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Abstract: Recent advances in mobile technologies have facilitated the development of a new class
of smart city and fifth-generation (5G) network applications. These applications have diverse
requirements, such as low latencies, high data rates, significant amounts of computing and storage
resources, and access to sensors and actuators. A heterogeneous private edge cloud system was
proposed to address the requirements of these applications. The proposed heterogeneous private
edge cloud system is characterized by a complex and dynamic multilayer network and computing
infrastructure. Efficient management and utilization of this infrastructure may increase data rates and
reduce data latency, data privacy risks, and traffic to the core Internet network. A novel intelligent
middleware platform is proposed in the current study to manage and utilize heterogeneous private
edge cloud infrastructure efficiently. The proposed platform aims to provide computing, data
collection, and data storage services to support emerging resource-intensive and non-resource-
intensive smart city and 5G network applications. It aims to leverage regression analysis and
reinforcement learning methods to solve the problem of efficiently allocating heterogeneous resources
to application tasks. This platform adopts parallel transmission techniques, dynamic interface
allocation techniques, and machine learning-based algorithms in a dynamic multilayer network
infrastructure to improve network and application performance. Moreover, it uses container and
device virtualization technologies to address problems related to heterogeneous hardware and
execution environments.

Keywords: fog computing; edge computing; resource management; intelligent network layer; local
cluster heterogeneous network; internet of things applications; mobile ad hoc network

1. Introduction

Recent advances in mobile technologies have enabled a new class of smart city and
fifth-generation (5G) network applications, such as smart homes and real-time situation
analyses. These applications have diverse requirements, such as low latencies, high data
rates, significant amounts of computing and storage resources, and access to the Internet of
Things (IoT) devices. To address the requirements of these applications, several edge com-
puting systems, such as cloudlet computing, mobile edge computing, and fog computing,
were proposed [1-4]. The deployment of edge computing systems requires the addition
of new infrastructure or the updating of existing infrastructure. Edge computing systems
also do not utilize the capabilities of end devices, such as smartphones, mobile robots, and
smart vehicles, which are equipped with multicore central and graphical processing units,
several sensors, or multiple wireless communication technologies. A heterogeneous private
edge cloud system is proposed to overcome the drawbacks of edge computing systems.

A heterogeneous private edge cloud system [1] is a small-scale cloud data center in
a local physical area, such as a house or an office. It consists of various stationary and
mobile devices, such as personal computers, mobile robots, smartphones, and sensors,
which are interconnected through single or multiple infrastructure-based or infrastructure-
less wireless local area networks (LANSs). A heterogeneous private edge cloud system is
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characterized by a complex and dynamic multilayer network and computing infrastructure.
The efficient management and utilization of this infrastructure may increase data rates and
reduce data latency, data privacy risks, and traffic to the core Internet network.

A middleware platform is required to manage and utilize the heterogeneous private
edge cloud system infrastructure efficiently. Such a platform is responsible for the dis-
covery, monitoring, allocation, and management of resources. Compared with those of
conventional systems, such as mobile ad hoc clouds [2] or edge clouds [4], the design of a
middleware platform for a heterogeneous private edge cloud system is more challenging
due to (1) the presence of heterogeneous devices, such as sensors, smartphones, mobile
robots, and personal computers, and (2) a multilayer network environment. Existing mid-
dleware platforms are divided into two categories: middleware platforms for IoT systems
and middleware platforms for distributed computing systems. Middleware platforms
for IoT systems provide access to and control physical devices. They also support data
collection, data analysis, or application composition services. These platforms, however,
do not provide computing services, do not utilize network-level information, such as link
quality and link lifetime, and are not designed for complex multilayer network environ-
ments. Most middleware platforms for distributed computing systems provide computing
or storage services but do not support data collection and actuation services; they are
also not designed for heterogeneous multilayer network environments. Therefore, they
do not efficiently utilize heterogeneous routes, simultaneous transmission on multiple
communication technologies, and several network-level parameters, such as link quality
and lifetimes.

The current study presents the design of an intelligent middleware platform that
aims to utilize the characteristics efficiently and address the challenges of heterogeneous
computing and a multilayer network environment to (1) manage heterogeneous computing
and network resources efficiently, and (2) provide task processing, data collection, and
data storage services to support emerging smart city and 5G network applications. The
new platform consists of two layers: a software-defined network (SDN) and a machine
learning-based multi-network management layer and a machine learning-based resource
management layer. The multi-network management layer aims to (i) use the capabilities of
machine learning and SDN to improve network and application performance, (ii) provide
serial and parallel data transmission services across multiple heterogeneous networks,
(iii) support the dynamic allocation of network interfaces, and (iv) adopt new machine
learning-based link quality and Markov chain-based link lifetime estimation techniques to
reduce communication and energy consumption costs. The resource management layer
aims to (i) leverage regression analysis and reinforcement learning methods to allocate
heterogeneous computing and network resources efficiently to application tasks and (ii) use
parallel transmission techniques, dynamic interface allocation techniques, and network-
level parameters to address diverse application requirements.

This paper is organized as follows. Section 2 describes motivating smart city and 5G
network applications. Section 3 describes the role of heterogeneous private edge cloud
in a cloud and edge computing ecosystem. The key characteristics and challenges of a
heterogeneous private edge cloud system are described in Section 4. Section 5 presents
a detailed overview and comparison of existing middleware platforms for IoT systems
and distributed computing systems. Section 6 presents the design of a new intelligent
middleware platform for a heterogeneous private edge cloud system. Section 7 concludes
the study.

2. Motivating Applications and Use Cases

Smart city and 5G network applications can be divided into two major categories: non-
resource-intensive and resource-intensive applications. Both categories are further divided
into two subcategories: non-real-time and real-time. Latency and data rate requirements of
real-time and non-real-time smart city and 5G use cases are given in Table 1. Examples of
motivating applications and use cases are briefly described as follows.
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Table 1. Latency and data rate requirements of smart city and 5G use cases [5-8].

Use Case Latency Data Rate
Factory Automation 0.25-10 ms 1 Mbps
Process Automation 50-100 ms 0.1-100 Mbps
Intelligent Transport Systems 10-100 ms 10-700 Mbps
Robotics and Telepresence 1ms 100 Mbps
Virtual and Augmented Reality 1ms 1 Gbps
Health Care 1-10 ms 100 Mbps
Serious Gaming 1 ms 1 Gbps
Smart Grid 1-20 ms 10-1500 Kbps
Education and Culture 5-10 ms 1 Gbps

2.1. Smart Home

The smart home application provides home and health management services. It uses
surveillance cameras, audio sensors, smart grid sensors, and bio-sensors for collecting
environment data and the health data of individuals at home. Then, the application
uses computationally intensive machine learning models and audio-video processing
algorithms for activity and situation recognition, early threat detection, emotion detection,
and abnormal health condition detection. On the basis of the analysis, the application
takes necessary actions, such as sending situation information to an emergency or security
service provider or asking a mobile robot for help.

2.2. Real-Time Situation Analysis

Real-time situation analysis is also a computationally intensive real-time application.
It requires access to video surveillance cameras in a target area to collect video data,
vast amounts of computing and storage resources to execute computationally intensive
video analysis tasks for situation analysis, and actuators to perform necessary actions.
Video sensors are assumed to be either deployed in the target area or mobile robots or
micro-drones equipped with video sensors are rented for data collection.

2.3. Training of Machine Learning Model Use Case

The training and inference of machine learning models for computer vision and
language modeling are extremely processing-intensive tasks that require an enormous
amount of computing power.

2.4. Big Data Analysis Use Case

Devices used in various smart city sectors [1], such as transportation, healthcare, and
agriculture, generate a huge amount of data. The appropriate understating of these data
presents numerous opportunities to organizations and governments. However, the storage
and real-time analysis of a vast amount of data present a huge challenge.

Applications and use cases, such as smart homes and real-time situation analyses,
require low data latencies, high data rates, vast amounts of computing and storage re-
sources, and access to sensors and actuators. The conventional cloud computing systems
are unable to fulfill the requirements of these applications [1,4,9]. The middleware plat-
form for a heterogeneous private edge cloud system aims to fulfill the requirements of
these applications.

3. The Role of Heterogeneous Private Edge Cloud System

The role of heterogeneous private edge cloud [1] in a cloud and edge computing
ecosystem is depicted in Figure 1. Several stationary and mobile devices such as personal
computers, mobile robots, smartphones, and sensors available within a local area are
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combined to create a small-scale cloud data center. The heterogeneous private edge cloud
may provide several services such as computing, data storage, data processing, and data
caching. The private edge cloud can be connected to classical edge computing systems
such as a mobile edge computing system or fog computing system, or it may be connected
to a central virtualized cloud data center on the Internet via long-term evolution (LTE) or
5G networks.

Virtualized Cloud Data Center

P-Gateway HSS PCRF
) [ - E— Enhanced Packet Core

Internet Core S-Gateway MME

@ AN v B j e U

Cloudlet Mobile Edge Computing Fog Node Smart Switch  E-UTRAN Smart Router Wi-Fi
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Emergency Management
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Remote Chject Manipulation

Private Edge Cloud

Smart Home Smart Factory

Figure 1. The role of heterogeneous private edge clouds in a cloud and edge computing ecosystem
with examples of applications that may be considered at smart homes, smart factories, and smart
buildings [1].

4. Characteristics and Challenges of a Heterogeneous Private Edge Cloud System

A heterogeneous private edge cloud system integrates several computing and net-
working technologies, such as cloud computing, mobile computing, edge computing,
mobile ad hoc networking, and infrastructure-based local area networking [1]. Such inte-
gration provides numerous beneficial characteristics but also poses challenges. The key
characteristics and challenges are described as follows.

4.1. Heterogeneous Computing Resources

A heterogeneous private edge cloud includes numerous heterogeneous devices, such
as personal computers, mobile robots, smart cars, smartphones, and sensors. These devices
differ in terms of system architecture, operating system, execution environment, and speed.
A device may offer a single service or a multitude of services, such as data collection, task
execution, data storage, and data caching. Such an environment introduces numerous
challenges, as follows:

Uniform representation and control of heterogeneous devices;
Efficient discovery, registration, and monitoring of a wide range of devices and services;
Allocation of heterogeneous computing, sensing, and actuating resources to emerging
application tasks with a diverse quality of service requirements;

e  Execution or processing of tasks submitted by another homogenous or heterogeneous
device; and
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e Communication and collaboration of heterogeneous services regardless of application
platforms, programming languages, operating systems, or system architecture.

4.2. Heterogeneous and Multilayer Communication and Network Infrastructure

A heterogeneous private edge cloud consists of stationary and mobile devices. Devices
equipped with multiple wireless communication technologies are common, and they will
become more persistent with the deployment of 5G networks. Wireless communication
technologies have diverse features, and they also differ in terms of bandwidth, latency,
energy consumption, communication range, reliability, and network topology. Devices
may communicate via infrastructure-based wireless LAN technologies, infrastructure-
less wireless LAN technologies, or both. These characteristics enable the creation of a
communication and network infrastructure with multiple and overlapping communication
topologies, diverse source-to-destination links, and dynamic topologies and links due to
the existence of mobile nodes.

Given the aforementioned characteristics, heterogeneous and multilayer communica-
tion and network infrastructure also introduce several challenges, as follows:

e  Development of communication and energy consumption cost estimation models and
link quality and link lifetime estimation models for heterogeneous wireless communi-
cation technologies;

e  Design of efficient discovery and monitoring protocol or set of protocols for a multi-
layer network infrastructure that is characterized by multiple and overlapping com-
munication topologies, diverse source-to-destination links, and dynamic topologies
and links;

e  Development of routing and network management protocols capable of selecting
routes and supporting data transmission services based on a diverse quality of service
requirements over a multilayer network infrastructure; and

e  Design of a network layer that provides a unified and easy-to-use interface to higher layers.

5. State of the Art

Middleware platforms are divided into two categories: middleware platforms for
IoT systems and middleware platforms for distributed computing systems. This section
is divided into subsections. Section 5.1 describes middleware platforms for IoT systems,
whereas Section 5.2 describes middleware platforms for distributed computing systems.

5.1. Middleware Platforms for IoT Systems

Middleware platforms for lIoT systems provide access to and control physical devices.
They also support data collection, data analysis, or application composition services. These
platforms, however, do not provide computing services, do not utilize network-level
information, such as link quality and link lifetime, and are not designed for complex
multilayer network environments.

For example, Hydra [10] platform enables applications to access heterogeneous phys-
ical devices, supports multiple communication technologies, and uses web service tech-
nology to address heterogeneity-related problems. Global Sensor Networks [11] platform
virtualize sensors to address device heterogeneity. Google Fit [12] provides a cloud storage
service to store data from heterogeneous IoT devices and applications, and native support
for Bluetooth low energy. Xively [13] is a cloud-based platform that provides data collection
and storage services whereas Calvin [14] and Node-RED [15] support the composition
and management of IoT applications. MQTT is a lightweight message transport protocol
based on a publish-subscribe model [16]. It enables heterogeneous devices and applica-
tions to communicate with another and provides a reliable and secure message delivery
service. An IOcloud proposed in [17] uses IoT nodes as active elements of infrastructure.
IoT node is defined as any computing unit such as smartphone and Raspberry Pi that
host IoT resources such as LED or temperature sensor. A high-level design of a message-
service-oriented middleware for the fog of things paradigm is given in [18]. The proposed
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middleware enables devices to exchange IoT data through messages and supports the
migration of services when a gateway or a fog node fails. The middleware is distributed
among several fog of things entities such as fog servers and fog gateways, and it is based
on a Microservices architecture. VIRTUS middleware based on the publish-subscribe
communication model is proposed in [19]. It is designed for healthcare applications and
aims to provide real-time and secure communication among heterogeneous devices. A
data-centric middleware based on a publish-subscribe communication model is proposed
in [20]. The middleware is designed for a dynamic mobile environment. It addresses
frequent connection and disconnection-related issues and also supports various quality of
service (QoS) levels. A location and activity-aware mobile distributed sensing platform
is proposed in [21]. The platform enables users to collect sensor data on-demand based
on user requirements and location. It uses sensing as a service model and a concept of
a virtual sensor. Any device which produces data can be a virtual sensor. The platform
consists of three components: Context-aware Mobile Sensor Data Engine, Activity-aware
Module, and Location-aware Module. Context-aware Mobile Sensor Data Engine enables
sensor data collection and processing without any coding efforts. It supports push and
pull data streaming mechanisms as well as decentralized and centralized communication.
The activity-aware module can recognize several activities such as biking, walking, and
running. The location-aware module is able to recognize when a user enters or leaves a
certain area. A systematic survey of several IoT platforms is presented in [22]. Most of
these platforms support heterogeneous sensing and actuation devices and several standard
communication paradigms and protocols. To address interoperability, either a gateway
is used or devices are required to support standard or commonly used protocols such as
HTTP or MQTT.

5.2. Middleware Platforms for Distributed Computing Systems

Most middleware platforms for distributed computing systems, such as edge clouds [5]
and mobile ad hoc clouds [4,6], provide computing or storage services but do not sup-
port data collection and actuation services; they are also not designed for heterogeneous
multilayer network environments. Therefore, they do not efficiently utilize heterogeneous
routes, simultaneous transmission on multiple communication technologies, and several
network-level parameters, such as link quality and lifetimes. Most of these platforms do
not use end devices as service provider nodes.

For example, Hyrax [23] platform supports cloud computing on android mobile de-
vices. Fram [24] is a content distribution middleware system for android devices that is
designed for an ad hoc environment and also addresses node mobility. Femto Clouds [25]
is another platform that enables nearby devices to execute parallel tasks. Devices in Femto
Clouds communicate via Wi-Fi technology. Multipeer Connectivity [26] is a framework that
enables nearby devices to communicate via messages, stream data, or files. It uses Wi-Fi,
Bluetooth, and Ethernet for underlying communication. A framework proposed in [27]
enables mobile devices to communicate with each other via short-range wireless communi-
cation technologies such as Wi-Fi and Bluetooth. It introduces the concept of micronet and
macronet. A micronet consists of devices connected using a single communication technol-
ogy whereas macronet is defined as a set of micronets connected through member devices.
It uses a store-carry-and-forward communication paradigm for intra-macronet and inter-
macronet communication. An OpenStack-based middleware platform is proposed in [28]
to manage resources at edge, fog, and cloud levels. In the proposed system, edge devices
establish a local area cluster at the edge level to reduce data transfers over public networks.
This also reduces data transfer times and thus improves application performance. If local
clusters are unable to fulfill application or system requirements, fog level and cloud level
resources are used. A middleware to support the execution of crowdsourcing applications
on edge cloud is described in [29]. It consists of three layers: link layer, network layer, and
service layer. The link layer provides access to several communication technologies such
as Wi-Fi and BLE. It supports device discovery and connection operations. The network
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layer is responsible for routing and network management, and the service layer offers
computing, storage, and messaging services. A resource management middleware for
the fog-edge environment to fulfill latency requirements of internet of things applications
is proposed in [30]. The proposed middleware decides whether to execute a task locally
or remotely on a fog server based on network conditions. The middleware consists of
several components. Latency estimator component estimates latency which is made up
of three parts: last-hop latency to a wireless access point, wide area network latency to
reach fog server, and task execution time on the fog server. To estimate last-hop latency, a
database is used that stores network latencies for different locations and times. The latency
is then estimated by querying this database. For a selection of a fog server to execute an
application task, several machine learning models are used.

A resource allocation scheme is proposed in [31] to improve energy efficiency. The
proposed scheme focuses on allocation of interdependent tasks and uses transmission
power control mechanism. A resource management system is proposed in [32] to improve
the response time of latency-sensitive applications. The proposed system makes decisions
based on the network, compute, and reliability characteristics of edge nodes. A live
video streaming service was used to demonstrate the performance of the system. In [33] a
resource allocator named Justice is proposed for cluster managers. The Justice uses deadline
information of a job and historical job execution times to improve deadline satisfaction and
fairness. A design of a distributed resource allocator for a multi-cloudlet environment is
discussed in [34]. The allocator can offload jobs to remote cloud or cloudlets. It is adaptive
to the dynamic environment, preserves fairness, and aims to satisfy the requirements
of deadlines-oriented applications. It uses job execution times history, local and remote
cloudlets utilization information to decide whether the application should run on the
current cloudlet, a neighbor cloudlet, or a remote cloud. An online statistical model is used
to estimate the resources required to complete a job. Authors of [35-37] have investigated
the problem of offloading tasks from cloudlets to a remote cloud. The scheme in [37] aims
to optimize offloading decisions whereas the scheme in [38] focuses on user fairness. The
scheme in [35] aims to decrease execution latency and energy consumption in a multi-
cloudlet environment. A feature-wise comparison of the most relevant resource allocation
and offloading schemes is shown in Table 2.

Middlewares for the cloud of things are surveyed in [39]. Authors have (a) discussed
numerous features and characteristics of middlewares such as interoperability, context
management, and reusability, (b) compared middlewares based on architectures such
as distributed, component-based, and service-based, and (c) have discussed numerous
challenges and research directions. The survey focuses on high-level features and character-
istics. A detailed discussion of resource management algorithms and network management
protocols has not been included. A cluster consisting of more than three hundred Raspberry
PIs is developed in [40]. Authors in [41] implemented container and cluster technology on
single-board computers such as Raspberry PlIs. A container-based cluster architecture is
proposed. The key elements of the architecture are devices, containers, links, and services.
A cluster consists of several devices. Each device hosts containers and each container
include services. Containers communicate with one another via links.

Numerous edge and fog computing architectures and offloading strategies in fog
environments are investigated in [42]. Fog computing systems for augmented reality
applications are studied in [43]. Authors have investigated several multilayer edge and
fog computing architectures, energy optimization, and latency optimization techniques,
and offloading approaches. Several approaches described in the study encode regions of
interest or transmit compressed data to reduce communication latency. An edge computing-
based IoT architecture that uses Microservices and container technology is proposed in [44].
The edge computing layer of the architecture is coupled with Al hardware to meet the
requirements of artificial intelligence IoT applications. The architecture consists of an
application layer, network layer, perception layer, and newly proposed Al accelerated
Microservices layer, which preprocesses the data and provides real-time response to the
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perception layer. In [45-47] an approach was proposed to offload augmented reality
application tasks to edge computing systems such as cloudlets. A scheme in [45] also
supports offloading of application tasks to an ad hoc cloudlet system which consists of
mobile phones and laptops connected via a local area network. A scheme in [47] uses a
three-layer architecture to reduce processing delays and energy consumption of mobile
augmented reality applications. The architecture consists of the user layer, edge layer, and
cloud layer. The edge layer includes three modules: communication, operation platform,
and virtualized controller. The communication module provides data transmission services
and the operation platform process the offloaded tasks. Virtualized controllers manage
network activities, allocate resources to application tasks, and provide storage services.
In [48,49] authors have used fog computing systems to train machine learning algorithms.
A vehicle-to-edge architecture for augmented reality applications is proposed in [50]. The
architecture has three layers: device layer, access network layer, and core network layer.
The device layer consists of devices that transfer data. The edge servers are located at access
network and core network layers. Edge servers at the access network provide compute and
cache services to latency-sensitive applications whereas edge servers at the core network
are for delay-tolerant applications. A design of a simple middleware platform for a fog
and cloud environment is described in [51]. The proposed middleware addresses the
services selection problem by applying fuzzy similarity and TOPSIS (Technique for Order
of Preference by Similarity to Ideal Solution) methods.

A software-defined network (SDN) based architecture for tactical mobile ad hoc
network is proposed in [52]. The architecture includes local SDN controllers and global
SDN controllers. Local SDN controllers may have a full or partial view of the network and
are responsible to collect and send network state information to the global SDN Controller,
which constructs a global view of the network and send control information to forwarding
nodes through a local SDN controller. An SDN-enabled architecture for a mobile ad
hoc network is proposed in [53]. A centralized SDN controller is deployed on a mobile
node in an ad hoc network. Authors have also proposed two zero-control-packet routing
protocols for lightweight devices used in the industrial internet of things (IIOT) and three
general-purpose centralized routing protocols.

Recently, several machine learning-based schemes were proposed to address routing
and resource allocation problems. The scheme developed in [54] uses a machine learning
technique to predict link quality, while the schemes presented in [55,56] adopt a deep
learning model that uses traffic patterns in a router to predict the next node in the routing
path. The scheme proposed in [57] uses a nonlinear regression technique to estimate link
quality, while the scheme established in [58] uses machine learning to improve multi-
hop wireless routing. To manage resources in a distributed computing environment, a
reinforcement learning-based approach was developed in [59]. In [60], reinforcement
learning was applied to reduce application execution times. A link lifetime prediction
scheme was proposed in [61]. Existing machine learning-based algorithms and schemes
are also not designed for a multilayer LAN infrastructure, and therefore, they do not utilize
a vast amount of data generated at the network.

A comparison of the proposed middleware platform with existing platforms is pro-
vided in Table 3. The heterogeneous private edge cloud system is based on our previous
project “mobile ad hoc cloud” [4], in which multiple mobile devices interconnected through
a mobile ad hoc network are combined to create a virtual super-computing node. The key
differences between a mobile ad hoc cloud and a heterogeneous private edge cloud system
were discussed in [1].
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Table 2. A feature-wise comparison of relevant resource allocation and offloading schemes.

Mobile Edge Mobile Heterogeneous Real- Parallel Network Link Lifetime Energy

Cloud Cloud Ad Hoc Cloud Network Time Transmission Aware Aware Aware
[2] X X V4 X v X v v v
[33] X v X X v X X X X
[34] v X X X v X X X X
[62] X X v v v X X X X
[63] X X v v X X X X v
[64] v X X X X X v X v
[65] X v X X X X v X X
[66] v X X X X X v X v
[67] V4 X X v X X v X v
[68] X V4 X X Ve X Ve X v
[69] X X V4 X X X X X v
[70] X X v X X X v X v
711 X X v/ X X X X X v
[721 X X v X X X v X v
[73] X X Ve X X X V4 X X
[74] X X v v X X v X X
[75] X X v v/ X X v X X
[76] X X v/ X X X v v v

Table 3. Summary of existing middleware platforms.
Existing Middleware Platforms Proposed Middleware Platform for a
for Mobile Computing Systems ~ Heterogeneous Private Edge Cloud System

Multi-network aware v v
Efficient utilization of multi-network environment X

Complex multi-network aware
(a complex multi-network infrastructure that integrates ad hoc and X
infrastructure-based network technologies)

Sensing or actuation services

NS

Computing and storage services

Computing, storage, sensing, and actuation services X

Utilization of heterogeneous high-end devices accessible
via wireless ad hoc networks

Mobility management

Failure management

Link quality and lifetime aware

NSNS

Energy-aware

X
NSISISINININ NN S

Link quality, link lifetime, and energy-aware X

6. Design of an Intelligent Middleware Platform

This section presents the design of a new intelligent middleware platform for a
heterogeneous private edge cloud system. The proposed middleware platform aims to
fulfill the following requirements: (a) efficient discovery, registration, and monitoring
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of a wide range of services and devices interconnected through the multi-layer network
infrastructure, (b) efficient and robust allocation of heterogeneous computing, sensing,
and actuating resources to emerging application tasks with a diverse quality of service
requirements, (c) communication and collaboration of heterogeneous devices and services
regardless of application platforms, programming languages, operating systems, or system
architecture, (d) efficient and reliable routing and network management protocols capable
of selecting routes and supporting data transmission services based on a diverse quality of
service requirements over the multi-layer network infrastructure, and (e) unified and easy
to use interface to higher layers.
The proposed middleware platform comprises four layers. Each layer includes several
components. The design of an intelligent middleware platform is presented in Figure 2.

Application Layer

Smart Aging Big Data Analysis Real-time Situation Analysis

Machine Learning-based Resource Management Layer _

Machinellearning;based Machine Learning-based Multi-network
Failure Management Service Task Queue Aware Resource Allocation Service
Discovery and Task Dispatch
Monitoring Service Service System Data Store  Virtual Device Registry

SDN and Machine Learning based Multi-network Management Layer _

Route Selection Service Link Quality
Estimation Service

Traffic Estimation Service

Link Lifetime
Energy Estimation Service Estimation Service

Wi-Fi Interface ZigBee Interface DSRC Interface

Virtual Device Layer _

Virtual Camera Virtual Tablet Virtual Vehicle Virtual Computer
Virtual Actuator Virtual Robot Virtual Sensor Virtual Sensor Network

Physical Device Layer _

0[] &8 o 0000 ¥
T T S T

Figure 2. Design of an intelligent middleware platform.
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6.1. Physical Device Layer

This layer includes devices, such as sensors, actuators, personal computers, and
smartphones. Sensors provide data collection services, and actuators provide device
movement and control services. High-end devices, such as personal computers and
smartphones, provide task processing and storage services. A single device can provide
multiple services. For example, a smartphone may provide task processing and data
storage services, and a mobile robot equipped with sensors may provide data collection,
data storage, task processing, and actuation services.

Devices that provide task processing services are assumed to host a container engine.
Container technology, such as Docker, enables virtualization at the operating system level
and is used to address problems related to a heterogeneous operating system and execution
environments. Containers are more lightweight than conventional virtual machines; thus,
they are also supported on constrained devices.

6.2. Virtual Device Layer

This layer consists of virtual devices. A virtual device is a semantically and func-
tionally enriched representation of a physical device. It uses web technology to provide
a uniform interface to other devices and services. A block diagram of a virtual device is
presented in Figure 3. A virtual device consists of front-end and back-end modules. The
front-end module enables applications or services to access resources or services provided
by a physical device via a standard web interface. The back-end module communicates
with physical devices via device-specific protocols and mechanisms.

Virtual Device
HTTP-REST Request

»

Physical
Device

Service | HTTP-REST Response

B

Front-end Back-end

Figure 3. Block diagram of a virtual device.

A single virtual device may also represent multiple physical devices. For example, a
virtual device may represent a sensor network that monitors a specific area and a smart-
phone that includes sensors. Virtual devices are divided into two categories: simple and
container-based virtual devices.

Simple virtual devices, such as virtual sensors or actuators, provide data collection or
actuation services. A microservice can be used to implement a simple virtual device. A
microservice or simple virtual device either runs on the physical device that it represents or
on another physical device, such as an RPi or WiFi router. Figure 4 shows a Physical Sensor
X is represented by a Virtual Sensor X hosted on a Raspberry PI computer. A microservice
Xis used to implement Virtual Sensor X.

Virtual Sensor X

HTTP-REST Request Physical
Service | HTTP-REST Response ensor

Raspberry PI

Figure 4. Implementation of a virtual device.
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A container-based virtual device represents a high-end physical device that provides
task processing, data caching, or data storage services. A container-based virtual de-
vice hosts a container engine that executes containerized applications or microservices.
Container technology [4] at the virtual device layer is used to address interoperability
requirements. The architecture of a container-based physical device that also hosts con-
tainerized microservices is illustrated in Figure 5.

Data storage microservice
Data caching microservice

Application

Docker Container Engine

Operating System

Figure 5. Container-based physical device.

6.3. SDN and Machine Learning-Based Multi-Network Management Layer

A multi-network infrastructure generates a vast amount of network data. The man-
agement of a multi-network infrastructure and the utilization of network data to maximize
system performance are challenging tasks [55]. Existing network-level protocols are not
designed for a heterogeneous multi-network infrastructure that integrates ad hoc and
infrastructure-based network technologies. Therefore, they do not efficiently utilize het-
erogeneous routes, simultaneous transmission on multiple communication technologies,
and several network-level parameters, such as link quality, link lifetime, and transmission
energy consumption. Recently, several machine learning-based protocols were proposed
to address network management and routing problems. However, these protocols are
designed for either infrastructure-based or ad hoc networks. Thus, they use conventional
attributes, such as throughput, and are unable to utilize a vast amount of data generated
by a complex heterogeneous multi-network infrastructure.

A new SDN and machine learning-based multi-network management layer aim to
use the capabilities of machine learning and SDN to enable adaptive, efficient, and reliable
communication among devices interconnected via multiple heterogeneous mobile ad hoc
and infrastructure-based LANs. This layer comprises eight services.

Data Transfer Service: This service aims to enable efficient and reliable transmission of
data across multiple heterogeneous networks. It provides a simple and unified interface to
network layer services and can interface with multiple communication technologies, such
as Wi-Fi and Bluetooth Low Energy (BLE), via technology-specific protocols. The functions
of this service include the following: (1) packing and unpacking of data, (2) transmission
of data on a route selected by a routing service or simultaneous transmission of data on
multiple routes via multiple communication technologies, and (3) communication with
multiple technologies to transmit and receive data.

Multi-Network Discovery and Monitoring Service: This service aims to discover and
monitor information about multi-network infrastructure. The collected information is
stored in a semantically enriched data store. Information, such as throughput, delay,
energy consumption, and packet loss rate, stored in the semantically enriched data store
can be used to train machine learning models [56,57] that predict device and task failures,
identify reliable nodes, and optimize network and application performance.
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Mobility Management Service: This service is responsible for maintaining mobility
information and using Markov chain-based models to predict the next probable location
and time that a device spends at the location. This information can be used to predict
link failures and a device reliability index. The design and implementation of the Markov
chain-based location prediction mechanism were discussed in [2].

Multi-Network Routing Table: A routing table is responsible for storing available routes
and characteristics, such as lifetime, energy consumption rate, and available throughput of each
route. Raw and historical data are stored in the semantically enriched data store. The routing
table proposed in [61] can be extended to support a multi-network environment.

Multi-Network Aware Machine Learning-Based Virtualized Routing Service: This
service is responsible for selecting a route or set of routes based on an application’s quality
of service (QoS) requirements. It includes the following services.

New traffic estimation service: The prediction of traffic volume is important in con-
gestion control, resource allocation, and routing [60]. However, measuring traffic volume
by using conventional methods is expensive and communication-intensive. This service is
responsible for using a new machine learning model to measure network traffic volume.

Link quality estimation service: An accurate estimation of link quality is essential for
reliable communication. A link quality estimation service is responsible for using an online
machine learning algorithm, such as that presented in [58], to predict link quality on the
basis of network-level parameters, such as throughput, packet loss rate, and traffic volume.

Link lifetime estimation service: Link lifetime is crucial for communication perfor-
mance and energy efficiency. Link lifetime estimation service is responsible for estimating
link lifetime on the basis of mobility history and network-level parameters, such as signal
strength. The mobility history-based link lifetime estimation model proposed in [2] can
be adopted. This model only considers the history of user’s visited locations. To improve
its performance, the model can be extended to consider the location and time that a node
spends at the location.

Link energy estimation service: This service aims to use a new machine learning-based
model similar to that proposed in [58] to estimate link energy consumption. Compared
with existing models, the new model should consider mobility history, link quality, number
of dropped and lost packets, signal strength, and quantity of data transmission.

Route selection service: A centralized SDN-based route selection service is respon-
sible for the selection of single or multiple routes for data transmission on the basis
of the application’s QoS requirements. In the case of multiple routes, the service is
also responsible for determining the amount of data that should be transmitted to each
route. Reinforcement learning-based systems or services are used to address decision-
making problems. The route selection service should adopt a reinforcement learning-based
model, such as that presented in [60], to select routes. Route selection decisions should be
based on the application’s QoS requirements, link quality, link lifetime, and link energy
consumption parameters.

6.4. Machine Learning-Based Resource Management Layer

Existing resource management platforms are divided into two categories. (1) Resource
management platforms for IoT systems provide access to and control of physical devices.
They also support data collection, data analysis, and application composition services.
However, they do not provide computing services and are not designed for complex
multilayer network infrastructure. (2) Resource management platforms for distributed
computing systems provide computing and storage services. However, they do not focus on
data collection and actuation services. Moreover, they are not designed for heterogeneous
multilayer network infrastructure, and therefore, are not aware of static and dynamic
routes available in each network layer. Consequently, they are unable to fulfill the low
latency and high data rate requirements of several smart city and 5G network applications.
Existing resource management schemes also use conventional approximate or heuristic
algorithms, which are computationally expensive, incur significant overhead, and do not
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perform well with an increasing number of parameters. Recently, several machine learning
techniques, such as those presented in [59,60], were used to address resource management
problems. However, these techniques use only a few system-level parameters and they
also do not utilize a vast amount of data generated by multi-network infrastructure. A
detailed analysis of resource management schemes was provided in [2,31].

A new resource management layer aims to leverage regression analysis and reinforce-
ment learning methods to allocate and manage heterogeneous computing, sensing, actuat-
ing, and network resources efficiently. This layer comprises six services and storage units.

Efficient Discovery and Monitoring Service: This service is responsible for discover-
ing and monitoring a wide range of devices and services across multiple heterogeneous
networks and for performing the registration and de-registration of devices. The infor-
mation collected by this service should be used to train machine learning algorithms and
make resource management decisions. A similar discovery and monitoring service was
developed in [2] for a homogenous network environment.

System Data Store: This service is responsible for storing a large amount of historical
application and system-level data, such as application submission time, application comple-
tion time, task completion success rate, device failure rate, task completion rate of devices,
and energy consumption profile of devices. The data should be used by machine learning
algorithms to analyze system performance and predict device and task failures [15].

Task Queue: This service is responsible for maintaining a list of tasks submitted by a
user and storing task-related information, such as task size, input data size, output data
size, task deadline, and data latency requirements. Once a task is completely executed, it is
removed from the queue and its information is stored in the system data store.

Virtual Device Registry: Virtual device registry is responsible for storing a list of
available virtual devices. For each device, device-related information, such as speed,
energy consumption rate, list and description of services, and communication technologies,
is listed. This service is also responsible for storing information required to access the
other services.

Task Dispatch Service: This service is responsible for sending tasks and required data
to a node selected by a resource allocation service.

Resource Allocation Service: The allocation of resources is a complex and difficult
task [2]. A multi-network environment and varied QoS requirements make the process
even more difficult [1]. Existing approximate or heuristic schemes are designed to uti-
lize single wireless communication technology or rely on an eclectic system that exclu-
sively selects one distinct communication technology. They also do not efficiently utilize
network-level parameters, such as link lifetime and energy consumption. Moreover, they
do not perform well with an increasing number of parameters and continuously changing
heterogeneous environments.

The resource allocation service should consider large numbers of the network- and
system-level parameters, utilize network-level services, such as dynamic interface allo-
cations and parallel transmissions, and use machine learning-based algorithms, such as
those presented in [59,60] to satisfy the requirements of emerging resource-intensive and
non-resource-intensive smart city and 5G network applications and improve resource
utilization and energy efficiency.

Failure Management Service: This service is responsible for using machine learning
models, such as that adopted in [31], to predict the failure probability of devices and tasks
on the basis of the historical device, task, and task assignment information.

7. Conclusions

A heterogeneous private edge cloud system is a small-scale cloud data center in a
local physical area, such as a house or an office. It consists of various stationary and
mobile devices, such as personal computers, mobile robots, smartphones, and sensors, in-
terconnected through single or multiple infrastructure-based or infrastructure-less wireless
LANS. In the current study, an intelligent middleware platform is proposed to manage
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and utilize a heterogeneous private edge cloud system infrastructure efficiently. The new
platform consists of two layers: SDN and a machine learning-based multi-network manage-
ment layer and a machine learning-based resource management layer. The multi-network
management layer aims to use the capabilities of machine learning and SDN to enable
efficient and reliable communication among devices interconnected via multiple hetero-
geneous mobile ad hoc and infrastructure-based LANSs. The resource management layer
aims to leverage regression analysis and reinforcement learning methods for efficiently
allocating and managing heterogeneous computing and network resources. The platform
aims to support smart city and 5G network applications with diverse QoS and system
resource requirements. This study also discusses the challenges involved in the design of a
middleware platform for complex heterogeneous systems.

Our future objective is the development and performance analysis of a software-
defined network and machine learning-based multi-network management layer and ma-
chine learning-based resource management layer. This includes the development of several
network and resource management algorithms and protocols such as multi-network discov-
ery and monitoring protocol, multi-network routing protocol, and machine learning-based
multi-network aware resource allocation algorithms.
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IoT Internet of things

LTE Long-term evolution

5G 5th generation mobile network

SDN Software-defined network

LAN Local area network

PEC Private edge cloud

MAC Mobile ad hoc cloud

MANET Mobile ad hoc network

QoS Quality of service

MQTT Message queuing telemetry transport
HTTP Hypertext transfer protocol

RPi Raspberry Pi

BLE Bluetooth low energy

DSRC Dedicated short-range communications
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