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Abstract: Chronological aging is characterized by an alteration in the genes’ regulatory network.
In human skin, epidermal keratinocytes fail to differentiate properly with aging, leading to the
weakening of the epidermal function. MiR-30a is particularly overexpressed with epidermal aging,
but the downstream molecular mechanisms are still uncovered. The aim of this study was to
decipher the effects of miR-30a overexpression in the human epidermis, with a focus on keratinocyte
differentiation. We formally identified the mitophagy receptor BNIP3L as a direct target of miR-
30a. Using a 3D organotypic model of reconstructed human epidermis overexpressing miR-30a, we
observed a strong reduction in BNIP3L expression in the granular layer. In human epidermal sections
of skin biopsies from donors of different ages, we observed a similar pattern of BNIP3L decreasing
with aging. Moreover, human primary keratinocytes undergoing differentiation in vitro also showed
a decreased expression of BNIP3L with age, together with a retention of mitochondria. Moreover,
aging is associated with altered mitochondrial metabolism in primary keratinocytes, including
decreased ATP-linked respiration. Thus, miR-30a is a negative regulator of programmed mitophagy
during keratinocytes terminal differentiation, impairing epidermal homeostasis with aging.

Keywords: BNIP3L; miR-30a; mitophagy; keratinocyte; aging; mitochondria

1. Introduction

Aging is a natural and inexorable biological evolution associated with a progressive
decline in tissue homeostasis. Skin is an excellent model of aging: during the natural
aging process, the skin undergoes a typical age-related tissue dysfunction, including
epidermis atrophy, barrier dysfunction and delayed wound healing. This chronological
and dynamic process starts in the mid-20s and is easily remarkable at the macroscopic
level at an advanced stage. However, early microscopic events such as changes in cell
behaviour occur very early in the aging process and could be targeted to slow down
the loss of tissue homeostasis. Although skin aging is strongly modulated by extrinsic
factors, clues that a universal epigenetic program is driving the intrinsic tissue decline
are converging in the literature. Indeed, multiple epigenetic changes are considered to
be reliable hallmarks of tissue aging, such as modification of DNA methylation patterns,
histone posttranslational modifications and modulation of non-coding RNA expression [1,2].
The latter is an emerging scientific domain, in which a number of studies have been
published over the last decade. Indeed, the control of skin homeostasis largely depends
on the fine-tuning of signalling pathways by long non-coding RNAs, circular non-coding
RNAs and micro-RNAs (miRNAs) [3–5].

We previously conducted a genome-wide miRNA profiling in human primary ker-
atinocytes from skin biopsies of young or elderly donors [6]. Thanks to this analysis,
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we identified miR-30a as the most over-expressed miRNA during the aging process in
keratinocytes. The overexpression of miR-30 in young cells is sufficient to recapitulate
the major functional defect of skin aging, namely, the disrupted barrier function in a 3D
organotypic model [6]. This functional alteration in the epidermis is likely due to increased
apoptosis, together with failure of the complete differentiation process. The epidermis is a
multi-layered epithelium, mainly composed of keratinocytes. Keratinocytes from the basal
layer are proliferative cells that continuously divide to self-renew the pool of progenitor
cells and sustain the daily need for committed cells. These committed keratinocytes will un-
dergo progressive differentiation, in stages, along a vertical axis that is oriented outwards.
At the terminal stage of differentiation, keratinocytes can be likened to mummified cells,
called corneocytes, devoid of nucleus and organelles.

Macroautophagy (hereafter referred as autophagy) plays a crucial role in the terminal
differentiation of keratinocytes; therefore, its abnormal activity is associated with different
cutaneous diseases [7]. Autophagy is a dynamic process that degrades and recycles cellular
components, such as misfolded proteins and damaged organelles. Multiple molecular
complexes are involved in autophagy, but they will all lead to the sequestration of the
targeted component within a double-membrane autophagosome. This autophagosome will
later fuse with a lysosome, leading to a degradative autolysosome [8]. In the epidermis,
autophagy is constitutively active in the granular layer, where nuclei are cleared, leading to
the terminal differentiation [9]. In addition, mitophagy, a specialized type of autophagy that
targets mitochondria for elimination, is a key step to activate the terminal differentiation
of keratinocytes, through the BNIP3/BNIP3L (also known as NIX) pathway [7,10,11].
Interestingly, autophagy is a recurrent biological pathway targeted by the miR-30 family
in other systems, especially in many types of cancers [12–14]. In addition, other miR-30
family members, miR-30c and miR-30e, have previously been implicated in the targeting
of BNIP3L in renal epithelial cells [15,16]. However, the functional role of miR-30a in
skin, and the consequences of its overexpression with aging, are still uncovered in the
literature. We hypothesized that miR-30a is a central regulator of mitophagy, which will
disturb the normal process of epidermal differentiation with aging. The present study
was conducted on a 3D organotypic model of reconstructed epidermis and on human
skin biopsies. We formally identified a new miR-30a target and demonstrated that the
mitochondrial dynamics are altered during differentiation along chronological aging.

2. Materials and Methods
2.1. Cell Culture

Human primary keratinocytes (HPK) were isolated in-house from skin biopsies as
previously described [6], or purchased from Lonza (Basel, Switzerland, #00192627). Skin
biopsies were obtained from the DermoBioTec tissue bank at Lyon (Tissue Transfer Agree-
ment n◦214854) with the informed consent of adult donors or parents of children undergo-
ing surgical discard (non-pathological tissues from foreskin, ear, breast, or abdomen), in
accordance with the ethical guidelines (French Bioethics law of 2021). Donor specifications
are indicated in Supplementary Table S1. HPK were cultured in KGM Gold medium (Lonza,
#00192060) at 37 ◦C and 5% CO2. The culture medium was renewed three times a week
and cells were maintained to no more than passage 4. The differentiation of HPK was
induced by leaving the cells at confluency in KGM Gold medium. Human Embryonic
Kidney (HEK293T) cells were cultured in Dulbecco’s modified Eagle’s Medium–Glutamax
medium (DMEM) (Thermo Fisher Scientific, Villebon-sur-Yvette, France, #6196-026) 10%
FBS at 37 ◦C and 5% CO2, with renewal of culture medium three times a week.

2.2. Transfection and Luciferase Assay

HPK at 70% confluency were transfected with miRNA mimics at 20 nM: miR-30a-5p
(Thermo Fisher Scientific, #4464066, assay ID: MC11062), miR-30a-3p (Thermo Fisher
Scientific, #4464066, assay ID: MC10611) and miRNA negative control (Thermo Fisher
Scientific, #4464058), using RNAiMax (Thermo Fisher Scientific, #13778075) according to
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the manufacturer’s instructions. The cells were processed for RT-qPCR analysis of BNIP3L
expression 24 h after transient transfection. Partial sequence of BNIP3L 3’UTR was cloned
downstream of a firefly luciferase reporter plasmid (VectorBuilder, Neu-Isenburg, Germany,
#VB191204-1713qzf). The plasmid was then submitted to site-directed mutagenesis using
the In-Fusion technology (Takara Bio Europe, Saint-Germain-en-Laye, France, #638909) with
inverse PCR (see Supplementary Table S2) according to manufacturer’s instructions. The
characterization of the resultant plasmids was performed by Sanger sequencing (Biofidal,
Vaulx-en-Velin, France). An additional renilla luciferase reporter plasmid was generated
to serve as an internal standardizer (VectorBuilder, #VB191205-1069fzu). HEK293T cells
at 70% confluency were co-transfected with the firefly luciferase reporter plasmids at
400 ng/mL, the renilla luciferase reporter at 0.4 ng/mL and miRNA mimics at 20 nM
using TransIT-X2 (Mirus Bio, Madison, WI, USA, #MIR 6000) according to manufacturer’s
instructions. Eighteen hours after transfection, the luciferase activity was measured using
the renilla-firefly luciferase dual assay kit (Thermo Fisher Scientific, #16186) in a microplate
reader (Infinite M1000, Tecan, Männedorf, Switzerland).

2.3. Protein Extraction and Immunoblotting

Total proteins were extracted using RIPA buffer (50 mM Tris-HCl pH = 8, 150 mM
NaCl, 1.5 mM KCl, 1% NP-40, 0.1% SDS, 0.5% sodium deoxycholate, 0.1% Triton X-100,
1 mM EDTA) containing a protease and phosphatase inhibitors cocktail (Thermo Fisher
Scientific, #A32961). After quantification with the Pierce BCA Protein Assay Kit (Thermo
Fisher Scientific, #23225), 20 µg of proteins were loaded on an 10% SDS-polyacrylamide gel
and transferred onto a PVDF membrane (Merck, Darmstadt, Germany, #IPVH85R). The
membrane was incubated for 1 h at RT in blocking buffer (TBS-Tween-20 0.1%, 5% BSA) and
immunoblotted overnight at 4 ◦C with primary antibodies targeting BNIP3L or Vinculin.
After washing, HRP-conjugated secondary antibodies were incubated for 1 h at RT (see
Supplementary Table S3 for antibody details). Proteins were revealed using SuperSignal
West Pico PLUS Chemiluminescent Substrate (Thermo Fisher Scientific, #34580) and the
signal was detected by the Fusion Fx system (Vilber, Marne-la-Vallée, France).

2.4. Reconstructed Human Epidermis (RHE) Production

RHE were prepared as described previously in Muther et al., 2017 [6]. In brief,
3 × 104 primary fibroblasts were seeded on the outer face of polycarbonate membrane
of cell culture inserts (Sigma-Aldrich, Saint-Quentin-Fallavier, France) and cultured for
two days. Then, 3 × 105 primary keratinocytes, infected by pSLIK Venus control or pSLIK
Venus miR-30a, were seeded on the inner face of inserts. Three days after, differentiation
and stratification were induced when keratinocytes were placed at the air–liquid interface.
The culture was maintained for 11 days, and culture medium was changed every day
during the immersion phase. Doxycycline (Sigma-Aldrich) at 0.1 µg/mL was added for
the duration of the protocol to induce miR-30 over-expression.

2.5. Immunofluorescence

Human paraffin embedded tissue microarray (TMA: #SK2444A and #SKN1001, see
Supplementary Table S4 for details) were purchased from US Biomax (Derwood, MD,
USA). Antigen retrieval (10 mM sodium citrate buffer, 0.05% Tween20) was performed at
95 ◦C for 20 min before immunostaining. RHE were prepared for immunofluorescence
as previously described [6]. The following steps are similar for both TMA and RHE
sections. After dewaxing and rehydration, tissue sections were permeabilized using PBS
0.1% Triton X-100, 0.1 M glycine during 10 min at room temperature (RT). Samples were
then blocked with PBS containing 5% goat serum, 2% BSA and 0.1% Tween20 for at least
1 h at RT. After washing steps, primary antibodies were incubated overnight at 4 ◦C
(Supplementary Table S2). After washings, secondary antibodies were incubated 45 min
at RT and nuclear staining was performed using ProLongTM Glass Antifade Mountant
with NucBlueTM (Thermo Fischer Scientific, #P36981). Negative controls were performed
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by omitting primary antibodies. Images were visualized using High Content Screening
Yokogawa CQ1 microscope (Yokogawa, Tokyo, Japan), digitalized using sCMOS camera
(Olympus, Hamburg, Germany) and analysed using ImageJ software (version 2.1.0/1.53c).

2.6. Total RNA/DNA Isolation and Real-Time Quantitative PCR

Total RNA and DNA were isolated using Quick-DNA/RNATM Miniprep kit (Zymo
research, Mülhauser, Germany) according to manufacturer’s instruction. First, mRNA were
reverse-transcribed into cDNA using PrimeScriptTM RT reagent kit (Takara Bio Europe,
#RR037A) and analysed in real-time qPCR using SYBR® Premix ExTaqII (Takara Bio Europe,
# RR820A) on an AriaMx Realtime PCR system (Agilent Genomics, Santa Clara, CA, USA).
Results were normalized to TBP and RPL13A housekeeping gene expression levels, using
the 2−∆∆Ct quantification method. Secondly, relative mitochondrial DNA content was
calculated as the mean ratio of two mitochondrial genes copy number (ND1 and TL1) to
single-copy nuclear genes (HBB and SERPINA1) using the 2−∆∆Ct quantification method.
The detailed PCR program is indicated in the Supplementary Materials and Methods and
all the primers are listed in Supplementary Table S2.

2.7. Seahorse Analysis

Oxygen consumption rate (OCR) was measured with a Seahorse XF extracellular flux
analyzer according to the manufacturer’s instructions (Agilent). Primary keratinocytes
were seeded at 60,000 cells per well (four wells as technical replicate/cell type) in a 24-well
cell culture microplate and incubated overnight at 37 ◦C in 5% CO2. Culture medium was
replaced with XF assay medium supplemented with 10 mM glucose (Agilent, #103577-100),
1 mM pyruvate (Agilent, #103578-100) and 2 mM glutamine (Agilent, #103579-100, Agilent)
and cells were incubated in the absence of CO2 for 45 min before measurement. OCR
was determined before the injection of specific metabolic inhibitors and after successively
adding 1.5 µM oligomycin, 1 µM FCCP, and 0.5 µM rotenone/antimycin A (Sigma-Aldrich).
Wave software was used to analyse seahorse measurements.

2.8. Statistical Analysis

Data are expressed as mean or median ± SD. Statistical significance was calculated
by Student’s t-test, one-way analysis of variance (ANOVA), two-way analysis of variance
(ANOVA2), or Pearson correlation using Prism software (version 7.0, GraphPad Software,
San Diego, CA, USA). Mean differences were considered statistically significant when
p < 0.05. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results
3.1. BNIP3L Is a New Identified Target of miR-30a-5p

As miR-30a is already well known to regulate autophagy through targeting BECLIN1
or ATG5, mostly in cancer cells [12–14], we chose to focus on putative targets that were
more specifically involved in mitophagy. Using TargetScan (http://www.targetscan.org/
vert_80/, release 8.0: September 2021), we found that miR-30a-5p has two highly conserved
putative binding sites in BNIP3L 3’UTR at positions 2350–2357 and 2651–2657 (Figure 1A).
In addition, another putative binding site of miR-30a-5p (position 1126–1132) and two
putative binding sites of miR-30a-3p (positions 1082–1088 and 2059–2065) were also found,
even though the conservation of these sites among vertebrates is less important. Since
both strands of miR-30a are overexpressed in keratinocytes from aged skin, we tested the
in vitro ability of miRNA mimics to decrease the mRNA levels of BNIP3L in keratinocytes
(Figure 1B)., Both mimics of miR-30a-3p and miR-30a-5p induced a significant decrease in
BNIP3L mRNA levels, by 28% and 36%, respectively, 24 h after the transient transfection of
proliferating human keratinocytes.

http://www.targetscan.org/vert_80/
http://www.targetscan.org/vert_80/
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Figure 1. miR-30a interactions with BNIP3L. (A) Schematic of the BNIP3L 3’UTR region showing
the putative miR-30a binding sites. (B) Relative mRNA expression of BNIP3L in keratinocytes 24 h
after transfection of miR-30a-3p or miR-30a-5p mimics or a scrambled sequence (NC: Negative
Control). qPCR analysis was normalized to TBP and RPL13A housekeeping genes using the 2−∆∆Ct

quantification method (mean ± SD, n = 6; * p < 0.05 and **** p < 0.0001). Exact p-values were
determined using the one-way ANOVA and Tukey post-hoc tests. (C) Normalized luciferase activity
(red firefly/green renilla) after co-transfections of HEK293T cells with the Wild-Type (WT) or Mutant
(Mut) reporter plasmids and miRNA mimics (median ± SD, n = 4 or n = 8; **** p < 0.0001). Exact
p-values were determined using the one-way ANOVA and Tukey post-hoc tests. (D) Schematic
of a portion of BNIP3L 3’UTR region with the three putative complementary pairing sites with
miR-30a-5p. The mutated sites, obtained by inverse PCR and characterized by Sanger sequencing,
are also indicated below the original sequence. (E) Western blot analysis of keratinocytes of BNIP3L
(25 kDa) expression 36 h after transfection of miR-30a-5p mimics or a scrambled sequence (NC:
Negative Control). Western blot analysis of Vinculin (116 kDa) was used as a loading normalizer.
(F) Quantification of BNIP3L expression normalized by the expression of Vinculin (mean ± SD, n = 3;
* p < 0.05). Exact p-value was determined using the Student’s t-test.
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To further confirm the direct targeting of BNIP3L by the miR-30a, a portion of its 3’UTR
sequence containing the five putative binding sites was cloned into a luciferase reporter
plasmid. In combination with transient transfection of either miR-30a-3p or miR-30a-5p
mimics in HEK293T cells, we observed a strong reduction (−40%) in the luminescence
signal only in presence of the miR-30a-5p strand (Figure 1C). Thus, it appears that only
miR-30a-5p directly targets the BNIP3L 3’UTR and that the effect of miR-30a-3p that was
previously observed in primary keratinocytes is likely related to a secondary event. We then
selectively and individually mutated the three putative binding sites of miR-30a-5p. Sanger
sequencing showed a partial deletion of four of the seven nucleotides in the first binding
site (1126–1132) and the complete deletion of all seven nucleotides from the two other
binding sites (2350–2357 and 2651–2657) (Figure 1D). Mutants 1 and 3 partially rescued the
luciferase activity (from −40% to −17% and from −40% to −19%, respectively), suggesting
that these two sites only account for a partial activity of miR-30a-5p on BNIP3L 3’UTR.
Surprisingly, the luciferase activity was almost fully restored (from −40% to −3%) when the
intermediate binding site was mutated, suggesting that this single site is sufficient for miR-
30a-5p activity. These apparently conflicting data may reflect non-canonical miRNA-target
interactions, independently of the seed complementary sequence [17], in the proximity of
the both sites 1126–1132 and 2651–2657.

Finally, we confirmed the functional targeting of BNIP3L by miR-30a-5p by Western
blot analysis of the protein content. Indeed, after transient transfection of miR-30a-5p
in primary keratinocytes, we found that the protein levels of BNIP3L were decreased by
about 40% (Figure 1E,F), which corresponds to the level of mRNA decrease in the same
conditions. Thus, miR-30a-5p is likely regulating the protein level of BNIP3L through
mRNA degradation.

3.2. MiR-30a-5p Abolishes BNIP3L Expression in the Granular Layer of RHE

To confirm the regulation of BNIP3L by miR-30a in a more relevant system, we took
advantage of an organotypic model of RHE generated from HPK overexpressing miR-30a
by stable lentiviral transduction. Using three different human donors, we showed that
keratinocytes normally express BNI3PL in the granular layer of the epidermis (Figure 2A),
in accordance with its described function in the degradation of mitochondria during the
cornification [11]. Strikingly, the overexpression of miR-30a in keratinocytes induced a
strong reduction in BNIP3L staining in the granular layer. The reminiscence of BNIP3L
protein is likely due to cell heterogeneity in the overexpression of miR-30a, since we used
primary human keratinocytes that did not undergo selection pressure. Nevertheless, we
measured the percentage of the granular layer length with positive staining for BNIP3L
with or without miR-30a over-expression. Under normal conditions, 88% of the granular
layer is positive for BNIP3L, whereas, in the presence of high levels of miR-30a, only 18.5%
is stained for this mitophagy protein (Figure 2B).
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Figure 2. Effect of miR-30a on BNIP3L expression in the granular layer of reconstructed epider-
mis. (A) Immunofluorescent staining of BNIP3L in reconstructed human epidermis overexpressing
miR-30a or a scrambled sequence by stable lentiviral transduction. Representative photographs
of 3 independent replicates are shown. (B) Quantification of the surface of the epidermis with a
positive signal for BNIP3L in each condition (median ± SD, n = 6; **** p < 0.0001). Exact p-value was
determined using the Student’s t-test.

3.3. BNIP3L Expression Decreases with Chronological Aging in Human Epidermis

Since miR-30a expression is known to increase with chronological aging in the epider-
mis, we used a TMA to screen the expression of its target BNIP3L in human skin biopsies
of different ages. We defined two groups based on the age of the donor and on the struc-
ture of the skin: adult individuals (n = 11, from 19 to 42 years old, mean age at 34.4) vs.
aged individuals (n = 10, from 61 to 78 years old, mean age at 68.3). Indeed, skin aging
is characterized in terms of tissue morphology by epidermal atrophy and flattening of
the dermo-epidermal junction. Illustrative examples of skin biopsies from three adults
(Figure 3A, top panel: 38, 35 and 42 years old) and three aged individuals (Figure 3A,
bottom panel: 61, 71 and 78 years old) show the pattern of BNIP3L staining together with
KRT14, a specific marker of basal undifferentiated keratinocytes. We found that BNIP3L is
highly expressed in the upper layers of epidermis in the adult group. In addition, BNIP3L
staining is often delimitating cornified cells that are devoid of a nucleus (Figure 3A, inserts).
With aging, we observed a strong decline in the BNIP3L signal, along with a substantial
decline in the number of enucleated keratinocytes. We evaluated the correlation between
the percentage of positive cells for BNIP3L staining and age and the correlation of the
normalized signal intensity per epidermal area with age (Figure 3B,C). Using these two cor-
relations, we found equivalent Pearson coefficients with r = −0.6542 (R2 = 0.428, p = 0.0024)
and r = −0.6198 (R2 = 0.3841, p = 0.0036), respectively. These mathematical simulations
strongly suggest that the chronological aging negatively affects the expression of BNIP3L
in human epidermis.
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Figure 3. BNIP3L expression in human skin biopsies from individuals at different ages. (A) Immu-
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and 42 years old; bottom, from left to right: 61, 71 and 78 years old). Inserts are a magnification of 
the selected area showing BNIP3L-positive cells (white arrowheads) (B) Mathematical correlation 
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age of the individual from which the skin biopsy has been sampled (n = 21). Exact p-value was de-
termined using the Pearson correlation test. (C) Mathematical correlation between the total BNIP3L 
fluorescence intensity from the whole epidermis and the chronological age of the individual from 
which the skin biopsy has been sampled (n = 21). Exact p-value was determined using the Pearson 
correlation test. 

3.4. Aging Is Associated with Alterations of Keratinocyte Terminal Differentiation, BNIP3L 
Expression and Mitochondrial Elimination 

To confirm that BNIP3L is differently regulated with aging during epidermis differ-
entiation, we used an in vitro 2D model of differentiation with primary keratinocytes iso-
lated from three age cohorts: young individuals (n = 6, from 3 to 10 years old, mean age at 
5), adult individuals (n = 6, from 26 to 46 years old, mean age at 36.5) and aged individuals 
(n = 5, from 68 to 92 years old, mean age at 79). Considering the young cohort as a refer-
ence, we examined RNA expression levels of several markers along a nine-day differenti-
ation kinetic (Figure 4A). 

Figure 3. BNIP3L expression in human skin biopsies from individuals at different ages. (A) Im-
munofluorescent staining of BNIP3L and KRT14 in human skin sections. Representative photographs
of 6 individuals from two different age groups: adult, or aged people (top, from left to right: 38, 35
and 42 years old; bottom, from left to right: 61, 71 and 78 years old). Inserts are a magnification of
the selected area showing BNIP3L-positive cells (white arrowheads) (B) Mathematical correlation
between the percentage of BNIP3L-positive cells from the whole epidermis and the chronological
age of the individual from which the skin biopsy has been sampled (n = 21). Exact p-value was
determined using the Pearson correlation test. (C) Mathematical correlation between the total BNIP3L
fluorescence intensity from the whole epidermis and the chronological age of the individual from
which the skin biopsy has been sampled (n = 21). Exact p-value was determined using the Pearson
correlation test.

3.4. Aging Is Associated with Alterations of Keratinocyte Terminal Differentiation, BNIP3L
Expression and Mitochondrial Elimination

To confirm that BNIP3L is differently regulated with aging during epidermis differen-
tiation, we used an in vitro 2D model of differentiation with primary keratinocytes isolated
from three age cohorts: young individuals (n = 6, from 3 to 10 years old, mean age at 5),
adult individuals (n = 6, from 26 to 46 years old, mean age at 36.5) and aged individuals
(n = 5, from 68 to 92 years old, mean age at 79). Considering the young cohort as a reference,
we examined RNA expression levels of several markers along a nine-day differentiation
kinetic (Figure 4A).
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Figure 4. Human keratinocyte differentiation, BNIP3L expression and mitochondria retention in vitro
with aging. (A) Relative mRNA expression of differentiation markers and BNIP3L in keratinocytes
during a kinetic of differentiation in 2D culture. Three different age groups were tested (young group:
n = 6, from 3 to 10 years old, mean age at 5; adult group: n = 6, from 26 to 46 years old, mean age
at 36.5; aged group: n = 5, from 68 to 92 years old, mean age at 79) and followed over the time
(0, 2, 4, 6 and 9 days after reaching confluency). qPCR analysis was normalized to TBP and RPL13A
housekeeping genes (mean ± SD; * p < 0.05, ** p < 0.01, *** p < 0.001 and **** p < 0.0001). Exact p-values
were determined using the two-way ANOVA and Tukey post-hoc tests. (B) Mitochondria content per
cell estimated by qPCR at day 0. qPCR analysis was performed by normalizing the relative content of
mitochondrial genes (ND1 and TL1) with the content of nuclear genes (HBB and SERPINA1) using
the 2−∆∆Ct quantification method in the three groups (mean ± SD; young group: n = 6; adult group:
n = 6; aged group: n = 5). (C) Evolution of the content of mitochondria expressed as a percentage of
the quantity at day 0 (median ± SD; * p < 0.05, ** p < 0.01). Exact p-values were determined using the
two-way ANOVA and Tukey post-hoc tests.
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The keratinocytes’ commitment to differentiation, illustrated by the expression of
the early marker KRT10, was not found to be affected between young and adult groups,
whereas keratinocytes from the aged group reduced KRT10 expression by approximately
5-fold. With the progression of differentiation, we noticed that the expression levels of
most markers (IVL, LOR, TGM1, FLG) in the adult group were not very different from
those in the young group. One exception was the expression of LOR, which dropped at
day 9 in the adult group, while it was maintained in the young group. Considering the
keratinocytes in the aged group, we observed both a delay in the intensity of expression
and a strong decrease in the maximal level of expression (IVL, LOR, FLG), except for TGM1,
which is homogeneously expressed within the three age groups. However, the expression
of the terminal differentiation genes, KLK7, AQP9 and CDSN, were significantly decreased
in both the adult group and the aged group, as compared to the young one. Interest-
ingly, we found that BNIP3L was normally overexpressed from day 6 of differentiation, a
time corresponding to the switch from late differentiation to terminal differentiation, as
illustrated by the concurrent increase in KLK7, AQP9 and CDSN. The pattern of BNIP3L
expression during differentiation in keratinocytes summarized the profile of the different
age groups. The maximal expression level was reached from day 6 and maintained at day
9 in keratinocytes from young donors. In cells from adult donors, we observed a delayed
maximal expression level at day 9, but with a similar intensity of expression to the young
group. Finally, keratinocytes from aged donors also expressed BNIP3L at the maximal
at day 9, but shiwed a significant reduction in intensity compared with young and adult
groups. This result is in accordance with the variation in BNIP3L immunostaining during
aging in the human epidermis sections. We summarized the moment and the intensity of
the maximal expression levels (relative to D0) for each gene in each group in Table 1.

Table 1. Moment and intensity of the maximal expression levels of differentiation markers in human
keratinocytes (relative to D0).

Gene KRT10 IVL LOR TGM1 FLG AQP9 CDSN KLK7 BNIP3L

G
ro

up
s

of
ag

e Young D6 D6 D9 D6 D9 D9 D9 D9 D6
244.7 38.7 984 24.9 201.4 127.7 576.8 215.8 34.7

Adult
D9 D6 D6 D6 D9 D6 D6 D9 D9

228.5 39.8 836 31.8 232.8 48.2 167.7 177.7 30.9

Aged D9 D9 D9 D6 D9 D9 D9 D9 D9
52.4 25 189.5 25.2 139.7 25.2 74.1 35.8 8.9

Considering the role of BNIP3L in mitochondrial fragmentation associated with epi-
dermis terminal differentiation [11], we then evaluated the relative amount of mitochondria
in the three age cohorts during the 2D differentiation kinetic. Remarkably, we observed
a strong inter-individual variation in the number of mitochondria per proliferating ker-
atinocytes (D0), with no difference in the overall median between the age groups (Figure 4B).
In the young group, the number of mitochondria progressively increased, reaching a peak
at day 6, and then dropped at day 9 (Figure 4C; relative to D0: D2 = 80%, D4 = 100%,
D6 = 135%, D9 = 90%). We believe that the increase in mitochondria is necessary during
differentiation to keep up with the high metabolic demand before the terminal differentia-
tion. In 2D, there was no complete elimination of the organelles and nucleus because the
final cornification step requires contact with air. In the adult group, we observed an early
increase in the mitochondria content, as soon as day 4, which was maintained at day 6 and
even pursued at day 9 (relative to D0: D2 = 110%, D4 = 135%, D6 = 125%, D9 = 260%). The
evolution of mitochondria in keratinocytes from the aged group followed the same profile
as those of the adult group, with a milder intensity but with a retention of mitochondria at
day 9 as well (relative to D0: D2 = 120%, D4 = 107%, D6 = 100%, D9 = 241%). These results
overlap with the alteration in BNIP3L expression from day 6 in the adult and aged groups
and may reflect a defective mitophagy during terminal differentiation of keratinocyte.
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However, the increased expression of BNIP3L at day 9 in the adult group suggests that
either the induction of BNIP3L was too late for proper mitochondrial elimination, or that
additional mitochondrial dynamic mechanisms are also involved.

3.5. Aged Keratinocytes Display Mitochondrial Metabolic Defects

As mitophagy serves as a quality control process of functional mitochondria, compro-
mised mitophagy may alter the mitochondrial metabolism. Therefore, we measured the
OCR in primary keratinocytes from the three age groups and compared the effect of miR-
30a overexpression on the same parameters in parallel. We found that the basal OCR was
significantly decreased in the adult group (−22.7%) and the aged group (−32.1%), as com-
pared to the young one (Figure 5A). Similarly, the overexpression of miR-30a in young cells
also induced a 29.3% decrease in the basal respiration. Using the ATP-synthase inhibitor
oligomycin, we found that ATP-linked respiration was also significantly decreased, by
23.5% in the adult group, 30.6% in the aged group and 31.9% in the miR-30a overexpressing
cells (Figure 5B). Next, we added FCCP, a protonophore which collapses the proton gradient
across the mitochondrial inner membrane. This drug forces the electron transport chain to
function at its maximal rate. Even if the maximal respiration capacity was altered identi-
cally to the basal respiration rate in the adult or the aged group (Figure 5C), the reserve
capacity, expressed as the percentage of the basal rate, was identical within the three groups
(Figure 5D). The overexpression of miR-30a also mimicked the difference between young
and old groups, with a diminution of 54% of the maximal respiration. Lastly, to completely
shut down the electron transport chain function, we added antimycin A and rotenone, two
inhibitors of complex III and I, respectively. Consequently, the remaining OCR was associ-
ated to non-mitochondrial respiration and allowed for the determination of the proton leak
during mitochondrial respiration. The non-mitochondrial oxygen consumption, related
to the activity of diverse desaturase and detoxification enzymes, also seemed altered with
aging. In the adult group, we observed a 30% decrease, albeit not significant (p = 0.0995),
whereas in the aged group, this non-mitochondrial use of oxygen was decreased by half. In
cells overexpressing miR-30a, we found a 33.7% decrease (Figure 5E). Finally, regarding
other parameters, the proton leak decreased with aging or with miR-30a overexpression,
but invariably accounted for about 20–25% of the basal respiration in all groups (Figure 5F).
This result suggests that the proton permeability of the inner mitochondrial membrane
was not affected by age. Of note, we observed a divergent profile of young keratinocytes
transduced with the scrambled sequence as compared to unmodified young keratinocytes.
Since the lentiviral transgene was under the control of an inducible element, we treated this
with doxycycline to induce the overexpression. Doxycycline is known to alter mitochon-
drial metabolism [18], and this side effect is likely to explain the fact that transduced young
keratinocytes with the scrambled sequence displayed a mitochondrial metabolism profile
that was closer to the adult group than to the young group. However, the overexpression
of miR-30a under the same conditions altered the mitochondrial metabolism to the same
extent as the effect of chronological aging on primary cells. Thus, considering that the
number of mitochondria did not vary with age (Figure 4B), it seems that the mitochondrial
metabolic activity decreases with aging and miR-30a overexpression, which likely results
in a decreased ATP synthesis.



Cells 2022, 11, 836 12 of 16
Cells 2022, 11, 836 12 of 16 
 

 

 
Figure 5. Mitochondrial metabolic activity of keratinocytes from different age groups and after over-
expression of miR-30a. Major aspects of mitochondrial coupling and respiratory control were meas-
ured using the Seahorse Bioanalyzer and determined by the sequential additions of oligomycin, an 
ATP synthase inhibitor, FCCP, a protonophoric uncoupler, and rotenone and antimycin A, two in-
hibitors of the electron transport chain. sbl: miR-scrambled; 30a: miR-30a. Basal respiration (A), 
ATP-linked respiration (B), maximal respiration (C), reserve capacity (D), non-mitochondrial respi-
ration (E) and proton leak (F) were determined by measuring the Oxygen Consumption Rate (OCR) 
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Figure 5. Mitochondrial metabolic activity of keratinocytes from different age groups and after
overexpression of miR-30a. Major aspects of mitochondrial coupling and respiratory control were
measured using the Seahorse Bioanalyzer and determined by the sequential additions of oligomycin,
an ATP synthase inhibitor, FCCP, a protonophoric uncoupler, and rotenone and antimycin A, two
inhibitors of the electron transport chain. sbl: miR-scrambled; 30a: miR-30a. Basal respiration
(A), ATP-linked respiration (B), maximal respiration (C), reserve capacity (D), non-mitochondrial
respiration (E) and proton leak (F) were determined by measuring the Oxygen Consumption Rate
(OCR) in the culture media (median ± SD; young group: n = 6; adult group: n = 6; aged group:
n = 5; sbl group: n = 3; 30a group: n = 3; ** p < 0.01, *** p < 0.001 and **** p < 0.0001). Exact p-values
were determined using the one-way ANOVA and Tukey post-hoc tests for comparison between ages
and paired Student’s t-test for comparison between cells transfected with either scramble miRNA
sequence or miR-30a.

4. Discussion

BNIP3L (BCL2 Interacting Protein 3 Like)/NIX is a mitochondrial outer membrane
protein of the BH3-only member of the BCL2 family, initially identified as a pro-apoptotic
inducer [19,20]. In addition to its role in the regulation of mitochondrial-dependent apop-
tosis, BNIP3L has also been identified as a critical autophagy receptor for the selective
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clearance of mitochondria in mammalian cells. For instance, BNIP3L is essential for mi-
tochondria removal during the terminal differentiation of multiple cell types, including
erythroid cells [21,22], ocular lens fiber cells [23], cardiac progenitor cells [24] and optic
nerve oligodendrocytes [25]. A recent report showed that BNIP3L is also critical to the
terminal differentiation of epidermal keratinocyte [11]. Indeed, the authors used CRIPSR-
Cas9 to knock-out BNIP3L in immortalized human keratinocytes (hTERT cell line) and
generated reconstructed epidermis from these modified cells. They obtained a stratified
epithelium but noticed maturation defects. In details, they described that BNIP3L-deficient
keratinocytes failed to undergo through complete cornification, with retention of mitochon-
dria in the uppermost layers. In the present study, we found that BNIP3L is a direct target
of miR-30a and we have previously reported that miR-30a expression levels substantially
increase with aging in human keratinocytes [6]. Skin aging is associated with epidermal
differentiation defects [26,27], and we previously demonstrated that overexpression of
miR-30a alters the differentiation process of keratinocytes. Indeed, using an organotypic
model of reconstructed human epidermis (RHE), we have demonstrated that miR-30a
overexpression strongly downregulates the differentiation markers such as KRT1, KRT10,
IVL and LOR, and decreases the efficacy of the barrier function [6]. Accordingly, we found
here that BNIP3L expression is strongly reduced with aging in human skin. Using a 2D
model of keratinocyte differentiation, we also observed a retention of mitochondria with
aging, thus imitating the findings of the study with BNIP3L-deficient keratinocytes [11]. In
addition, a previous report also showed that the overexpression of miR-30e-5p, a closely
related micro-RNA to miR-30a-5p, is associated with an increased number of mitochondria
in podocytes, as well as through BNIP3L downregulation [15]. In addition to the reduction
in BNIP3L expression with age and its role in the differentiation process, we also found
that the mitochondrial metabolism is affected during chronological aging.

Mitochondrial metabolism is the main source of cellular energy, generating high
levels of ATP. In addition to ATP’s role providing energy for many cellular processes, it
has been demonstrated that the inhibition of ATP synthase blocks the differentiation of
keratinocytes [28]. In this study, exposing the HaCaT cell line to oligomycin induced a
significant decrease in the intracellular ATP content while extracellular ATP increased in
parallel. While no effect on keratinocytes proliferation was noted, the decreased intracellu-
lar ATP concentration was associated with an inhibitory effect on involucrin expression.
Using a confluence-dependent differentiation model, as we used in the present study, the
authors also showed that the ATP5B subunit of ATP-synthase was induced at days 6 and 8
of differentiation, at both the mRNA and protein levels. Even if the molecular mechanisms
are not yet elucidated, these results strongly suggest that the intracellular ATP produced by
mitochondrial metabolism is closely related to the terminal differentiation of keratinocytes.
Accordingly, we observed a significant reduction in the oxygen consumption associated
with ATP synthesis in keratinocytes from aged donors, together with alterations in their
terminal differentiation.

Interestingly, a recent study has pointed out that mitophagy plays a key role in the
regulation of bioenergetics in neurons. Using a mouse model of Alzheimer’s disease (AD),
they observed a deficiency in energetic enhancement upon oxidative phosphorylation
stimulation in brains [29]. In their model, the high energetic demand normally induces
mitochondrial turnover by mitophagy, which is impaired in AD. Since the onset of AD is
strongly associated with aging, we can hypothesize that the observed deficit in oxidative
phosphorylation in keratinocytes is also linked to defective mitophagy with aging. In the
skin, another study has found that ATP content was higher in primary dermal fibroblasts
from centenarians, as compared to fibroblasts isolated from adult (about 27 years old)
and aged (about 75 years old) human subjects, even though centenarians also presented
oxidative phosphorylation defects [30]. The preservation of an adequate ATP production
was associated with an increased mitochondrial mass, together with re-arrangement of the
mitochondrial network. Mitochondrial dynamics, a balance between mitochondrial fission
and fusion, is critical to sustain functional mitochondria. Fission allows for the creation
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of new mitochondria, but it also contributes to quality control by removing the damaged
components. Conversely, fusion relieves stress by mixing the damaged and undamaged
mitochondria contents. In dermal fibroblasts from centenarians, the authors found more
hyperfused and elongated mitochondria compared to younger subjects. They concluded
that mitochondrial fission was reduced in individuals undergoing what we might call
“successful aging”. Since our study did not include cells from centenarians, it would be
interesting to verify whether the remodelling of the mitochondrial network observed in
dermal fibroblasts also occurs in keratinocytes from long-living individuals.

Finally, even if changes in mitochondrial dynamics have been shown to contribute
to other age-related disorders, such as cardiac disorders, neurodegenerative diseases and
sarcopenia (reviewed in Reference [31]), mitophagy and the balance between fission and
fusion are not the only processes that can be used to achieve mitochondrial quality control.
In response to oxidative stress, cells initiate an external release of mitochondria [32]. This
mechanism occurs as an early response and precedes mitophagy in HeLa cells. To ensure
cellular homeostasis, damaged mitochondria or their constituents will be transferred out
of the cells in free form or encapsulated in extracellular vesicles (EVs). This second pro-
cess functions in complementarity with mitophagy: it is repressed when mitophagy is
efficient, whereas it is activated to compensate for a lack of mitophagy [33]. In the present
study, we demonstrated that aged cells, which highly express miR-30a, exhibit a defective
BNIP3L-dependent mitophagy in the last steps of keratinocyte differentiation. In an aging
context, the external mitochondrial release by keratinocytes does not seem to be enough to
compensate defective mitophagy and restore mitochondrial homeostasis. This statement is
in good agreement with a previous study, which reported that the amount of mitochon-
drial DNA released in EVs decreases with age [34]. Thus, the mitochondrial dysfunction
observed in skin aging may be due to breakdown in the two mitochondrial quality control
systems. Moreover, EVs, as key vectors of intercellular communication [35], allows for the
transfer of intact mitochondria or functional mitochondrial proteins and DNA to other cells.
Several studies have analysed the effect of EVs containing mitochondrial components on
other cells [36], and it has notably been shown that EVs from older individuals affect the
mitochondrial function of HeLa cells with a significant decrease in basal respiration [34].
Interestingly, we found in this study that keratinocytes from adults have an intermediate
profile. They had higher expression levels of BNIP3L than keratinocytes from aged individ-
uals, but they already displayed the equivalent altered mitochondrial metabolic activity,
including lower basal respiration, as compared to cells from young individuals. Thus, one
can hypothesize that the extracellular release of mitochondria plays an important role in
the propagation of aging signals in skin tissue, leading from an adult phenotype to an aged
one. Additional studies are needed to further validate this assumption.
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