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Abstract

Oral epithelial dysplasia (OED) is a histopathologically-defined, potentially premalignant

condition of the oral cavity. The rate of transformation to frank carcinoma is relatively low

(12% within 2 years) and prediction based on histopathological grade is unreliable, leading

to both over- and under-treatment. Alternative approaches include infrared (IR) spectros-

copy, which is able to classify cancerous and non-cancerous tissue in a number of cancers,

including oral. The aim of this study was to explore the capability of FTIR (Fourier-transform

IR) microscopy and machine learning as a means of predicting malignant transformation of

OED. Supervised, retrospective analysis of longitudinally-collected OED biopsy samples

from 17 patients with high risk OED lesions: 10 lesions transformed and 7 did not over a fol-

low-up period of more than 3 years. FTIR spectra were collected from routine, unstained his-

topathological sections and machine learning used to predict malignant transformation,

irrespective of OED classification. PCA-LDA (principal component analysis followed by lin-

ear discriminant analysis) provided evidence that the subsequent transforming status of

these 17 lesions could be predicted from FTIR data with a sensitivity of 79 ± 5% and a speci-

ficity of 76 ± 5%. Six key wavenumbers were identified as most important in this classifica-

tion. Although this pilot study used a small cohort, the strict inclusion criteria and

classification based on known outcome, rather than OED grade, make this a novel study in

the field of FTIR in oral cancer and support the clinical potential of this technology in the sur-

veillance of OED.

Introduction

Oral squamous cell carcinoma (OSCC) has a worldwide incidence rate of over 370 000 [1] and

a 5-year survival rate that remains less than 60% [2]. It is often preceded by a spectrum of
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clinical changes, collectively termed potentially pre-malignant oral epithelial lesions or oral

potentially malignant disorders (OPMDs) [3]. OPMDs include white patches (leukoplakia),

red patches (erythroplakia) and mixed color patches (erythroleukoplakia) of the oral mucosa

and are usually investigated by biopsy and histopathological examination. The latter typically

shows morphological changes of the surface squamous epithelium, which are conveniently

described as oral epithelial dysplasia (OED), that include variable cellular atypia, proliferative

activity and loss of normal patterns of differentiation. The World Health Organization

(WHO) defines OED as “altered epithelium with an increased likelihood for progression to

squamous cell carcinoma” [4]. The malignant potential (progression to invasive tumor) of

OPMDs range from as low as 0.13% in some leukoplakias [5] to>50% in some erythroplakias

[6]; a meta-analysis of OED data indicates a malignant transformation rate of 12% within 2

years, increasing to 22% within 5 years [7].

The histopathological grading of OED as mild, moderate or severe is widely popular and

time-honored, based on various architectural and cytological changes, and is endorsed and

formalized by WHO [8]. Other grading systems, including a binary “high/low risk” scheme

[9], have been proposed, but the standard across the field remains the three-tiered scheme.

Numerous studies [10–12] have shown a significant relationship between the histopathological

grade and risk of malignant transformation, however there are a similar number of conflicting

reports which suggest a much less direct relationship, highlighting other risk factors [13–15].

Although biopsy and histopathological assessment of OPMDs forms the basis of clinical man-

agement, the grading of OED is influenced by inter- and intra-observer variations [9], reflect-

ing the subjectivity of the process, and improvements are required.

Given its clinical significance, OED has been investigated by a wide spectrum of predomi-

nantly biology-based methodologies, but none of the proposed biomarkers for predicting risk

are in routine clinical use [16]. Less attention has been paid to the application of alternative

methodologies utilizing the chemical or physical properties of the cells. Among the alternative

methodologies, those based on vibrational spectroscopy have been increasingly introduced to

biomedical research [17, 18]. Fourier transform infrared (FTIR) spectroscopy utilizes infrared

(IR) light over a broad spectral range to assess the overall chemical profile of a sample. Molecules

which vibrate at frequencies corresponding to the wavelengths applied will absorb the radiation

at those wavelengths, resulting in an absorption spectrum characteristic of the chemical moieties

present. FTIR micro-spectroscopy (FTIR-MS) combines IR spectroscopy with precise spatial

information enabling the rapid acquisition of hyperspectral images directly related to the location

and distribution of chemical components, for example in tissue samples. Hyperspectral data

acquired using FTIR-MS is highly dimensional as each raw spectrum, obtained from a region

approximately 5 μm x 5 μm in size, contains at least 103 absorption variables. Subtle differences

between tissue areas are concealed by dominant common features in chemical composition,

necessitating the use of sophisticated numerical approaches to extract useful information [19].

Common modelling methods whose aim is to reduce the complexity of the dataset include prin-

cipal component analysis (PCA) [20] and linear discriminant analysis (LDA) [21, 22].

FTIR-MS has been utilized in biomedical research, with a particular focus on its application

to the investigation of cancerous tissues (reviewed in ref. [23]). Our own recent data suggests

that this methodology is applicable to OSCC [24], and other studies have successfully associ-

ated vibrational spectroscopy data with the contemporaneous histopathological classification

of potentially malignant oral lesions [25, 26]. The present investigation takes a different

approach, using a supervised, retrospective analysis of tissue samples from high risk OED

lesions from patients with prolonged, longitudinal clinical follow-up and known outcome

(transformation or no transformation) to explore the capability of FTIR-MS and machine

learning as a means of predicting malignant transformation of OED.
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Methods

Seventeen patients with biopsy-proven OED were included in this study (Table 1). All patients

were part of a larger cohort for whom the clinical determinants of transformation have been

described [15] and had given written informed consent to a UK NHS Research Ethics Com-

mittee approved study that was run in compliance with the Helsinki Declaration (Liverpool

Central REC ref: EC 47.01). Patient selection was limited by inclusion of only lesions with a

histopathological diagnosis of moderate or severe grade OED, absence of previous OSCC, at

least 42 months follow-up from the time of biopsy, and the availability of relevant archival for-

malin-fixed paraffin-embedded (FFPE) tissue. Although inclusion was partly dependent on a

number of non-clinical factors such as availability of samples, the group of patients used in

this present study remained representative of the total cohort [15]. Thus, there was a higher

female:male ratio in the transforming group, which also had a preponderance of lateral tongue

lesions, and there were proportionally more smokers in the non-transforming group (Table 1).

It should be noted that there was no significant difference between the distribution of severe

and moderate grade OED lesions in the two groups.

A single archival FFPE tissue block containing incisional biopsy material was obtained

from each of 10 patients at the closest timepoint to transformation (range 2–43 months prior

to transformation) (T lesions; Table 1). A single archival FFPE block containing incisional

biopsy material with more than 43 months transformation-free follow-up from the date of

biopsy (range 43–108 months) was obtained from each of 7 patients (NT lesions; Table 1).

None of these NT lesions had been excised during the follow-up period.

From each of the 17 FFPE blocks, four adjacent 5 μm tissue sections were obtained, reserv-

ing the first and last for routine deparaffinization, hematoxylin and eosin (H&E) staining and

histopathological re-examination. The intervening two paraffinized, unstained sections were

mounted on separate 20 mm diameter calcium fluoride (CaF2) disks for IR imaging experi-

ments. An area of dysplasia corresponding to the histopathologically most extreme OED pres-

ent was identified in each H&E-stained section and marked as the target for FTIR

spectroscopy. This area was termed the region of interest (ROI).

FTIR imaging data were acquired using a Varian 620 microscope coupled to an Agilent

Cary 670 spectrometer (Agilent, Stockport, UK) enclosed within a purging chamber to elimi-

nate water vapor and carbon dioxide contributions. The instrument was configured to collect

mid-IR transmission data between 900 and 3800 cm-1 with a spectral resolution of 4 cm-1 and

pixel size of 5.5 μm, allowing the simultaneous acquisition of 128 x 128 spectra over a field of

view of approximately 0.5 mm2. CaF2 disks with mounted sections were loaded onto a 3D-

printed slide holder capable of containing three disks. Disks were imaged two at a time, with

the third position reserved for a clean, blank disk to allow for microscope calibration and spec-

tral background correction. The semiconductor detector (Mercury-Cadmium-Telluride) in

the FTIR microscope was cooled with liquid nitrogen to 78 K in order to reduce thermal noise

in the data. Using the average of 128 scans of the blank disk for background correction, a

hyperspectral IR image was obtained for each ROI by averaging 64 scans of the identified dys-

plastic area. A built-in mosaic function was utilized for cases where the extent of the surface

oral epithelium in the tissue sections could not be visualized in one field of view of the micro-

scope and enabled the acquisition of larger, composite images.

Subsequently, the FTIR images were cross-referenced with scanned images of the corre-

sponding H&E sections to confirm the location and extent of dysplasia within the ROI (Fig

1A). To annotate IR spectral data originating in dysplastic epithelium, each hyperspectral

image was subjected to a two-tiered, k-means cluster analysis (Fig 1A). Initially, the epithelium

was identified by a specialist, head and neck histopathologist (AT). The first clustering step

PLOS ONE Infrared spectra predict oral cancer development

PLOS ONE | https://doi.org/10.1371/journal.pone.0266043 March 25, 2022 3 / 14

https://doi.org/10.1371/journal.pone.0266043


T
a

b
le

1
.

P
a

ti
en

t
a

n
d

sa
m

p
le

co
h

o
rt

ch
a

ra
ct

er
is

ti
cs

.

P
a

ti
en

t
g

ro
u

p
Id

en
ti

fi
er

A
g

e
a

t

b
io

p
sy

G
en

d
er

S
it

e
N

u
m

b
er

o
f

cl
in

ic
a

l
si

te
s

C
li

n
ic

a
l

P
re

se
n

ta
ti

o
n

L
es

io
n

si
ze

(m
m

2
)

a
t

p
re

se
n

ta
ti

o
n

H
is

to
lo

g
y

G
ra

d
e

o
f

R
O

Ia
T

im
e

b
ef

o
re

tr
a

n
sf

o
rm

a
ti

o
n

T
im

e

ca
n

ce
r

fr
ee

L
if

es
ty

le

(m
o

n
th

s)
(m

o
n

th
s)

to
b

a
cc

o
a

lc
o

h
o

l

T
ra

n
sf

o
rm

in
g

1
2

0
8

9
5

8
M

V
en

tr
al

T
o

n
g

u
e

si
n

g
le

E
ry

th
ro

le
u

k
o

p
la

k
ia

1
0

1
–

5
0

0
se

v
er

e
2

y
(2

-

2
0

p
y
)b

y

n
=

1
0

1
2

2
0

1
5

2
M

B
u

cc
al

si
n

g
le

L
eu

k
o

p
la

k
ia

>
5

0
0

se
v
er

e
4

y

(>
2

0
p

y
)

y

1
2

2
6

0
7

4
F

F
lo

o
r

o
f

M
o

u
th

si
n

g
le

L
eu

k
o

p
la

k
ia

�
1

0
0

m
o

d
er

at
e-

se
v
er

e

5
y

(>
2

0
p

y
)

y

1
2

1
2

7
8

5
M

L
at

er
al

T
o

n
g

u
e

si
n

g
le

L
eu

k
o

p
la

k
ia

1
0

0
–

5
0

0
m

o
d

er
at

e
7

n
n

1
2

2
5

7
4

9
F

L
at

er
al

T
o

n
g

u
e

si
n

g
le

L
eu

k
o

p
la

k
ia

1
0

0
–

5
0

0
m

o
d

er
at

e
1

2
n

y

1
2

2
4

8
6

9
F

L
at

er
al

T
o

n
g

u
e

m
u

lt
ip

le
E

ry
th

ro
le

u
k

o
p

la
k

ia
1

0
0

–
5

0
0

se
v
er

e
1

4
n

n

1
2

2
6

3
4

5
F

L
at

er
al

T
o

n
g

u
e

si
n

g
le

L
eu

k
o

p
la

k
ia

1
0

0
–

5
0

0
m

o
d

er
at

e-

se
v
er

e

1
8

y
(5

-

2
0

p
y
)

y

1
2

1
0

4
7

0
F

L
at

er
al

T
o

n
g

u
e

si
n

g
le

E
ry

th
ro

le
u

k
o

p
la

k
ia

1
0

0
–

5
0

0
m

o
d

er
at

e
2

6
n

n

1
2

1
9

5
4

5
F

V
en

tr
al

T
o

n
g

u
e

m
u

lt
ip

le
E

ry
th

ro
le

u
k

o
p

la
k

ia
>

5
0

0
m

o
d

er
at

e
3

3
y

(5
-

2
0

p
y
)

y

1
2

2
1

9
6

8
F

V
en

tr
al

T
o

n
g

u
e

si
n

g
le

L
eu

k
o

p
la

k
ia

�
1

0
0

m
o

d
er

at
e-

se
v
er

e

4
3

y
(5

-

1
0

p
y
)

n

N
o

n
-

T
ra

n
sf

o
rm

in
g

1
2

1
8

1
4

9
F

S
o

ft
P

al
at

e
si

n
g

le
L

eu
k

o
p

la
k

ia
>

5
0

0
se

v
er

e
1

5
8

n
y

n
=

7
1

2
3

3
0

4
7

F
S

o
ft

P
al

at
e

m
u

lt
ip

le
E

ry
th

ro
le

u
k

o
p

la
k

ia
>

5
0

0
m

o
d

er
at

e
1

0
8

y
(5

-

2
0

p
y

)

y

1
2

0
9

8
7

8
M

V
en

tr
al

T
o

n
g

u
e

si
n

g
le

L
eu

k
o

p
la

k
ia

>
5

0
0

m
o

d
er

at
e

1
0

6
y

(>
2

0
p

y
)

y

1
2

3
3

2
7

1
F

M
an

d
ib

u
la

r

al
v
eo

lu
s

m
u

lt
ip

le
L

eu
k

o
p

la
k

ia
�

1
0

0
m

o
d

er
at

e
9

1
n

y

1
2

3
2

9
5

9
M

F
lo

o
r

o
f

M
o

u
th

si
n

g
le

E
ry

th
ro

le
u

k
o

p
la

k
ia

�
1

0
0

m
o

d
er

at
e

7
5

y

(>
2

0
p

y
)

y

1
2

1
6

2
6

1
F

F
lo

o
r

o
f

M
o

u
th

si
n

g
le

E
ry

th
ro

le
u

k
o

p
la

k
ia

�
1

0
0

se
v
er

e
6

7
y

(>
2

0
p

y
)

y

1
2

1
4

1
4

7
F

F
lo

o
r

o
f

M
o

u
th

m
u

lt
ip

le
E

ry
th

ro
le

u
k

o
p

la
k

ia
�

1
0

0
se

v
er

e
4

3
y

(>
2

0
p

y
)

y

a
R

O
I

=
re

g
io

n
o

f
in

te
re

st
:
th

e
ta

rg
et

fo
r

F
T

IR
sp

ec
tr

o
sc

o
p

y
b
p

y
=

p
ac

k
y
ea

rs
(=

p
ac

k
s

p
er

d
ay

m
u

lt
ip

li
ed

b
y

y
ea

rs
sm

o
k

ed
).

h
tt

p
s:

//
d
o
i.o

rg
/1

0
.1

3
7
1
/jo

u
rn

al
.p

o
n
e.

0
2
6
6
0
4
3
.t
0
0
1

PLOS ONE Infrared spectra predict oral cancer development

PLOS ONE | https://doi.org/10.1371/journal.pone.0266043 March 25, 2022 4 / 14

https://doi.org/10.1371/journal.pone.0266043.t001
https://doi.org/10.1371/journal.pone.0266043


was then used to identify this structure based on its IR hyperspectral profile. The data from

this first clustering step was then processed during the second clustering in order to identify

regions within the epithelium based on their IR hyperspectra. Histologically, dysplasia was

often centered on the basal and parabasal layers and, in the case of more severe dysplasia, in

the upper prickle-cell layer. IR data from areas with both a histological assessment of dysplasia

and where k-means clustering identified relative chemical homogeneity were selected for

modelling.

Spectra that originated from dysplastic material in each IR hyperspectral image were then

subject to an initial quality check to discard anomalous spectra. This involved using PCA as a

tool to decompose the spectra from each image into five principal components, and then

employing Hotelling’s T2 summary statistic to determine which spectra lie furthest away from

the origin, discarding any which lie outside the 95% confidence interval [27]. The remaining

spectra were retained for modelling. Although the FTIR and H&E images had been cross-ref-

erenced in order to locate the imaged dysplastic epithelial layers, the spectral data were

grouped into two categories based on the clinical outcome of the lesion from which they were

taken regardless of OED severity: T lesions underwent malignant transformation and NT

lesions did not undergo transformation.

We have developed an objective optimization framework, PipeOpt (paper in preparation),

that aims to maximize the efficiency of a classifier by optimizing the parameters of each pre-

processing step of the IR data, determining their ideal sequence and identifying the best per-

forming classification method(s) using Bayesian optimization (Table 2). This process proba-

bilistically converges on the best hyperparameters for each unique series of pre-processing and

classification steps (defined as a pipeline) by iteratively updating the associated Matthew’s cor-

relation coefficient [28, 29]: a statistic scaled between -1 and 1 which includes consideration of

Fig 1. Identification of IR data to be used in classification. (A) Example of two-tiered k-means cluster analysis. (i):

H&E image; (ii): corresponding FTIR hyperspectral image; (iii): the first tier of k-means cluster analysis identifies the

surface epithelium as 3 separate, spectrally similar regions (identified as yellow, brown and blue colored layers by

histopathological comparison with (i)). Histologically, the blue colored cluster broadly corresponds to the basal layer;

the brown cluster to parabasal and prickle-cell (spinous) layers; and the yellow to the keratinized layers; (iv) the second

tier of k-means cluster analysis subdivides the epithelium into four clusters of spectrally similar regions (green, grey,

brown & orange). This second 2-tier clustering appears to separately identify the parabasal (brown) and spinous (grey)

layers. Histopathology plus PCA clustering of FTIR data selects the brown and red clusters for use in modelling. Scale

bar = 200 μm. (B) Illustration of the quality control process. Spectra identified as lying outside the 95% confidence

interval by the Hotelling’s T-squared test (black crosses) were removed from dataset. Data in this figure were obtained

from the same tissue section as in part (A).

https://doi.org/10.1371/journal.pone.0266043.g001
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both the sensitivity and specificity of the resulting classification. This allows for faster conver-

gence to the ideal compared to an approach that samples every possible combination of hyper-

parameters. To assess the performance of each pipeline, 70 training sets were created by using

a leave-one-pair-out cross validation (LOPOCV) method: pairs of samples (comprising 1 T

and 1 NT sample in every possible combination) was set aside as the test set, while data from

the remaining 6 NT and 9 T samples was used for training. Equal numbers of spectra (n = 500)

were used from each sample to avoid sample-related bias that might influence the optimization

and the optimal pipeline was defined as that with the highest mean Matthew’s correlation

coefficient.

Following determination of the optimal pipeline, the same sequence of pre-processing and

classifier steps were used to analyze all of the available data (range 3891–5437 spectra) from

the 17 samples using the same LOPOCV routine as before to create training and test sets.

PCA-LDA is a feature extraction and classifier hybrid that uses a series of linear transforma-

tions to decompose the data from absorption variables to a single variable called a linear

Table 2. Pre-processing steps tested in the PipeOpt objective optimization framework.

Step Method Hyperparameter Options

Smoothing Savitzy-Golay (SG) smoothing Window size 5,7,9,11,13,15,17,19,21

PCA Explained Variance 80–95%

none

Baseline Correction Rubberband N/A Y/N

SG Differentiation Window size (if no smoothing) 5,7,9,11,13,15,17,19,21

Polynomial order 2,3

Differentiation order 1,2

none

Paraffin Correction Removal of the spectral region dominated by paraffin wax (1340–1490 cm-1)

Normalisation Vector N/A Y/N

Min-max N/A Y/N

Amide I N/A Y/N

none

Scaling Standard scaling N/A Y/N

Min-max N/A Y/N

none

Feature Extraction PCA Explained Variance 90–98%

none

Classifier Logistic regression Regularisation strength 0.001–10

Linear discriminant analysis N/A Y/N

Random Forest Max-depth Y/N

Minimum samples per split 2,3,4,5

Minimum samples per leaf 1,2

Bootstrap Y/N

Step: typical pre-processing step utilized in analyzing IR data

Method: methods typically used to perform each pre-processing step

Hyperparameter: typical parameters associated with each method

Options: typical options for each parameter. Each step (apart from Paraffin correction and Classification) also has a

bypass option and the steps may be performed in any order (except for classification).

Bayesian optimization was used to identify hyperparameter options for the resulting 3 x 3 x 1 x 4 x 3 x 2 x 3 = 648

pipelines.

https://doi.org/10.1371/journal.pone.0266043.t002
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discriminant (LD), the value of which is called the LD score. The LD score is dependent upon

the PCA and LDA loading vectors, which are a measure of the relative weight that each wave-

number in the spectrum contributes to that part of the analysis. The LD scores for each data-

point in every lesion were plotted against their frequency of occurrence in relation to their

known transformative capacity and were also used to identify key wavenumbers in the dis-

crimination of T from NT datapoints.

At each iteration of train/test, the predicted outcome (transformation or no transforma-

tion) at every datapoint for the test sample was determined and the lesion as a whole classified

as T or NT based on a simple majority.

The FTIR data was converted from native data format using the ChiToolbox package

MATLAB [30]. All data transformation and statistical analyses were performed using either

in-house developed packages (PipeOpt) or third-party packages implemented in Python v3.9.

Results

Each of 648 different data pipelines were tested 70 times, each iteration having a different pair

of samples (one T and one NT) removed to create the test/train datasets, and the mean Mat-

thew’s correlation coefficient across these 70 iterations was determined (Fig 2). The pipeline

Fig 2. Determination of the optimal analysis pipeline for this dataset. Mean of Matthew’s correlation coefficient

(MCC) for each of 648 analysis pipelines generated from the dysplasia dataset plotted in descending order. Circle

identifies the MCC for the pipeline with no data pre-processing and classification using linear regression

(MCC = 0.15).

https://doi.org/10.1371/journal.pone.0266043.g002
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with the highest mean correlation coefficient (0.37) was identified from this analysis and is as

follows: denoising of the spectra using the Savitzky-Golay smoothing algorithm [31] with a

window size of 15 and polynomial order of 2; first order differentiation of the spectra to

remove effects such as scattering and background interferences; removal of the spectral region

dominated by paraffin wax (1340–1490 cm-1) [23]; normalization so that the sum of the

squares of each spectrum is equal to 1 (vector normalization) to account for variations in sam-

ple thickness; PCA-LDA classification. In this analysis, PCA was applied to the spectral data to

decompose it into the number of principal components that described 90% of the explained

variance in the original dataset and LDA was then used to discriminate between the two

groups of lesions (T and NT) using the principal components as input.

The mean sensitivity of this discriminatory model when applied to the whole dataset at the

level of an individual spectrum (i.e. each datapoint in every sample taken as an individual ele-

ment) was 74 ± 2.8% and the specificity was 69 ± 3.2%, while the mean and median receiver

operator characteristic (ROC) further demonstrated the performance of the model (Fig 3A).

Moreover, the PCA-LDA-derived linear discriminant score showed good separation of the

two classes (T and NT) (Fig 3B) and the weighting assigned to different wavenumbers during

this analysis, allowed the provisional identification of six wavenumbers that provided the most

discriminatory power (Fig 3C).

However, for clinical utility, the transformative capacity of the whole lesion is more relevant

than that for each individual datapoint. Therefore, in each iteration of train/test, the predicted

outcome (transformation or no transformation) at every datapoint for the test sample was

used to define the lesion as T or NT based on a simple majority (i.e.�50% of datapoints). The

sensitivity per lesion was 79 ± 4.9% and the specificity was 76 ± 5.1%. However, the prognosis

of some lesions was better predicted than others (Fig 4), with 2 T lesions and 1 NT lesion being

incorrectly predicted in�50% of the test/train iterations in which they were the test sample.

To better visualize this observation, the probability of transformation for each datapoint

from 4 lesions was color coded and mapped back onto a representation of the whole section

(Fig 5). Lesions that were most accurately predicted showed homogeneous areas of correctly

labelled datapoints with only a few incorrectly labelled points (Fig 5B and 5F). Conversely,

lesions that were less accurately predicted demonstrated some areas that were predicted to

transform and some that were predicted to not transform (Fig 5D and 5H). The OED grade of

the lesions did not appear to correlate with the success or otherwise of the prediction of

transformation.

Fig 3. Performance of the model taking each datapoint individually. Means from 70 iterations of train/test sets are

presented. (A) Mean (green) and median (blue) receiver operator characteristic (ROC) curves. Red dotted line would

be achieved by random chance. Pale lines are individual ROC curves for each iteration; (B) Histogram of frequency of

occurrence of linear discriminant (LD) scores (counts) plotted for all datapoints from transforming (T: red) and non-

transforming (NT: green) lesions, showing separation of the two classes; (C) Plot showing the weighting (a measure of

relative importance) assigned to each wavenumber during the PCA-LDA analysis. Features marked with a yellow star

show the largest magnitude in weighting: 1678 cm-1, 1653 cm-1, 1628 cm-1, 1574 cm-1, 1242 cm-1 and 1020 cm-1.

https://doi.org/10.1371/journal.pone.0266043.g003
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Discussion

We have applied machine learning to infrared data collected by FTIR-MS from a number of

high risk OED lesions with known transforming potential. This is in contrast to most other

studies analyzing FTIR data that has been collected from oral premalignant lesions, which

commonly correlate IR data with OED stage rather than outcome. The process correctly pre-

dicted the capacity to transform with a sensitivity of 79 ± 4.9% and a specificity of 76 ± 5.1%,

which is better than when OED grade alone is used. A histological grade of severe OED or car-

cinoma-in-situ has been observed to have a significantly increased malignant transformation

rate compared with mild or moderate OED (P<0.008) [7], but this grading is still only

Fig 4. Performance of the model at the lesion level. Means from 70 iterations of train/test sets are presented.

Frequency at which each whole lesion was correctly predicted when it appeared in the test set (based on LOPOCV,

each NT lesion is present in 10 test pairs and each T lesion in 7 test pairs). Data is shown for each individual NT (left)

and T (right) lesion and plotted as specificity (true negatives) and sensitivity (true positives). Patient numbers are

research sample IDs.

https://doi.org/10.1371/journal.pone.0266043.g004

Fig 5. Representative images demonstrating identification of lesional areas that are mis-labelled. Every datapoint

for each lesion was color coded to represent the probability of transformation (T: red; NT: green; see color bar) and

mapped back onto a representation of the whole section for two T (top) and two NT (bottom) lesions. Lesions

predicted with high (left) and lower (right) accuracy are shown. (A), (C), (E) and (G): H&E images; (B), (D), (F) and

(H): corresponding maps of predicted datapoints on IR images.

https://doi.org/10.1371/journal.pone.0266043.g005
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predictive for 24–40% of such lesions [7, 32]. It is of note that, in the limited cohort used in the

present study, equivalent numbers of severe and moderate OED were present in the T and NT

groups, and OED grade did not correlate with the ability of the classifier to accurately predict

transformation potential.

Two lesions known to transform were predicted to be non-transforming in the current

analysis. Based on our knowledge of oral cancer development, it may be hypothesized that the

lesions are most probably heterogeneous with areas possessing transforming potential and

areas without this potential. Thus, the biopsy may not have been representative of the region

that underwent subsequent transformation. Similarly, given the relatively large size of the

region used for IR imaging compared to the size of individual cells, the IR imaged area will

contain areas displaying an ‘IR transformation fingerprint’ and areas that do not. In the analy-

sis presented here, it is the predominant fingerprint (i.e.�50% of datapoints) that was used to

classify the lesion as a whole, but, clinically, the worst area rather than the predominant signal

may be more important when predicting transformation and selecting appropriate clinical

treatment. Future development of this method would investigate how altering the 50% thresh-

old affects the capability of the model, as the sensitivity would be expected to increase as the

threshold is reduced but at the expense of specificity and vice versa. This is an important area

for clarification in a larger study and is related to clinical needs. Increased sensitivity (i.e. better

prediction of transforming status) could lead to decreased surveillance intervals, treatment

such as excision or enrolment onto chemoprevention trials. Conversely increased specificity

(i.e. better prediction of non-transforming status) might lead to changes in clinical practice to

allow for safe discharge or increased follow-up intervals. The identification of areas predicted

to have transforming capacity in one NT lesion is more difficult to explain, as none of the NT

lesions were excised during the follow-up period. However, it might be hypothesized that very

small islands of putatively transforming OED could have been completely excised during the

biopsy procedure, unintentionally performing a therapeutic excisional biopsy despite the

intention for diagnostic incisional biopsy.

Pre-processing of FTIR data is acknowledged to improve the performance of subsequent

classification models [33], but the choice of both the protocol and the subsequent modelling

method is often highly subjective and its efficacy is dependent on the characteristics of the

dataset. Instead of applying pre-processing steps in an arbitrary manner, a novel objective opti-

mization method was used in the current study to maximize the efficiency of the OED trans-

formation classifier by optimizing the parameters of each pre-processing step of the IR data,

determining their ideal sequence and identifying the best performing classification method(s),

or pipeline, using Bayesian optimization. Considering that the trialed pipelines all contain the-

oretically sensible pre-processing and classifier combinations, the significant variation in Mat-

thew’s correlation coefficient score (-0.53 to 0.37) was surprising. It was noted, however, that

many of the negative correlations were obtained when data was not normalized. Infrared data

are very sensitive to the amount of substance being probed, so mitigating for inevitable vari-

ability in sample thickness and preparation is crucial in order to build models derived from

multiple specimens.

The decision to use a LOPOCV strategy was taken because the small sample size precluded

the division of specimens into larger test/train sets. LOPOCV produces the most robust esti-

mation of the model’s true performance, since every combination of patients is used in the

training and testing of the model. However, the small sample size (n = 17) led to a high stan-

dard deviation in the mean sensitivity, specificity and ROC variance at the individual data-

point level because biological variation both between patients and within individual lesions is

to be expected and will impinge on the analysis under a LOPOCV strategy. Thus, a larger,

multi-center study is required to test the model further.
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Four of the six wavenumbers attributed the most weight during this classification can be

assigned to components of the amide I and II bands [34, 35], which are situated at 1700–1600

cm-1 and 1600–1500 cm-1 respectively. Absorbance at these wavenumbers can be directly

attributed to the vibrating modes of repeating peptide bonds, but the convoluted nature of the

amide bands renders the task of attributing specific moieties to particular wavenumbers diffi-

cult. The remaining features with the highest weight, and hence discriminating power, are at

1242 cm-1 and 1020 cm-1: regions known to be dominated by contributions from DNA, RNA

and glycogen [34]. Thus, a relatively high weighting of the IR data obtained at 1242 cm-1 might

be indicative of an increase in DNA aneuploidy in T lesions compared with NT lesions, a

known early event in oral carcinogenesis [36, 37]. Similarly, the characteristic absorption peak

of glycogen is centered at approximately 1030 cm-1 and its importance in the experiments pre-

sented in this report may correlate with the observation that abundance of the molecule is

depleted in pre-malignant tissue as a result of increased proliferation requiring additional

energy [38]. This association with glycogen depletion has been applied in the use of Lugol’s

Iodine staining in an attempt to identify and clear OED at the margins of oral cancer resec-

tions [39]. Despite these reassuring correlations between wavenumbers with high weighting in

the discriminatory model and previously recognized biological observations, it should be

remembered that the absorbance of IR light at any particular wavenumber by a biological tis-

sue is the sum of the absorbance by a number of different biochemical molecules, and it should

not be expected that a multivariate analysis combining DNA aneuploidy and glycogen levels

will be as effective a discriminator as the model presented here. Future research with larger

sample numbers and intention-to-treat biopsy specimens should use multivariate analysis to

assess how many key wavenumbers are necessary, in conjunction with clinicopathological var-

iables, to build a clinically useful discriminatory model. This reduction in the number of wave-

numbers required for discrimination will, in turn, lead to the development of less expensive

IR-based technology, perhaps utilizing quantum cascade lasers (QCLs) [40, 41], that might be

employed in routine pathology laboratories.

Conclusions

This study of a pathologically defined set of OED specimens with known outcome suggests

that the analysis of IR data can distinguish lesions with the capacity to transform to oral cancer

from those that do not, regardless of OED grade. This represents a novel analysis of FTIR data

collected from oral premalignant lesions, as data is commonly correlated with OED stage

rather than outcome. The results are encouraging, bearing in mind the small sample size and

the inherent clinical and biological limitations of using a small biopsy to reflect a much greater

field of potential malignant change, and may come to represent a step forward in the clinical

assessment of such lesions that allows improved treatment planning. Further research should

concentrate on increasing sample size and complexity to reflect the clinical conundrum and

the development of technology to apply the methodology in a timely and cost-effective

manner.
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