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Bovine whey IgG enriched fraction contains IgG antibodies against bacterial and viral pathogens,
including antibodies against the spike protein [amino acids (aa) 1—1274] of SARS-CoV-2 Wuhan strain
(2019-nCoV WHUO1). To date, 13 SARS-CoV-2 variants have been identified, including gamma, delta,
kappa, and omicron, which contain 10, eight, seven, and over 30 mutations in the spike protein,
respectively. We investigated whether bovine whey IgG enriched fraction contains antibodies against
spike proteins of these variants, specifically recombinant partial length spike proteins (aa 177—-512, aa
509—685, aa 177—324, aa 250—410 and aa 387—516) of these variants. Direct enzyme-linked immuno-
sorbent assays revealed bovine whey IgG enriched fraction contained antibodies against all recombinant
spike proteins of these variants with highest reactivity against aa 177—512 region of omicron spike
protein. These results indicate bovine whey IgG enriched fraction contains antibodies against spike
proteins of several SARS-CoV-2 variants, including omicron.

© 2022 Elsevier Ltd. All rights reserved.

1. Introduction

Bovine whey IgG enriched fraction of contains antibodies against
several bacterial pathogens, as well as rotaviruses, which cause
gastrointestinal infections (Ulfman, Leusen, Savelkoul, Warner, & van
Neerven, 2018). This fraction also contains antibodies that bind to
influenza and human respiratory syncytial viruses (Hartog et al.,
2014). Bovine colostrum obtained from cows immunised with anti-
gens of gastrointestinal pathogens has been called “hyperimmunised
milk”, with high antibody activities against these antigens (Golay,
Ferrara, Felber, & Schneider, 1990). Immune cow colostrum was
found to shorten the duration of gastrointestinal infections (Ulfman
et al,, 2018), and milk products containing colostrum derived from
healthy non-immunised pasture fed cows provided immunity
against Salmonella infection in calves (Griffiths, 1969; Royal,
Robinson, & Duganzich, 1968). Immunoglobulin preparations from
non-immunised cows contained high levels of antibodies and neu-
tralising activity against verotoxin of Escherichia coli 0157:H7
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(Lissner, Schmidit, & Karch, 1996). In addition, bovine whey IgG
enriched fraction was found to protect mice against food-borne in-
fections with enterohaemorrhagic E. coli 0157:H7 and against Sal-
monella associated enteritidis (Funatogawa, Tada, Kuwahara-arai,
Kirikae, & Takahashi, 2019).

Bovine colostrum provides a medium for the heterologous
transfer of passive immunity and may offer disease protection in a
range of species (Hurley & Theil, 2011). There is a potential role of
bovine in providing humans with specific antibodies against human
viruses (Saied & Metwally, 2019). In some human viruses bovine has
contributed to the acquisition of new knowledge to improve human
health against viral infections (Saied, Metwally, Mohamed, & Haridy,
2021). Although ingesting bovine colostrum is beneficial to immu-
nity of the human respiratory system, the mechanisms involved
remain unknown and further studies are needed (Batista da Silva
Galdino et al., 2021). Bovine rotavirus vaccine is sufficient to
enhance the anti-human rotavirus protective efficacy of bovine
colostrum (Civra et al., 2019). Potential benefits of using bovine-
derived antibodies in countering SARS-CoV-2 and its emerging var-
iants and mutants have been reviewed (Saied et al.,, 2022).

The novel coronavirus, severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), is responsible for the coronavirus
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disease-2019 (COVID-19) pandemic (WHO, 2020). To date, 13 SARS-
CoV-2 variants have been identified, including the gamma (P.1),
delta (B.1.617.2), kappa (B.1.617.1) and omicron (B.1.1.529) variants.
Compared with the original SARS-CoV-2 Wuhan strain, these var-
iants had acquired several amino acid substitutions, deletions and/
or insertions in their spike proteins. The spike protein is composed
of S1 and S2 subdomains. The receptor binding domain (RBD) of S1
interacts with angiotensin-converting enzyme 2 (ACE2) to enter
cells (Walls et al., 2020). Compared with the original Wuhan strain,
the gamma, delta, and kappa variants had ten, eight, and seven
mutations, respectively, in the S1 subdomain, whereas the omicron
variant had more than 30 mutations in the S1 subdomain (Fig. 1)
(WHO, 2022). Bovine whey enriched fraction was recently reported
to contain antibodies against the spike protein [amino acids (aa)
1—1274] of the original SARS-CoV-2 Wuhan strain (Oshiro et al.,
2021). The present study assessed whether these antibodies
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recognised spike proteins of the SARS-CoV-2 variants, including the
gamma, delta, kappa and omicron variants.

2. Materials and methods

2.1. Construction and purification of recombinant SARS-CoV-2 spike
proteins

Genes encoding the spike proteins of the SARS-CoV-2 Wuhan
(accession no. MN988668) and omicron B.1.1.529 (accession no.
EPI_ISL_6640917) variants were synthesised based on their pub-
lished sequences. Genes encoding the spike proteins of the SARS-
CoV-2 gamma (accession no. OK189450.1), delta (accession no.
MZ377108.1), and kappa (accession no. MZ571142.1) variants
were constructed from the spike protein gene of the SARS-CoV-2
Wuhan strain using a Quickchange site-directed mutagenesis kit
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Fig. 1. Topology of the SARS-CoV-2 spike proteins of the original SARS-CoV-2 Wuhan strain and the gamma, delta, kappa and omicron variants and distributions of the amino acid
mutations in the spike proteins of the four variants: NTD, N-terminal domain; RBD, receptor binding domain; SD1, subdomain 1; SD2, subdomain 2.
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Fig. 2. Bovine whey IgG enriched fraction containing antibodies against the spike proteins of the five SARS-CoV-2 strains: (a) topology of recombinant protein covering S1 subunit
(aa 16—685), RBD (aa 319—541) of SARS-CoV-2 Wuhan strain and the five regions of recombinant spike protein (aa 177—512, 509—685, 177—324, 250—410 and 387—516) of the five
SARS-CoV-2 strains; (b) two lots (lot A, blue; lot B, orange) of bovine whey IgG enriched fractions that were tested.

(Stratagene, USA), and the primers listed in Supplementary
material Table S1. Five sequences encoding each SARS-CoV-2
spike protein variant, consisting of nucleotides (nt) 529—1536,
1525—2055, 529—-972, 748—1230 and 1159—1548 and corre-
sponding to amino acids (aa) 177-512, 509—685, 177—324,
250—410 and 387—-516, respectively, were cloned into the pET28a
expression vector (Novagen, USA). E. coli BL21-CodonPlus (DE3)-
RIP (Agilent Technologies, USA) was transformed using the con-
structed plasmids. These five recombinant SARS-CoV-2 spike
proteins contained an adjacent region of RBD or an internal region
of RBD (Fig. 2a). Recombinant SARS-CoV-2 spike proteins were
purified using TALON Metal Affinity Resin, according to the
manufacturer's instructions (Clontech Laboratories, USA), and
coated onto direct enzyme-linked immunosorbent assay (ELISA)
plates. Thus, 25 recombinant spike proteins were tested, con-
sisting of five regions of each of the five variants of SARS-CoV-2
(Fig. 2a). Recombinant protein covering S1 subunit (aa 16—685)
and RBD (aa 319—541) of SARS-CoV-2 Wuhan strain were pur-
chased from Sino Biological Inc, USA and used for ELISA.

2.2. Bovine whey IgG enriched fraction

Bovine whey IgG enriched fraction (IgG30"; Aotearoa Co.,
Tokyo) was obtained from milk of pasture fed, non-immunised
healthy New Zealand cows by New Zealand Dairy Group in 2018
and 2019 (Oshiro et al., 2021). Two lots of this fraction (lots A and B)
were used in the present study.

2.3. Direct enzyme-linked immunosorbent assays

Direct ELISA assays, using partial-length recombinant SARS-
CoV-2 spike proteins as coating antigens, were performed as
described (Oshiro et al., 2021).

3. Results and discussion

3.1. Detection of antibodies against spike proteins of SARS-CoV-2
variants

Both lots of bovine whey IgG enriched fraction contained anti-
bodies against recombinant S1 subunit of SARS-CoV-2 spike protein
(aa 16-685) and RBD of SARS-CoV-2 spike protein (aa 319—541)
(Fig. 2b). Both lots of bovine whey IgG enriched fraction contained
antibodies against all the recombinant proteins tested, corre-
sponding to aa 177-512, 509-685, 177—324, 250—410 and
387—531 of the SARS-CoV-2 Wuhan strain and the gamma, delta,
kappa and omicron variants, with both lots showing similar
immunoreactivity profiles against these recombinant proteins
(Fig. 2b). The IgG enriched fractions showed the highest reactivity
against recombinant aa 177—512 of the omicron variant and the
lowest reactivity against the same region of the kappa strain. The
IgG enriched fraction showed similar levels of reactivity against aa
509—685 and aa 250—410 of all five strains, lower reactivity against
aa 177—324 of omicron than against aa 177—324 of the other four
strains, and higher reactivity against aa 387—516 of the Wuhan and
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delta strains than against the same region of the gamma, kappa,
and omicron strains.

The findings in this study suggest that pasture-fed healthy New
Zealand cows are exposed to viruses that cross react with the spike
protein of SARS-CoV-2. The cows from which milk had been
collected were likely not infected by SARS-CoV-2 because the two
lots of bovine IgG enriched fraction were prepared in November
2018 and August 2019, respectively, which predate the emergence
of SARS-CoV-2 that was in December 2019. Although the ability of
this virus to infect cows has not been determined, antigen against
these antibodies in bovine whey enriched IgG fraction might be
more similar to spike protein of the omicron variant than that of the
SARS-CoV-2 Wuhan strain.

Bovine coronavirus has been shown to cause respiratory and
enteric infections in cows (Saied et al., 2021; Saif, 2010), suggesting
that these New Zealand cows were likely infected with bovine
coronavirus. However, the amino acid sequence of the spike protein
of bovine coronavirus (accession no. AAA66399.1) differed from the
amino acid sequences of the spike proteins of the Wuhan and
omicron strains of SARS-CoV-2, with homologies of only 29.59%
and 29.27%, respectively. The cows may have been infected with
several viruses, including bovine coronavirus, and acquired various
antibodies against epitopes of SARS-CoV-2 spike proteins from
several variants.
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