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Genomic islands are related to microbial adaptation and carry different genomic characteristics from the host. Therefore, many
methods have been proposed to detect genomic islands from the rest of the genome by evaluating its sequence composition.
Many sequence features have been proposed, but many of them have not been applied to the identification of genomic islands.
In this paper, we present a scheme to predict genomic islands using the chi-square test and random forest algorithm. We extract
seven kinds of sequence features and select the important features with the chi-square test. All the selected features are then
input into the random forest to predict the genome islands. Three experiments and comparison show that the proposed method
achieves the best performance. This understanding can be useful to design more powerful method for the genomic island
prediction.

1. Introduction

Horizontal gene transfer (HGT) is one of the main factors
affecting bacterial adaptability. Hacker et al. found some viral
gene clusters in E. coli genomes and did not exist in their
close species, and they denoted them as pathogenic islands
(PAIs) [1]. Since then, at least a dozen PAIs have been
detected, such as “secretion island,” “antimicrobial island,”
and “metabolic island” [2]. They are first expressed as geno-
mic islands (GIs) and further encode them based on the func-
tions related to the complex changes of niche [3]. For
example, GIs are responsible for the type III secretion system,
iron absorption function, toxin, and adhesion secretion,
which enhance the survival ability of pathogens in the host
body, leading to diseases [4, 5]. Some researchers reported
that pathogenicity can be regulated by selective loss or recov-
ery of specific GIs [6, 7], and PAI can be spontaneously
removed from chromosomes at a detectable rate, resulting
in different pathogenic phenotypes [8, 9]. Therefore, the
detection of different GIs has become an important content
of microbial evolution and function research.

With the help of large-scale comparative genomics,
researchers found that GIs have different sequence composi-
tion, direct flanking duplication, mobility, and tRNA genes.
In turn, exploring and utilizing these features can lead to
better detection of GIs [3, 10–12]. GIs are scattered among
close relatives, which carry some species patterns different
from the host. Researchers can identify distant relatives by
comparing the differences of 16S rRNA or other homologous
sequences [13]. Some alignment-based methods have been
developed to detect GIs, such as the basic local alignment
method [14] and whole genome alignment method [15].
These tools rely on the observation that, compared with the
conserved regions, the genomic regions that are not aligned
across multiple genomes or only aligned with one genome
are more likely to be hypothetical GIs. For some complex
cases, several methods of constructing and applying multi-
layer or large-scale genome comparison are reported. For
example, MobilomeFINDER first finds shared tRNA genes
in several related genomes and then uses Mauve to search
for GIs in the upstream and downstream regions of homolo-
gous tRNA genes [16]. Since the identified GIs with this
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method are related to tRNA disruption, the GIs without the
tRNA gene as insertion site will be omitted. In order to solve
this problem, MOSAIC has developed a method to identify
strain-specific regions that do not necessarily insert tRNA
[17]. Unfortunately, inversion and translocation are often
mistaken for strain-specific regions. IslandPick is one of the
most widely used tools for GI detection [18]. Given a
genome, IslandPick first automatically selects the appropriate
comparative genomes without any deviation and then uses
Mauve to construct the whole genome alignment. To avoid
duplication, IslandPick uses BLAST as a secondary filter to
recheck the areas aligned by mauve. IslandPick has been
integrated into the islandviewer website, where the dataset
of precomputed GIs can be downloaded [19–21].

In addition to comparative genomics, component-based
methods are also very sensitive to GI detection. Considering
that GIs usually show significantly different sequence com-
position from the host, an effective detection algorithm can
distinguish the abnormal region from the rest of the genome
according to the composition deviation. In practice,
component-based methods are desirable because they can
rapidly detect GIs from analyzed sequences without the need
for additional genomes. CG content and oligonucleotides
with lengths 2-9 are widely used to describe the sequence
composition in GI detection [10, 22–25]. For example, PAI-
Finder calculates G+C content abnormality and codon usage
deviation to detect GIs and further evaluates the candidate
PAI only when PAI-like region partially or completely
crosses GIs [26]. PAI Finder has been integrated into the
PAI database, where comprehensive information of all anno-
tated PAIs and predicted PAI in prokaryotic genome can be
downloaded [27, 28]. The HMM model has also been intro-
duced to detect abnormal areas containing component devi-
ations [22, 29–31]. For example, SIGI-HMM constructs an
HMM model to remove codons using biased ribosomal
regions [29, 30], and IslandPath-DIMoB [31] uses HMM to
identify migration genes by searching the PFAM37migration
gene map [32] of each prediction gene [11]. Alien_Hunter
introduced a scoring system based on the k-mers and refined
the boundary of prediction GIs using the HMM model [22].

Although the performance of the above algorithms is
good, there are still some problems: (1) the comparative
genomics relies heavily on the genomes used in the compar-
ison, and so it can be used in the annotation process or when
closely related genomes are available. Even if more genomes
are available, researchers have to spend more time on select-
ing genomes from the species of interest. (2) Although these
methods based on HMM show better performance in GI
detection, they involve relatively more parameters and a lot
of training calculation; so, it takes a long time to detect GIs.
(3) In recent years, different sequence features have been pro-
posed, but these features are rarely applied to genome island
prediction. How to fuse and select some effective features is
also a way to improve the efficiency of genomic island
detection.

With the above problems in mind, we present a scheme
to predict the genomic islands using the chi-square test and
random forest algorithm. We first extract seven kinds of
widely used sequence features and compare their perfor-

mance in GI detection. The chi-square test is then used to
select the important features. At last, all the selected features
are input into the random forest to detect the genome islands.
Through a comprehensive comparison and discussion, some
novel valuable guidelines for use of the sequence features,
feature selection, and prediction methods are obtained.

2. Materials and Methods

2.1. Datasets. Four standard data sets are used in this study.
The first data set, PICK108, consists of 108 complete bacterial
genome sequences and their annotations. The number of
positive and negative GIs in this dataset is 3868 and 679,
respectively [33]. The second set of data is referenced as
CF15 which consists of 15 complete bacterial genome
sequences and their annotations. The number of positive
and negative GIs in this data set is 6070 and 5833, respec-
tively [34]. The third data set, denoted as RGP104, consists
of 104 complete bacterial genomes and their annotations.
The number of positive and negative GIs is 1846 and 3267,
respectively, in this dataset [35].

2.2. Sequence Features. Seven kinds of widely used sequence
features are extracted for genome island detection. They are
composition of k-spaced nucleic acid pairs (CKSNAP), dinu-
cleotide composition (DNC), nucleic acid composition
(NAC), pseudodinucleotide composition (PseDNC),
electron-ion-interaction pseudopotentials of trinucleotide
(PSEIIP), reverse compliment k-mer (RCKmer), and trinu-
cleotide composition (TNC). The above features are obtained
by iLearn that is a comprehensive python-based toolkit that
integrates entity extraction, computation, entity analysis,
and construction of predictor variables [36].

2.2.1. Reverse Compliment k-Mer (RCKmer). Reverse compli-
ment k-mer is a variant of k-mer, which ignores the comple-
mentary sequences of adjacent nucleotide sequences. For
example, there are 16 types of 2-mer: “AA,” “CC,” “GG,”
“TT,”“AC,” “CA,” “GA,” “TA,” “AG,” “CG,” “GC,” “GT,”
“AT,” “CT,” “TC,” and “TG.”. Because “TT” is the reverse
completion k-mer of “AA,” it can be left out. Therefore, there
are only 10 kinds of 2-mer in this method: “AA,” “CC,” “AC,”
“CA,” “GA,” “AG,” “CG,” “GC,” “AT,” and “TA.” The fre-
quency of each k-mer is calculated in turn [37].

2.2.2. Composition of k-Spaced Nucleic Acid Pairs (CKSNAP).
CKSNAP feature represents the composition of nucleotide
pairs that are separated by k (k=0, 1, 2, 5) nucleotides, and
it reflects the short-range interactions of nucleic acids within
the sequence [38]. Using k = 0 as an example, 16 0-spaced
nucleotide pairs (i.e., “AA,” “AC,” “AG,” “AT,” “CA,” “CC,”
“CT,” “CG,” “GA,” “GC,” “GG,” “GT,” “TA,” “TC,” “TG,”
and “TT”) are generated. Then, a feature vector is defined as

NAA
NTotal

, NAC
NTotal

, NAG
NTotal

, NAT
NTotal

,⋯, NTT
NTotal

� �
K=0

: ð1Þ

In this study, all nucleotide pairs for k (0, 1, …, 5) were
considered, and they are encoded to a 96-dimensional digital
vector as follows:
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2.2.3. Dinucleotide Composition (DNC). DNC expresses the
composition of consecutive pairs of nucleotides [36, 39].
The coding of the DNC characteristics uses 16 descriptors
defined as follows:

D i, jð Þ = N ijð Þ
N − 1

, i, j ∈ A, C,G, Tf g, ð3Þ

where Nij donates the number of dinucleotides represented
by nucleotide types i and j.

2.2.4. Trinucleotide Composition (TNC). TNC refers to the
composition of three consecutive nucleotides in biological
sequences [40]. The coding of TNC 64 descriptors described
as follows: (“AAA,” “AAC,” “AAG,” “AAT,” …, “TTT”),
which can be defined as

D i, j, kð Þ = N ijkð Þ
N − 2

, i, j, k ∈ A, C,G, Tf g, ð4Þ

where Nijk donates the number of trinucleotide pairs repre-
sented by nucleotide types i, j, and k.

2.2.5. Pseudodinucleotide Composition (PseDNC). PseDNC
converts the local sequence arrangement and global sequence
information into the feature vector [39]. The PseDNC is
expressed as follows:

P = p1, p2,⋯, p16, p16+1,⋯, p16+λð ÞT ,

pk =

f k
∑16

i=1 f i +w∑λ
j=1θj

, 1 ≤ k ≤ 16ð Þ

wθk−16
∑16

i=1 f i +w∑λ
j=1θj

, 17 ≤ k ≤ 16 + λð Þ
,

8>>>><
>>>>:

ð5Þ

where f k ðk = 1, 2⋯ 16Þ reflects the normalized frequency of
occurrence of dinucleotides, λ represents the highest
counted rank of the correlation along the biological
sequences, w (0 to 1) is the weight factor, and θj ðj = 1, 2
⋯ λÞ is the j-tier correlation factor, which is defined as

θ1 =
1

L − 2
〠
L−2

i=1
Θ RiRi+1, Ri+1Ri+2ð Þ,

θλ =
1

L − 1 − λ
〠

L−1−λ

i=1
Θ RiRi+1, Ri+λRi+λ+1ð Þ,

ð6Þ

where the correlation function is defined as

Θ RiRi+1, RjRj+1
� �

=
1
u
〠
u

u=1
Cu RiRi+1ð Þ − Cu RjRj+1

� �� �2, ð7Þ

where μ denotes the number of physicochemical indexes,

CuðRiRi+1Þ is the numerical value of the uth physicochemical
index of the dinucleotide RiRi+1, and CuðRjRj+1Þ denotes the
corresponding value of the dinucleotide RjRj+1 at position j.

2.2.6. Nucleic Acid Composition (NAC).NAC assesses the fre-
quency of each nucleic acid along the sequence. The frequen-
cies of all 4 natural nucleic acids (i.e., “ACGT”) can be
calculated:

f tð Þ = N tð Þ
N

t ∈ A, C,G, Tf g, ð8Þ

where NðtÞ represents the number of nucleic acid type t,
while N is the length of a nucleotide sequence [36].

2.2.7. Electron-Ion-Interaction Pseudopotentials of
Trinucleotide (PSeEIIP). EIIPA, EIIPT, EIIPG, and EIIPC
represent the EIIP measurements of nucleotides A, T , G,
and C, respectively. The average EIIP of the trinucleotides
in each sample is exploited for the construction of the feature
vector, which is described as follows:

Q = EIIPAAA × fAAA, EIIPAAc × fAAc, EIIPAAG × fAAG, EIIPAAT × fAAT½ �,
ð9Þ

where f xyz represents the normalized frequency of the ith tri-
nucleotide, EIIIPxyz = EIIPx + EIIPy + EIIPz represents the
EIIP value of a trinucleotide and x, y, z ∈ fA, C,G, Tg [36].

2.3. Chi-Square Test. All kinds of sequence features will be
fused together in order to improve the prediction efficiency,
but the redundancy of different features cannot be ignored.
Therefore, one of the primary tasks involved in genomic
island prediction is to select the best features from the given
dataset to achieve the best prediction. This work uses the
chi-square test to select the best features for genomic island
prediction.

The chi-square ðX2Þ test measures the deviation from the
expected distribution [40, 41]. Statistically,X2 tests the inde-
pendence of two variables, where two variables A and B are
defined as independent if PðABÞ = PðAÞPðBÞ or PðA ∣ BÞ = P
ðAÞ (PðB ∣ AÞ = PðBÞ). In feature selection, the two variables
are the term occurrence and the class occurrence. The terms
in relation to the quantity are classified as follows:

X2 D, i, jð Þ = 〠
wi∈ 0,1f g

〠
wj∈ 0,1f g

Nwiwj
− Fwiwj

� �2

Fwiwj

, ð10Þ

where N is the observed frequency in D and F. wi and wj are
defined as

I U , Cð Þ = 〠
wi∈ 1:0f g

〠
wj∈ 1:0f g

P U =wi, C =wj

� �
log2

P U = wi, C =wj

� �
P U =wið ÞP C =wj

� � ,
ð11Þ

where U is a random variable that takes values wi = 1 (the
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presence of the feature i) andwi = 0 (absence of the feature i),
and C is a random variable that takes values ej = 1 (the pres-
ence of the feature in class j) and ej = 0 (absence of the feature
in class j). We write Ui and Uj if it is not clear from context
which features i and class j we are referring to and got the fol-
lowing equation:

I U , Cð Þ = F11
F

log2
FF11
F1F1

+
F01
F

log2
FF01
F0F1

+
F10
F

log2
FF10
F1F0

+
F00
F

log2
FF00
F0F0

,

ð12Þ

where the N are counts of features that have the values of wi
and wj that are indicated by the two subscripts. For example,
F10 is the number of features that contain i (wi = 1) and are
not in jðwj = 0Þ. F1 = F10 + F11 is the number of features that
contain i (wi = 1), and we count features independent of class
membership wi ∈ f0, 1g . F = F00 + F01 + F10 + F11 is the
total number of documents [42].

X2 is a measure of how much expected counts E and
observed counts N deviate from each other. A high value of
X2 indicates that the hypothesis of independence, which
implies that expected and observed counts are similar, is
incorrect. An arithmetically simpler way of computing X2

is the following:

X2 D, i, jð Þ = F11 + F10 + F01 + F00ð Þ ∗ F11 + F00 − F10F01ð Þ2
F11 + F01ð Þ ∗ F11 +N10ð Þ ∗ F10 + F00ð Þ ∗ F01 + F00ð Þ :

ð13Þ

2.4. Prediction Algorithm. Random forest (RF) is among the
best classification algorithms and widely applied to manage
many biological problems. It works by building small groups
of weak classifiers, to finally combine them and form a strong
classifier. This is a configuration learning method that can
build models that create multiple decision trees during train-
ing and will remove modal classes from classes predicted by a
single tree. It is a fusion of tree predictors, where each tree
depends on the value of an independent sampled random
vector and the same distribution of all trees in the forest [43].

A random forest is a collection of tree predictor hðX ; ωiÞ
, i = 1,⋯, I, where X represents the observed input (covariate)
vector of length pwith associated random vector X and ωi.
They are independent and identically distributed ðiidÞ ran-
dom vectors. As mentioned, we focus on the regression setting
for which we have a numerical outcome Y , but we make some
points of contact with classification (categorical outcome)
problems [44]. The observed (training) data is assumed to be
independently drawn from the joint distribution of ðX, YÞ
and comprises nðp + 1Þ-tuplesXðx1, y1Þ,⋯, ðxn, ynÞ.

For regression, the random forest prediction is the
weighted average over the collection

h yð Þ = 1
k

� �
〠
I

i=1
h X ; ωið Þ: ð14Þ

As i→∞, the law of large numbers ensures

EX,Y Y − �h Xð Þ2�
→ EX,Y Y − Eω

�h X, ωð Þ� �2
: ð15Þ

The quantity on the right is the prediction (or generaliza-
tion) error for the random forest, denoted as PE∗

f . The conver-
gence implies that random forests do not overfit. Now, define
the average prediction error for an individual tree hðX, ωÞ

PE∗
t = EωEX,Y Y − h X, ωð Þð Þ2: ð16Þ

Assume that for all the tree is unbiased, i.e., EY = EXhðX
, ωÞ. Then,

PE∗
f ≤ �μPE∗

t , ð17Þ

where �μ is the weighted correlation between residuals Y − hð
X, ωÞ and hðX ; ωÞ for independentω, ωk. The above inequal-
ity pinpoints what is required for accurate random forest
regression: low correlation between residuals of differing tree
members of the forest and low prediction error for the individ-
ual trees [44]. Further, the random forest will decrease the
individual tree error (PE∗

t ), by the factor �μ.

2.5. Performance Evaluation. This work introduces crossvali-
dation to evaluate the proposed method and calculates accu-
racy, recall, F-measure, precision specificity, sensitivity, and
precision as standard performance indicators. They are
defined as follows:

Acc =
TP + TN

TP + TN + FP + FN
× 100,

Recall =
TP

TP + FN
× 100,

Prec =
TP

TP + FP
,

Sn =
TP

TP + FN
,

Sp =
TN

TN + FP
,

F1 =
2TP

2TP + FP + FN
,

MCC =
TP × TN − FP × FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

TP + FPð Þ TP + FNð Þ TN + FPð Þ TN + FNð Þp ,

ð18Þ

where TP is the number of true positives, FP is the number of
false positives, TN is the number of true negatives, and FN is
the number of false negatives.

3. Results and Discussion

3.1. Performance of the Proposed Prediction Method. To build
the prediction model, seven kinds of sequence features are
extracted, fused, and filtered by the chi-square test and then
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input into the random decision tree for genomic island pre-
diction. Accuracy, F1, MCC, precision, recall, and AUC are
calculated based on 10 times crossvalidation, which are sum-
marized in Figure 1.

Figure 1 shows that the proposed method achieves good
performance among four datasets. As for PICK108, its accu-
racy, precision, recall, F1, AUC, and MCC are 94.6%, 95.1%,
85.7%, 89.5%, 96.8%, and 80.3%, respectively. For dataset
CF15, the overall precision is 94.9%, and precision, recall,
F1, AUC, and MCC are 94.8%, 94.0%, 94.4%, 95.6%, and
88.8%, respectively. As for RGP104, its accuracy, precision,
recall, F1, AUC, and MCC are 95.4%, 94.4%, 95.2%, 95.4%,
94.5%, and 90.9%, respectively.

We further compare the proposed method with the cur-
rent methods. For the convenience of comparison, we com-
pare our results with that of the published results with the
existing methods. Therefore, different datasets choose differ-
ent evaluation methods, which are summarized in Tables 1–
3.

As for PICK108, the proposed method is compared with
the Centroid [45], INDeGenIUS [46], MTGIpick [33], SigH-
unt [47], and Zisland Explore [48]. Table 1 indicates that the
proposed method achieves the highest accuracy, precision,
and recall with the values of 94.6%, 95.1%, and 85.7%, respec-
tively. Compared with the second best method, the accuracy,
precision, and recall of the proposed method are 8.4%,
22.3%, and 38.5% higher than that of MTGIpick, respectively.

In the RGP104 dataset, PanRGP [35], IslandViewer [19,
20], IslandPath-Dimob [31], IslandCafe, and SIGI-HMM
[29, 30] are compared with the proposed method. Table 2
shows that the proposed method outperforms the others in
term of MCC, F1, accuracy, and recall. Specifically, the
MCC, F1, ACC, and recall of the proposed method are
11%, 12.4%, 3.2%, and 15.2%, respectively, higher than that
of the PanRGP model [35], but its accuracy is 0.1% lower
than that of the PanRGP model.

In the CF15 experiment, IslandCafe [34], IslandViewer
[19, 20], IslandPath-Dimob [31], Zisland Explorer [48] and

PICK108 RGP104 CF15
0
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100

120

A
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Precision
Recall

F1
AUC
MCC

Figure 1: Comparison of the accuracy, precision, recall, F1, AUC, and MCC of the PICK108, CF15, and RGP104 datasets.

Table 1: Comparison of the proposed method with other reported
results on the PICK108 dataset.

Method Accuracy Precision Recall

Centroid 82.4 61.4 27.6

INDeGenIUS 82.4 67.9 19.9

MTGIpick 86.2 72.8 47.2

SigHunt 80.5 51.0 24.0

Zisland Explorer 83.8 75.9 25.5

This paper 94.6 95.1 85.7

Table 2: Comparison of the proposed method with other reported
results on the RGP104 dataset.

Method MCC F1 ACC Precision Recall

PanRGP 77.8 80.9 92.4 94.9 76.4

IslandViewer 76.2 82.0 91.1 90.8 78.8

IslandPath 52.3 57.0 78.1 89.1 47.7

IslandCafe 37.7 44.4 76.1 76.9 35.5

SIGI-HMM 33.8 45.5 75.6 65.5 37.6

This paper 88.8 94.4 95.6 94.8 94.0

Table 3: Comparison of the proposed method with other reported
results on the CF15 dataset.

Method Recall Precision F1 MCC

IslandCafe 71.0 61.0 66.0 62.0

IslandViewer 72.0 59.0 65.0 59.0

IslandPath-Dimob 53.0 67.0 59.0 55.0

Zisland Explorer 45.0 56.0 50.0 46.0

SIGI-HMM 24.0 57.0 33.0 32.0

This paper 95.4 95.4 95.4 90.9
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SIGI-HMM [29, 30] are compared with the proposed
method. Table 3 indicates that the proposed method achieves
the highest recall, precision, F1, and MCC with the values of
95.4%, 95.4%, 95.4%, and 90.9%, respectively, which are

23.4%, 28.4%, 29.4%, and 28.9% higher than that of the next
competitive method [34].

The above results show that the proposed method out-
performs the available genomic island prediction methods,
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Figure 3: The comparison of the overall accuracies of all experiments with the selected feature sets for three datasets.
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Figure 2: Comparison of the overall prediction accuracies of seven kinds of the sequence features.
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indicating that the combination of different features, feature
selection based on the chi-square test, and prediction algo-
rithm is very effective to advance the prediction. This under-
standing can be used to develop more powerful genomic
island prediction methods.

3.2. Influence of the Different Features. To predict genomic
islands, we use seven kinds of protein features: reverse com-
pliment k-mer (RCKmer), composition of k-spaced nucleic
acid pairs (CKSNAP), dinucleotide composition (DNC),
trinucleotide composition (TNC), pseudodinucleotide com-
position (PseDNC), nucleic acid composition (NAC), and
electron-ion-interaction pseudopotentials of trinucleotide
(PSeEIIP). To evaluate the contribution of each kind of the
sequence features, we present the comparison of the accura-
cies of seven kinds of the sequence features in Figure 2.

Figure 2 indicates that each feature makes its own posi-
tive contributions to the predictions; although, different fea-
tures have certain preferences for different data sets. On the
whole, PSeEIIP, RCKmer, and TNC achieve the best perfor-
mance among all kinds of the sequence features. It is easy
to note that PSeEIIP and RCKmer not only reflect the
content of components but also focus the local sequence
arrangement and global sequence information and calculate
the energy of delocalized electrons in nucleotides as the
electron-ion interaction. Compared with the ANC and
DNC, PSeEIIP and RCKmer are more closely related to the
genomic islands, and this is why they achieve the better
performance in the genomic island prediction.

3.3. Influence of the Different Feature Selections. A feature of
the proposed method is the feature selection based on the
chi-square test. For a better understanding of the feature
selection, we select the feature set with size from 5 to 120.
All experiments are performed with each selected feature

set using the 10 times crossvalidation test, and overall accu-
racy is chosen to represent the score in this prediction.
Figure 3 is the overall accuracies of all experiments with the
selected feature sets for three datasets.

As would be expected, the overall accuracy first increases
and then decreases as the selected feature size continues to
increase. When the selected feature set size is less than 30,
all data sets have reached the best prediction. As the increase
of the number of selected features, the overall accuracy
decreases. The chi-square is further compared with feature
importance (FI), Pearson correlation (PC), ROC-AUC,
mutual information gain (MIG), linear discriminant analysis
(LDA), and principal component analysis (PCA), and it is
easy to note that the chi-square test achieves the best perfor-
mance among seven feature selection method.

3.4. Influence of the Different Prediction Algorithms. Random
forest (RF) was employed as a classifier in this work. To com-
pare different classifiers’ performance, support vector
machine (SVM), k-nearest neighbor (KNN), gradient boost-
ing (GB), adaBoost (AB), decision tree (DT), bagging, extra
trees (ET), stochastic gradient descent (SGD), and layer per-
ceptron (MLP) were also adopted for protein structural class
prediction. All experiments are performed with each selected
feature set using the 10 times crossvalidation test, and overall
accuracy is chosen to represent the score in this prediction.
Figure 4 summarizes the overall accuracies of all experiments
with the different prediction algorithms for three datasets.

From Figure 4, it is easy to note that the random forest
(RF) achieves the best performance among the ten classifiers.
Specifically, the average overall prediction accuracy is 95%
for PICK108, RGP104, and CF15 datasets compared with
91% of the gradient boosting (GB) and 92% of the bagging.
These results indicate that the random forest is a more pow-
erful classifier for the genomic island prediction.
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Figure 4: The comparison of the overall accuracies of different prediction algorithms with the selected feature sets for three datasets.
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4. Conclusion

Genome islands are related to the rapid adaptation of pro-
karyotes, which have important medical, economic, or envi-
ronmental significance. Some methods usually evaluate all
features and focus on whether the local features of a certain
area are significantly different from the host. Although these
methods have achieved good experimental results, various
feature extraction methods have been proposed, but they
are rarely used to predict genomic islands. With these prob-
lems in mind, we present a scheme to predict the genomic
islands using the chi-square test and random forest algo-
rithm. We extract seven kinds of widely used sequence fea-
tures and select the important features with the chi-square
test. At last, all the selected features are input into the random
forest to predict the genome islands. Three experiment
results show that the proposed method has better perfor-
mance than previous methods.

The first contribution can be seen from the influence of
the different features, and we find that PSeEIIP, RCKmer,
and TNC are more closely related to the genomic islands
and achieve the best performance among all kinds of the
sequence features. The second contribution can be indicated
from the influence of the different feature selections, and the
chi-square test achieves the best performance among seven
feature selection method. The final contribution can be seen
from the influence of the different prediction algorithms,
and we notice that the random forest (RF) achieved the best
performance among the ten classifiers; its accuracy is 3%
higher than that of the next one. This understanding can be
then used to develop more powerful methods for genomic
island prediction.

Data Availability

All the data used to support the findings of this study are
available on https://github.com/Onesime243/Chi_square_
Genomic_Islands_predicton_data-and-result.git.
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