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Abstract
Structural features of proteins provide powerful insights into biological function and similarity. Specifically, previous work has demonstrated that 
structural features of tissue and drug-treated cell line samples can be used to predict tissue type and characterize drug relationships, respectively. 
We have developed structural signatures, a web server for annotating and analyzing protein features from gene sets that are often found in 
transcriptomic and proteomic data. This platform provides access to a structural feature database derived from normal and disease human 
tissue samples. We show how analysis using this database can shed light on the relationship between states of single-cell RNA-sequencing 
lung cancer samples. These various structural feature signatures can be visualized on the server itself or downloaded for additional analysis. The 
structural signatures server tool is freely available at https://structural-server.kinametrix.com/.
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Introduction
In the past decade, there has been an explosion of proteomic 
and genomic sequencing (1). This wealth of data, while revo-
lutionary, does not on its own capture underlying functional 
similarities and differences between samples beyond shared 
gene or protein names. Traditionally, additional analysis has 
been necessary to relate these proteins or genes via an interac-
tion network (2, 3). In order to reveal relationships and make 
advancements based on underlying function, the incorpora-
tion of protein feature information is invaluable (4). Recent 
studies have shown the benefit of using gene expression sig-
natures in conjunction with orthogonal information, such as 
protein structure, to describe biological systems more robustly 
(5). Structural features of proteins capture underlying patterns 
and functions in biological samples. As a result, they can be 
a powerful tool for defining cellular identity, function and 
the effects of perturbations. Structural features combine infor-
mation from multiple levels of protein structure encoded in 
genomic and proteomic sample sets. Structural features enable 
phenotypic characterization across experimental platforms, 
facilitate interoperability of expression datasets and describe 
drug action on cells. In particular, the protein features deter-
mined with the algorithm hosted on the structural signatures 
server have been shown to reproducibly describe human tissue 

samples and the relationship between kinase inhibitor-treated 
cardiomyocyte-like cell lines (6).

Here, we describe the structural signatures server that 
allows users to generate protein features from proteins or gene 
sets. These features correspond to the hierarchical description 
of each protein structure in the set, including domain, family, 
superfamily and fold, which can be predicted from the amino 
acid sequence of the encoded protein (Supplementary Figure 
S1). Structural signatures can reveal unique functional aspects 
of their samples, from their own proteomics, transcriptomics 
and single-cell RNA data. The server hosts an updated ver-
sion of the algorithm that generates structural features, which 
includes additional capabilities such as feature name anno-
tation and more readable file outputs. The user interface is 
easy to use and requires no prior coding experience to operate. 
Once protein features have been calculated via the server, the 
user can download their results or explore them directly on the 
server in graphical or table form. The server also allows users 
to explore protein feature data from normal tissue datasets 
(7, 8) and lung single-cell RNA sequencing from the Gene 
Expression Omnibus GSE1311907 (9). The interactivity pro-
vided by the server uniquely increases the accessibility of
these data.
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Materials and Methods
Structural signatures data and definition
A structural signature consists of protein features found in a 
set of genes or proteins. The algorithm that computes struc-
tural features assigns and counts families, superfamilies and 
folds in the input set from the Structural Classification of Pro-
teins extended (SCOPe) (10) database using the structure of 
input gene products predicted with HHpred (11), a profile–
profile alignment program for predicting protein structure. 
The algorithm also determines domains from InterProScan 
(12). The following minimum threshold values for assign-
ing identifiers to proteins are used: length of alignment to a 
structure’s 30 residues, probability score 50, overlap cover-
age 80%, P-value 1e-05, E-value 1e-05, percent identity 30% 
and coverage against template 30%. When the algorithm is 
unable to assign a structural label to a gene structure, the label 
becomes ‘no-fold’ or ‘no-domain’. The features and their cal-
culated frequency are then compared to those found in the 
human proteome, which represents the background distribu-
tion of each feature, using a one-sided Fisher’s exact test. In 
addition to the structural features and their frequency, the 

algorithm also returns their P-value of enrichment (associa-
tion) and their Bonferroni-adjusted P-value (q-value). Build-
ing on previous work (6), the version of the algorithm that 
determines structural features and is hosted on the server 
was reconfigured to require fewer dependencies and includes 
information about the domain, family, superfamily and fold 
descriptions for ease of user interpretation. Furthermore, the 
output was also reorganized into a more streamlined and user-
readable format. The server returns a downloadable text file 
with each row representing a structural feature. The columns 
are as follows: the description of the structural feature; the 
name of the structural feature using the domain, family, fold 
or superfamily ID; the level of classification of the feature 
such as whether it is a domain, family, fold or superfamily; 
the number of times that feature appears in the sample; the 
number of times that feature appears in the human proteome; 
the P-value of the sample calculated using a Fisher’s exact 
test comparing the number of times the feature appears in 
the sample and the number of proteins found in the sample 
minus the number of times the feature appears in the sample 
with the number of times the feature appears in the human 

Figure 1. Input page. (A) the web server navigation bar. (B) The user can submit gene lists or protein IDs that they wish to transform into structural 
features as a comma, line or space-separated list of gene names or UniProt IDs or upload a file of the same format. They can also give their job an export 
name, under which it will be saved, and there is an option to view the output for a sample list of genes.
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proteome and the number of proteins found in the human pro-
teome minus the number of times the feature appears in the 
human proteome; the Bonforroni-adjusted significance value 
that is adjusted by dividing an 𝛼 of 0.05 by the number of fea-
tures found in the sample for that level of classification; the 
log base 10 of the number of times the feature appears in the 
sample divided by the number of times the feature appears in 
the human proteome and the false discovery rate that is deter-
mined using all the P-values from the samples in that level of 
classification.

In addition to protein features determined based on user 
genomic or proteomic input, the server also provides access to 
protein features from a Broad Institute database that contains 
RNA-sequencing data from 54 non-diseased human tissue 
types (GTEx) (7), which contains RNA-sequencing data from 
54 non-diseased human tissue types, a database hosted by 
the Ma’ayan Lab that brings together signatures from human 
and mouse tissue from a variety of platforms (ARCHS4) (8), 
which contains signatures from normal human and mouse tis-
sue from a variety of platforms and GSE1311907 (9), which 
contains single-cell RNA-sequencing samples from normal 
lung as well as early and advanced stage lung adenocarci-
nomas. A 3D t-distributed stochastic neighbor embedding 
(t-SNE) (13) was conducted on structural features of samples 
for each of these datasets based on the top 250 over-expressed 
genes using the python package sklearn.manifold, t-SNE with 
the following parameters: n_components = 3, verbose = 1, 
perplexity = 30 and n_iters = 250.

The web server, which hosts the most recent version of the 
algorithm that determines structural features, can be found 
at structural-server.kinametrix.com. The source code for 
this algorithm is available at https://github.com/schlessinger-
lab/structural-signatures.

Results and Discussion
Interface and implementation
The sGES server is a website, which allows users to gener-
ate structural signatures for their own gene sets of interest 
using the structural signatures algorithm and interact with the 
resulting data. There is easy navigation between pages using 
the navigation bar at the top of the screen (Figure 1A). The 
server was built using Python Dash. All figures were gener-
ated using Plotly. The web server was dockerized prior to 
deployment on Amazon Web Services.

Data generation page
The input to the algorithm that generates structural features 
is a list of gene names or UniProt (14) IDs. These can be 
uploaded directly into the user interface or as a text file with 
each ID separated by commas, lines or spaces. A sample 
dataset of apoptosis genes is available so that the user can 
familiarize themselves with the data generation process and 
output visualizations (Figure 1B).

Once the structural features for the input are determined, 
the user can download the text file output. The user can 
also take advantage of the interactive graphs to explore the 
structural features of their input (Figure 2). The volcano 
plot representation of the data shows InterPro Domains and 
SCOPe Families, Folds and Superfamilies associated with the 
structural features found (Figure 2A). The log fold change 
for each feature is plotted against the negative log P-value. 
Structures above the line with negative log P-value equal to 

Figure 2. Screen capture of the output page. The user can download a zip 
file by pressing the Download button. (A) The results are visualized with a 
volcano plot and a table with more details about the plot points being 
hovered over or clicked. The legend for this graph can be found on the 
right and includes domain, family, fold and superfamily, as well as the 
cutoffs for −log(P ) equal to five and the Bonferroni correction. (B) The 
table corresponding to the hovered-over or clicked data from the volcano 
plot (C) structural feature information can also be visualized in a 
frequency bar plot.

three have P-values <0.05. For ease of visualization, data can 
be excluded from the plot by clicking on its name in the leg-
end. Double-clicking on the name of the data in the legend 
will exclude all other data with the exception of the selected 
data. Additionally, a data table of hovered-over and clicked 
structures appears under the plot. In the sample input that 
contains genes that are associated with apoptosis, examples 
of features that fall above the significance line include Pepti-
dase C14 domains and the caspase activation and recruitment 
domains (CARD) domain, both of which are implicated in 
protein breakdown (Figure 2B).

The bar plot captures information about the features with 
the highest frequencies in each level of classification, Inter-
Pro Domains and SCOPe Families, Folds and Superfamilies 
(Figure 2C). The x-axis is labeled with the name of the top 
three features in each level of classification, and the y-axis is 
their frequency. Looking at both plots together shows that the 
peptidase C14 domains are not only highly represented in the 
sample, but are also overrepresented in the sample compared 
to the human proteome if using an 𝛼 of 0.05. If analysis with a 
more stringent 𝛼 is desired, users can calculate the equivalent 
negative log P-value and explore the negative log P-values 
for the features of interest on the volcano plot by hovering 
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or clicking. Alternatively, users can download the raw output 
data for analysis. Information about the server functionality 
and underlying method is included on the About and Help 
pages.

Database Explorer page
The server also allows users to explore the structural fea-
tures of normal human tissue samples in the GTEx (7) and 
ARCHS4 (8) databases (Figure 3). These data serve as a 

Figure 3. Database explorer page. (A) 3D t-SNE with GTEx tissues based on the features of the expressed proteins. (B) 3D t-SNE with brain and heart 
sub-tissues as seen on the server (C) 3D t-SNE on lung adenocarcinoma structural features.
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normal tissue control for the user and provide insight into 
the signature background. Newly generated structural feature 
data from lung adenocarcinoma single-cell RNA-sequencing 
data from human patient samples (9) is also available on the 
Data Explorer page. The utility of this dataset is expanded 
upon in the ‘Use case’ section. The data are represented as an 
interactive 3D t-SNE (13), which allows users to conceptual-
ize structural feature-based similarity for different subsets of 
the data. For example, the normal human tissue t-SNE on the 
GTEx dataset showcases the differences of sub-tissues within 
organs for which sub-tissues were collected (Figure 3A).
This is particularly apparent in heart and brain tissues, which 
had distinct sub-tissues labeled. In a t-SNE, the clustering by 
overall tissue type remains; however, there is also the nuanced 
separation by sub-tissue type. This distinction is displayed by 
the 3D t-SNE on the server (Figure 3B).

Furthermore, a searchable table of raw structural feature 
values with their frequencies is available, which is helpful for 
understanding features based on tissue type of origin and con-
textualizing structural feature samples the user has provided. 
For example, if a user has generated structural features for 
a diseased or drug-treated sample, they can download their 
results and compare the perturbation signature to the sig-
nature of normal tissue. In this way, the server can assist 
in the isolation of perturbation signals from general tissue
signals.

Due to the large number of samples, the download output 
is broken up into separate files for each level of classifica-
tion, domain, family, fold and superfamily. Each column 
represents a feature with the following columns: structural 
feature ID, number of times the structural feature occurs in 
the sample, number of times the structural feature occurs 
in the human proteome, the number of genes or proteins 
in the sample, number of proteins in the human proteome, 
the P-value of the sample calculated using a Fisher’s exact 
test comparing the number of times the feature appears in 
the sample and the number of proteins found in the sample 
minus the number of times the feature appears in the sample 
with the number of times the feature appears in the human 
proteome and the number of proteins found in the human 
proteome minus the number of times the feature appears in 
the human proteome, the false discovery rate that is deter-
mined using all the P-values from the samples in that level of 
classification, the Bonferroni-adjusted significance value that 
is adjusted by dividing an 𝛼 of 0.05 by the number of fea-
tures found in the sample for that level of classification and 
the log base 10 of the number of times the feature appears in 
the sample divided by the number of times the feature appears 
in the human proteome. Each of the datasets also has dis-
tinct columns with sample-specific information. The last three 
columns of the GTEx data contain information about the 
sample ID, the tissue subtype and the tissue, respectively. The 
last two columns in the ARCHS database contain the sample 
ID and the tissue type, as no sub-tissue information was col-
lected in that database. Finally, the last three columns in the 
lung adenocarcinoma database contain information about the 
sample ID, the cell type and the cancer stage.

Use case: application of structural features to the 
understanding of lung adenocarcinoma 
progression
Structural features can provide powerful, new insights 
into single-cell RNAseq data to characterize cell states.

This is showcased on the Data Explorer page for the samples 
extracted from normal human lung tissue, early and advanced 
stage lung adenocarcinomas (9). The application of struc-
tural feature analysis of human single-cell RNA-sequencing 
samples from normal, early-stage and advanced lung adeno-
carcinoma followed by the application of t-SNE demonstrates 
retention of tissue-specific clustering (Figure 3C). Notably, the 
3D t-SNE analysis shows the retention of cell-type informa-
tion, as well as positions clusters of cell types derived from 
the same progenitors near each other, providing additional 
information about developmental lineage. For example, natu-
ral killer (NK) cells, T-lymphocytes and B-lymphocytes, all of 
which develop from the common lymphoid progenitor (CLP) 
(15), all localize near each other in the t-SNE plots. Inter-
estingly, the T-lymphocytes and NK cells are located closer 
to each other, with almost overlapping clusters, than to B 
cells. This could highlight the similarity and interconnected-
ness of their function in immune-mediated cell death (16) in 
addition to their common lineage. The T cell clusters, how-
ever, are situated between the NK cell and B cell clusters, 
recapitulating their status as the bridge between innate and 
adaptive immunity (17). Myeloid cell clusters, which come 
from myeloid progenitor cells and share the same precur-
sor cell—the hematopoietic stem cell—as CLPs (18), are also 
located near the NK, T and B cell clusters. Epithelial and 
fibroblast cell clusters, which are hypothesized to derive from 
mesenchymal stem cells (19), are located on the periphery, 
further away from these clusters of immune cells.

In addition to the recapitulation of cell functions and 
lineages, the t-SNE plot also highlights the differences in 
cell types and subtypes found in normal lung, early and 
advanced stage adenocarcinoma lung, particularly in epithe-
lial cells (Figure 3C). This analysis captures differences within 
cell types that experience functional mutations between these 
disease categories ranked by progression and, in doing so, 
provides evidence to support the importance of the Epithelial 
to Mesenchymal Transition (EMT) in lung adenocarcinoma 
severity. Due to the importance of EMT in cancer genesis and 
disease resistance (20), this differentiation of clusters is both 
expected and contributes to the validity of structural features 
for capturing biological phenomena. Incorporating these data 
into a network provides further support for the relationships 
between cell type and disease state (Supplementary Figures S2 
and S3). This demonstrates the utility of the server as an initial 
investigational tool for characterizing datasets.

Conclusions
As the wealth of omics data increases, it is imperative that 
this genomic and proteomic information is used to its full 
potential. Previous work has shown that structural features, 
which contain information about underlying protein struc-
tural features of differentially expressed genes, are a powerful 
tool for describing drug perturbations and tissue states. This 
information is complementary to the analysis provided by 
other gene annotation methods (21, 22). The web server 
presented here provides an easy-to-use interface for gener-
ating new structural features from user datasets and also 
enables the user to further explore other publicly available 
datasets. To demonstrate the broad applicability and general-
izability of structural features, we show its applicability in the 
analyses of single-cell transcriptomics data of lung adenocar-
cinoma patient samples and provide these results in the server.
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The relationships uncovered, provide valuable insight into the 
characterization and progression of disease.

Supplementary data
Supplementary data are available at Database Online.

Funding
National Institutes of Health (F30 HL160179-02 to N.Z., 
T32 HD075735 to N.Z., T32 GM062754 to R.R. and D.S., 
U54 HG008098 to R.I. and A.S.).

Conflict of interest
None declared.

Author contributions
N.Z., A.S. and R.I. wrote the manuscript. N.Z. and D.S. imple-
mented the web server. N.Z. created the current structural 
features method. R.R. created the previous structural features 
method.

References
1. (2010) Human genome at ten: the sequence explosion. Nature,

464, 670–671. 10.1038/464670a.
2. Pellegrini,M., Haynor,D. and Johnson,J.M. (2004) Protein interac-

tion networks. Expert Rev. Proteomics, 1, 239–249.
3. Wang,X., Wei,X., Thijssen,B. et al. (2012) Three-dimensional 

reconstruction of protein networks provides insight into human 
genetic disease. Nat. Biotechnol., 30, 159–164.

4. Karimi,M., Zhu,S., Cao,Y. et al. (2020) De novo protein design 
for novel folds using guided conditional Wasserstein Generative 
Adversarial Networks. J. Chem. Inf. Model, 60, 5667–568.

5. Zhang,Q.C., Petrey,D., Deng,L. et al. (2012) Structure-based pre-
diction of protein–protein interactions on a genome-wide scale. 
Nature, 490, 556–560.

6. Rahman,R., Zatorski,N., Hansen,J. et al. (2021) Protein structure–
based gene expression signatures. PNAS, 118, e2014866118.

7. Lonsdale,J., Thomas,J., Salvatore,M. et al. (2013) The genotype-
tissue expression (GTEx) project. Nat. Genet., 45, 580–585.

8. Lachmann,A., Torre,D., Keenan,A.B. et al. (2018) Massive mining 
of publicly available RNA-seq data from human and mouse. Nat. 
Commun., 9, 1366.

9. Kim,N., Kim,H.K., Lee,K. et al. (2020) Single-cell RNA sequenc-
ing demonstrates the molecular and cellular reprogramming of 
metastatic lung adenocarcinoma. Nat. Commun., 11, 2285.

10. Fox,N.K., Brenner,S.E. and Chandonia,J.-M. (2014) SCOPe: struc-
tural classification of proteins—extended, integrating SCOP and 
ASTRAL data and classification of new structures. NAR, 42, 
D304–D309.

11. Zimmermann,L., Stephens,A., Nam,S.-Z. et al. (2018) A com-
pletely reimplemented MPI bioinformatics toolkit with a new 
HHpred server at its core. J. Mol. Biol., 430, 2237–2243.

12. Jones,P., Binns,D., Chang,H.-Y. et al. (2014) InterProScan 5: 
genome-scale protein function classification. Bioinformatics, 30, 
1236–1240.

13. van der Maaten,L. and Hinton,G. (2008) Visualizing data using 
t-SNE. J. Mach. Learn. Res., 9, 2579–2605.

14. The UniProt Consortium. (2019) UniProt: a worldwide hub of 
protein knowledge. NAR, 47, D506–D515.

15. Hiam-Galvez,K.J., Allen,B.M. and Spitzer,M.H. (2021) Systemic 
immunity in cancer. Nat. Rev. Cancer, 21, 345–359.

16. Gasteiger,G. and Rudensky,A.Y. (2014) Interactions between 
innate and adaptive lymphocytes. Nat. Rev. Immunol., 14, 
631–639.

17. Lee,H.-G., Cho,M.-Z. and Choi,J.-M. (2020) Bystander CD4+ T 
cells: crossroads between innate and adaptive immunity. Exp. Mol. 
Med., 52, 1255–1263.
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