seemingly
not functional, since codon logo shows no bias at footprint
3′ end (this includes a-terminated codons, whose identity is
recovered through the alignment), as well as no codon bias
both at 3′ and 5′ ends (Supplementary Figure S7).

Reproducibility. We assess reproducibility between repli-
cates in several diagnostic tools, tailored for different ex-
perimental aims. Gene-level reproducibility is assessed by
a classical RPKM plot. In our data we obtained a strong
correlation of 0.953, in line with the best experiments (Fig-
ure 2A; (23)). Codon-level reproducibility, important for
ORF finding or local analyses, is shown in a codon-level
RPKM plot (Figure 2B). We also indicate the stretch length
needed for codon-level reproducibility, corresponding to a
strong Spearman correlation between replicates. In our ex-
amples, local analyses were not a primary aim, and the
correlation we obtain is logically lower (rS = 0.6902 in -q
and 0.7141 in +q on 100 codons, and stretches of at least
30 codons needed for local analyses, rS>0.4). Further, a
heatmap with hierarchical clustering on codon enrichment
provides an objective way to assess if replicates cluster to-
gether as should be expected (Figure 2C). In our −q and
+q samples this is the case, indicated by a Spearman corre-
lation larger than 0.8, between automatically-guessed and
experimentally-defined clusters.

Relative codon enrichments. We measure how frequently
ribosomes are observed with their A-site positioned at
a particular offset upstream or downstream of a given
codon identity, as calculated and normalized by Hussmann
((15), Supplementary Figure S3), who showed that in yeast,
pretreatment with CHX may produce artificial patterns in
ribosome density downstream of arginine codons (Figure
2D, arginine codons cga, cgg and aga). However, enrich-
ment estimates are perfectible: Hussmann estimates do not
automatically converge to unity, which prompted us to de-
sign an improved estimation for codon enrichment (Figure
3, Supplementary Figure S2, S3 and S6).

RiboMine

Each ribosomal footprint read is related to a specific codon
along the mRNA, since it was generated when that codon in
one of the mRNA molecules was positioned in the A, P or
E site of a ribosome. Based on the count or enrichment of
footprints aligned to an mRNA, it is possible to infer trans-
lation elongation process roles. For example, slower codons
can be detected based on the fact that they are covered by
ribosomes for longer periods of time, resulting in a higher
number of reads, as ribosomal densities inversely reflect ri-
bosomal speed (24).

Bulk codon occupancy (BCO). BCO reveals ribosome po-
sitions at single nucleotide resolution, and thus has the
potential to identify translational defects affecting single
codons. Ribosome dwell time at specific codons is deter-
mined as follows. The positions of the A, P and E site
codons within ribosome footprints of various lengths (25–
31nt) is determined by examining the 5′ ends of footprints

mapping to start codons, where initiating ribosomes are ex-
pected to contain start codons in their P sites. A-site posi-
tion was assigned according to an offset equal to +15nt for
26–30 read lengths offset from the 5′ end of the reads (17).
Reads were assigned to a codon when mapped to −1, 0, +1
relative to the first nucleotide of the codon (17,18). Occu-
pancy of A-site codons is normalized by the frequency of
the same codon in the non-decoded +1, +2, +3 triplets rel-
ative to the A-site, the first 15 codons and last 5 codons of
each ORF are excluded from this analysis (21,25). BCO is
provided as a table named BCO-<sample-name>.

Unbiased codon enrichment. Codon enrichment provides
the observed usage of a certain codon in comparison with
the expected codon usage. If a codon is found more fre-
quently in the ribosomal A site in comparison with the fre-
quency of the same codon in the observable segment of
the coding sequence, then there is enrichment higher than
unity. The calculations aim at providing an improved es-
timate for ribosome acceleration or stalling. By compari-
son to BCO and relative codon enrichment, we applied a
rigorous normalization, which yields unbiased estimates of
codon stalling (Figure 3, Supplementary Figure S6). Similar
to BCO, a high enrichment reveals ribosome pausing or ac-
celeration at single codons. However, BCO only allows com-
parison between conditions, whereas codon enrichment ad-
ditionally allows quantifications of codon translation speed
and its variability, for one specific sample, or for a specific
condition.

For instance in our example dataset, codon aaa has an
enrichment of 0.8001 (SEM: 0.0134 - adimensional) in the
-q condition (Figure 4A). This can be interpreted as 1/0.8
= 1.250 (SEM: 0.0209) times the average ribosome trans-
lation speed. Further, conditions are compared by dividing
enrichment in a condition (-q) by its value in another condi-
tion (+q), providing also the corresponding standard error.
In our examples, this shows slower translation for codons
cau, aau, and so forth, while uuc for instance is accelerated
(Figure 4B). Unbiased enrichments by sample, by condition
and by comparison are provided as tables containing means
and standard deviations, or standard errors where relevant.

mRNA footprint tracks. Footprint coverage is plotted ac-
cording to the position of its codon in the ribosome A site
along the mRNA to which it aligns (Figure 4C).

Venn diagram. The count of mRNA shared between dif-
ferent conditions might indicate adaptation of the mRNA
pool. This is displayed on a Venn diagram, however this is
limited to 5 samples maximum due to limitation of the R
package it relies on (Supplementary Figure S8).

Nucleobase effects. While mining for causal or confound-
ing factors, we observed sometimes a dependence on one
or the other nucleobase a, c, g or u. In Ribomine, the lin-
ear link between codon enrichment and each of these base
is explored and shown on a barplot (Figure 5A). In our
dataset, a significant decrease of c-contaning codon en-
richment (Benjamini–Hochberg-adjusted P-values lower or
equal to 0.00399, linear regression of enrichment against c
content) is observed (Figure 5A). While effect on c is similar
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Figure 2. Replicates, batch effect and drug effect. Correlation between ribosome profiling replicates as measured by RPKM values (A) and codon-level
RPKM values (B). Spearman correlations of 0.95 and 0.46 were computed for the two replicates. (C) Heatmap for codon occupancy replicates in conditions
–q (pink) and +q (green), with hierarchical clustering tree for samples (top) and codons (left). (D) Relative codon enrichment for Arginine codons cga, cgg
and aga from top to bottom.
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Figure 3. Codon enrichment. (A) Relative codon enrichment according to calculation and normalization steps described in Hussmann et al. (2015), for
codons aan. (B) Unbiased codon enrichment for codons aan, (C) with magnification on ribosome-covered part of mRNAs, for unbiased codon enrichment.

between samples (−0.123 with SEM = 0.0.0356 to −0.153
with SEM = 0.0412 per additional c in the codon), other ef-
fects might in principle correspond to an artifact or a batch
effect. In order to rule this out we correct the enrichment
from significant effects (cutoff: type I error � = 0.05) due
to a, c, g or u content. As a result, queuine still has a signif-
icant effect on Q-codons translation speed (Supplementary
Table S1).

Separation of samples. Causal or confounding factors can
sometimes be highlighted by unsupervised structure or clus-
tering detection. To this aim, we include a PCA plot for un-
supervised learning and a tSNE plot for cluster visualiza-
tion (Figure 5B,C). –q and +q conditions were separated by
principal components 1 and 2. tSNE plot didn’t show any
clusters, however this plot is more likely to be useful for a
higher number of samples.

Tests

All tests are listed in the supplementary file and were suc-
cessful (Supplementary software RiboVIEW.zip).

DISCUSSION

We developed the pipeline RiboVIEW to automate calcula-
tions of key variables from ribosome profiling data, assess
replicate concordance and other relevant quality parame-
ters, providing easy data visualization. We display these pa-
rameters and views in HTML files, to quickly scan own
data. We demonstrated the application using data from hu-
man cells (control and cells with queuosine deficiency (16))
and in c.elegans (control and tut1 mutant worms (22)).
Monitoring of quality parameters using RiboQC and ex-
ploitation of unbiased codon estimates using RiboMINE
will allow users to control and explore their own data in a
comprehensive and handy manner.

The analysis highlights relevant aspects revealing the
quality of ribosome profiling datasets. In particular, we sug-
gest an unsupervised way to display periodicity using recur-
rence plots, which has the advantage relative to other meth-
ods based on a Fourier transform to provide offset informa-
tion about −12nt for initiation in P site, and to determine

if the main peaks are in the main reading frame, or offset
by +1nt, +2nt. In addition, the relative codon enrichments
described by Hussmann for S. Cerevisiae samples (15) as
well as other artifacts should be easier to catch. Further,
comparisons between several species should be facilitated,
and mining might reveal additional ways to approach the
data.

We also propose an unbiased estimate of codon enrich-
ment as part of RiboVIEW. Codon enrichment provides
the ratio of the observed frequency of a certain codon in
comparison with its expected frequency. In contrast to tra-
ditional codon occupancy, unbiased enrichment provides
direct quantification of codon-specific translation speed in
each sample or across replicates. Together with mRNA
footprint tracks, we expect that this improved analysis of
codon pausing will open new interpretation possibilities of
ribosome footprint data.

A limitation of RiboVIEW is that it focuses solely on ri-
bosome footprints, not providing translation efficiency es-
timates, or ORF finding, however these aspects are cov-
ered elsewhere (26,27), and can be easily integrated into Ri-
boVIEW outputs. Another limitation is a focus on footprint
sizes 25–35nt, not considering shorter or longer footprints,
which may be relevant in some application (28).

While computational and web tools for ribosome profil-
ing exist (a summary is provided in (5) and Table 2, for ex-
ample Riboviz or GWIPS-viz (7,10), few resources focus on
checking quality measures or discovering authentic new in-
formation from ribosome profiling data. RiboVIEW specif-
ically addresses these two points. The user can further se-
lect interesting aspects for adapting data processing, or to
setup further analyses. The variety of new applications ded-
icated to ribosome profiling and the wide array of new tools
developed for data analysis and quality control calls for
a rigorous testing ensuring that claimed properties are ef-
fectively attained in various experimental conditions. Thus,
a benchmark approach, separated from the developing of
tools, would be useful to clarify the respective qualities of
the different methods.

In conclusion, RiboVIEW permits to setup and verify ri-
bosome profiling analyses, which can be further used for in-
tegration of transcriptomic and proteomic data.
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Figure 4. RiboMine: Codon enrichment and footprints. (A) Unbiased codon enrichment in condition –q and +q summarized over two independent
biological replicates per condition. (B) Unbiased codon enrichment of condition –q compared to +q. (C) Footprints are plotted according to the codon in
the ribosome A site on individual transcripts.
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Figure 5. Nucleobase effects and separation of samples. (A) Regression co-
efficient for enrichment relative to base a, c, g or u. (B) Principal compo-
nent analysis, axes 1 to 4 for samples –q (samples indicated 1, red and 2,
blue) and samples +q (samples 3, green and 4, purple). (C) tSNE axes 1
and 2.
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