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The premise and key of ensuring the safety and effectiveness of traditional

Chinesemedicine (TCM) is to construct appropriate quality evaluation systemof

TCM. This study aimed to establish a pre-column derivatization HPLC method

for achieving the quality control of Polygonatum sibiricum by reacting

synthesized 4-hydrazino-1,8-naphthalimide (HAN) with diverse

monosaccharides from the hydrolytic product of P. sibiricum

polysaccharides (PSPs), followed by HPLC separation. The HAN was

synthesized based on a CuI-catalyzed cross-coupling reaction in water, and

then employed as a novel chemosensor that reacts with reducing sugars. Good

separationwas achieved at a detectionwavelength of 448 nmusing an ZORBAX

SB-C8 column under a gradient elution at a flow rate of 0.5 ml/min within

12 min. The monosaccharide compositions of PSP mainly include two hexoses

[glucose (Glc), galactose (Gal)] and two hexuronic acids [glucuronic acid (GlcA)

and galacturonic acid (GalA)], and the molar ratio of Glc, Gal, GlcA and GalA is

16.67:52.94:10.58:19.81. The verified HPLC method, possessing excellent

precision and good accuracy, successfully achieved rapid qualitative and

quantitative determination for PSP. Additionally, the HAN displayed

fluorescence enhancement through “push–pull” mode, and fluorescence

decreased through “pull–pull” mode after binding to monosaccharides,

which is a potential for fluorescence determination of different

monosaccharides.
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Introduction

Polysaccharides are extremely important pharmacological active components exist in

most TCM, for instance, Polygonatum species (Zhao et al., 2018; Liu et al., 2022). The

main and active components, TCM Polygonatum polysaccharides, exhibited antioxidant

activity (Zhang et al., 2019), anti-osteoporosis (Yelithao et al., 2019), immunomodulatory
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effects (Zhao et al., 2019), as well as preventing depression-like

behaviors (Shen et al., 2021). However, the intrinsic

polydispersity and lack of chromophore of polysaccharides

makes the quality control for TCM polysaccharides greatly

difficult to achieve. Furthermore, in the herbal market, the

complex sources of TCM increase the latent risk of ineffective

in clinical practice. These facts make the quality evaluation for

TCM polysaccharides extremely important.

Carbohydrates are essential to life which are found

everywhere in nature ranging from simple monosaccharides to

complex oligosaccharides, as well as polysaccharides (Williams

et al., 2021). However, saccharides cannot be detected by

ultraviolet (UV) and fluorescence detector due to the absence

of UV absorption and fluorescent groups. The content of total

saccharides in crude polysaccharides extract mainly employs the

colorimetric method after acidification to determine (Su and Li,

2020). However, the sensitivity and accuracy are low for

polysaccharides, and even lower when the polysaccharides

possess relatively low purity, for instance, the polysaccharides

samples combining a certain amount of pigment, nucleic acid

and protein, respectively.

Currently, two approaches, direct detection and chemical

derivation, were adopted for measuring monosaccharides. The

direct detection method mainly takes advantage of high-

performance liquid chromatography combined evaporative

light scattering detector (Sharma et al., 2010) or pulsed

amperometric detector (Gangola et al., 2014). Low detection

limits and requiring expensive columns exist in the method.

Additionally, chemical derivations of monosaccharides method

mainly make use of gas chromatography coupled with mass

detector (Xia et al., 2018), and liquid chromatography combined

with highly sensitive detector, such as ultraviolet, fluorescence

and mass spectrometer (Lloyd and Doherty, 1952; Pauk et al.,

2017). Chemical derivatization, especially pre-column

derivatization which only need different derivatization

reagents, such as 1-phenyl-3-methyl-5-pyrazolinone (PMP)

(Zhao et al., 2020), fluorescein isothiocyanate (FITC) (Zhang

et al., 2018), aminophenamide (2-AB) (Adamczyk et al., 2014)

and 8-aminophenyl 1, 3, 6-trisulfonic acid (ANTS) (Deng et al.,

2018), to reaction with monosaccharides, greatly improves

measured sensitivity and selectivity.

With the help of high-resolution liquid chromatography, the

pre-column derivatization strategy help achieving a series of

successes for the quality control for TCM polysaccharides

(Dai et al., 2010). Three major Polygonatum species, namely

Polygonatum kingianum Coll. Et Hemsl. (Li et al., 2020),

Polygonatum Sibiricum Red. (Wang et al., 2020), and

Polygonatum cyrtonema Hua (Zhang J. Y. et al., 2021), are

officially recorded in Chinese pharmacopoeia. Due to the

higher medicinal effect in clinical, the P. Sibiricum Red. was

widely used to construct prescription (Mu et al., 2021).

Polysaccharides, accounting for more than 20% of the total

components, regarded as the representative Q-markers to

evaluate the quality of Polygonum species (Liu and Si, 2018).

Based on our previous practice in the quality evaluation for

Angelicae pubescentis radix (Wang et al., 2014), Wu-Wei-Wen-

Tong Capsule (Jiang et al., 2021), Nao-Luo-Xin-Tong (Wang

et al., 2019), especially for PSP by common pre-column

derivatization PMP-HPLC approach (Shen et al., 2021), we

herein developed a novel HAN-HPLC strategy, successfully

achieving rapid qualitative and quantitative determination for

PSP. Higher sensitivity (ε = 12882 for PMP; ε = 16138 for HAN)

and less noise interference (detection at 245 nm for PMP and

448 nm for HAN) of chemsensor HAN and followed by good

separation for derived monosaccharides acquired by HPLC

technique was also achieved, highlighting the merit of novel

strategy.

Materials and methods

Reagents and instrument

The rhizomes of Polygonatum Sibiricum Red. (PS) were

picked from the Banzhuyuan in Jinzhai County (Anhui

province, China). Monosaccharide standards including

arabinose, glucose, glucuronic acid, galactose, galacturonic.

Acid, mannose, rhamnose, ribose, and xylose (purity >97%)

were purchased from Shanghai Bide Medical Technology Co.,

LTD. We obtained 1-phenyl-3-methyl-5-pyrazolone (PMP)

from the Maclean Biotechnology Co., Ltd. 1H NMR and 13C

NMR spectra were recorded on an AV-600 spectrometer and the

analytes were dissolved in DMSO-d6 solution. The chemical

shifts (δ) value is expressed in ppm relative to TMS

(0.00 ppm) and coupling constants (J) in Hz for 1H NMR and
13C NMR. High-Resolution Mass spectra (HRMS) data were

obtained from a Waters Xevo G2-XS QTOF spectrometer

(Tolerance = 10.0 ppm). Ultraviolet-visible Absorption spectra

were recorded using a SHIMADZU UV-2550

spectrophotometer. Fluorescence measurements were

performed on a SHIMADZU RF-5301 fluorescence

spectrometer at room temperature.

Synthesis of naphthalimide-type
chemsensor

For the synthesis of naphthalic anhydride hydrazine

hydrochloride salt (NAHC), a previous method was adopted

(Kumar andMa, 2018). A 10 ml resealable screwcap Schlenk tube

equipped with a Teflon-coated magnetic stir bar was charged

with CuI (9 mg, 8 mol%), BMPO (14 mg, 8 mol%), CTAB

(25 mg, 16 mol%), 4-Bromo-1,8-naphthalic Anhydride

(169 mg, 0.6 mmol), K3PO4 (25 mg, 0.12 mmol, 0.2 equiv.),

H2O (0.6 ml) and the resulting mixture were stirred at 80°C

for 15 min, then K3PO4 (127 mg, 0.6 mmol, 1.0 equiv.) and
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hydrazine hydrate (30 μL, 0.6 mmol) were added. The Nitrogen

gas was bubbled through the reaction mixture for 15 min, then

stirred in a closed test tube at 80°C for 8 h until the starting

material was consumed totally. After cooling to room temperature,

the reaction mixture was diluted with dichloromethane, and then

filtered. The filtrate was washed with brine, and then the organic

layer was separated and acidified to pH = 3-4 by adding 37% HCl

solution. The resulted precipitate was filtered, washed with

dichloromethane and dried at room temperature to afford the

corresponding naphthalic anhydride hydrazine hydrochloride salt

(NAHC, 64 mg, yield: 38.6%). 1H NMR (500 MHz, DMSO-d6) δ
8.59 (d, J = 7.3 Hz, 1H), 8.56—8.52 (m, 1H), 8.35 (d, J = 7.9 Hz,

1H), 8.23 (d, J = 7.8 Hz, 1H), 8.05—7.97 (m, 1H). 13C NMR

(126MHz, DMSO-d6) δ 160.5, 133.3, 132.2, 131.9, 131.5, 130.2,

129.9, 129.4, 127.5, 122.8, 122.1.

For the synthesis of 4-hydrazino-1,8-naphthalimide (HAN)

(Ye et al., 2014), a 10 ml resealable screwcap Schlenk tube

equipped with a Teflon-coated magnetic stir bar was charged

with NAHC (132 mg, 0.5 mmol), n-butylamine (300 μL,

3.0 mmol), ethanol (3 ml) and the resulting mixture were

stirred at 85°C for 6 h until the starting material was consumed

totally. After cooling to room temperature, the reaction mixture

was washedwith saturated sodium bicarbonate, and extracted with

dichloromethane. The organic layer was washed with brine, and

then dried over Na2SO4 and concentrated in vacuo. The residue

was purified by column chromatography on silica (petroleum

ether/ethyl acetate = 1/2) to afford the HAN (33 mg, yield: 25%).
1H NMR (400 MHz, DMSO-d6) δ 8.75 (dd, J = 8.5, 1.2 Hz, 1H),

8.47 (dd, J = 7.3, 1.0 Hz, 1H), 8.29 (d, J = 8.6 Hz, 1H), 7.87 (s, 1H),

7.72 (dd, J = 8.4, 7.3 Hz, 1H), 6.80 (d, J = 8.7 Hz, 1H), 1.72 (s, 2H),

1.51—1.40 (m, 2H), 0.98 (t, J = 7.4 Hz, 3H). 13C NMR (126 MHz,

DMSO-d6) δ 133.54, 132.38, 132.13, 131.76, 130.07, 129.58, 39.04,
29.59, 19.77, 14.10.

Derivatization reaction

The reaction principle based on hydrazine group and carbonyl

group from monosaccharide molecule has been reported by

different research groups (Lattova and Perreault, 2003; Iqbal and

Novalin, 2009; Han et al., 2016). Here, the synthesized HAN

compound that has a hydrazine group in the molecule skeleton

reacted with monosaccharide to successfully yield the conjugate

HAN-monosaccharides. Briefly, a 10 ml Schlenk tube equippedwith

a Teflon-coatedmagnetic stir bar was charged with HAN (50 μmol),

monosaccharide (50 μmol), acetic acid (5 μL, 2 eq), ethanol (0.5 ml)

and the resultingmixture was stirred at 80°C for 4 h until the starting

substances disappear thoroughly. A new point, namely HAN-

monosaccharides, was formed with a Rf = 0.5 (CH2Cl2:

CH3OH = 5:1). After cooling to room temperature, the reaction

mixture was diluted with H2O, and extracted with dichloromethane.

The water layer was concentrated in vacuo and then filtered, finally

diluted with CH3OH prior to HPLC analysis.

Optimizing derivatization condition

The setting of reaction conditions has great influence on the

reaction results. Therefore, the choice of reaction parameters is

significantly important. Currently, response surface

methodology (RSM) is widely used to screen out the optimum

result (Yuan et al., 2020). We herein selected five single factors

including time (h), reaction temperature (°C), kinds of acid, acid

concentration (eq) and molar Ratio (eq) for optimizing the

efficiency of derivatization of saccharides. The results of single

factor experiment were shown in Supplementary Table S1.

Box–Behnken design (BBD)-RSM were used to investigate the

yield of HAN-monosaccharide (Supplementary Table S1). The

parameters of the model were estimated by the least square

method on the basis of 46 measurement experiments, and then

the model is established (Supplementary Table S2). By applying

multiple regression analysis to the experiment data, the response

variable and the test variables were related by the second-order

polynomial equation. The obtained test data were used for

multiple regression fitting and optimization of process

parameters by using Design-Expert 11.0 software. The best

work conditions were used for verification and detection,

compared with the ideal value of the software.

Investigation of spectroscopic
characteristics

The spectral properties of the derivatization reagent and its

conjugated products with monosaccharides were further

investigated. The solution of compound HAN was prepared in

CH3OH (1.76 mM). 0.4 ml HAN solution was diluted in 9.6 ml

CH3OH (0.07 mM) for ultraviolet measurements. 0.1 ml HAN,

and PMP solutions were diluted in 9.9 ml CH3OH (0.02 mM) for

molar absorptivity measurements. Using pure methanol solution

as a blank, full-wavelength scanning, the absorbance value under

the maximum absorption wavelength was recorded, and the

operation was repeated three times. For fluorescence

measurements, the test solutions of HAN-monosaccharides

(5 μM) were prepared with excitation set at 448 nm, and the

excitation and emission slit widths both were 10 nm (Sun et al.,

2019). For Fourier transform infrared (FT-IR) analyses, HAN-

Glc (2 mg) was mixed with dried potassium bromide (200 mg) to

ground and pressed under a vacuum condition by using a Nicolet

5700 FT-IR spectrometer and recorded in the wavelength region

of 4,000–400 cm−1.

High performance liquid chromatography

The experiments were operated on an Agilent 1,260 series

Liquid Chromatography coupled with UV-visible detector. A

ZORBAX SB-C8 (250 mm × 4.6 mm, partical size 5 μm). Mobile
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phase consisted of ultrapure water-methanol (40:60, v/v). The

flow rate was 0.5 ml/min. Column temperature and detector

temperature kept at 25°C. Detection wavelength was set at

448 nm. The injection amount was 10 μL.

Preparation of p. sibiricum polysaccharide

PSP were obtained from P. sibiricum powder using water

soaking (1:4 w/v, 100°C) with boiling 30 min, followed by 4 times

volumes ethanol precipitation. The precipitates were then

deproteinized by the Sevag’s method and the purified PSPs

after lyophilization were collected for further analysis (Wang

et al., 2020; Shen et al., 2021).

Monosaccharide determination

First, PSPs was hydrolyzed into monosaccharides with 2 M

trifluoroacetic acid, and then derivatized with HAN. After

extraction with dichloromethane, the aqueous solution of

saccharides derivatization was obtained, and then detected by

optimum HPLC method after appropriate dilution. Finally, the

monosaccharide kinds and composition in PSP were analyzed,

and a novel quality control method for P. Sibiricum Red. was

established.

Results and Discussion

Synthesis of HAN- monosaccharides

As shown in Figure 1, the pre-column derivatization HAN was

prepared starting from the 4-bromo-1,8-naphthalimide reacts with

hydrazine hydrate, providingNAHCunder 37%HCl solution. Next,

with the help of n-butylamine, desired HAN was obtained by 25%

yield. Based on the optimum derivatization condition under

Optimizing derivatization condition Section, the targeted HAN-

Glc was successfully obtained in solvent ethanol.

Derivatization condition by response
surface methodology

To improve the separation efficiency and HPLC detection

sensitivity, 4-hydrazino-1,8-naphthalimide (HAN) was used in

this study for derivatization of monosaccharides. After

derivatization, the introduction of fluorescent group can

improve detection efficiencies of saccharides.

Based on single factor investigation results, 46 runs of

Box–Behnken test factors design, and results of test factors are

shown in Supplementary Table S2. The results showed that the

yield of HAN-monosaccharide varied from 0 to 62. The

quadratic regression equation with the yield of HAN-

monosaccharide as the objective function was obtained. The

F-test and p-values were used to measure the significance of

the coefficients of the model. As shown in Supplementary Table

S3, A (Time) were significant (p = 0.0018); B (Temperature) and

C (Kinds of acid) was highly significant (p < 0.0001). These data

indicate that the model established by the experiment was

feasible. The precision value of 16.129 indicates that the

model can predict experimental results. An R2Adj value of

0.8961 indicates that the model can prove the prediction of

89.61% of the response value, and the determination

coefficient R2 of 0.9423 indicates that the model has a good

degree of fit, and the yield value of the HAN-monosaccharide can

be analyzed and predicted. The R2Pred being equal to 0.7899 is

not significantly different from the R2 of 0.9423, indicating that

there was no need to further optimize the response surface

equation. Design-Expert (version 11.0) was used to create

FIGURE 1
The derivatization reaction and its possible reaction mechanism of HAN-Glc.
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the relationship between the independent and dependent

variables, and the 3D response surface and contour plots

are shown in Figure 2. Figure 2A displayed the response

surface and contour map of A (Time) and B (Temperature)

to the yield of HAN-monosaccharide. The intensity of contour

in map and the steepness of response surface can be used to

analyze the influence degree of interlacing factors on response

surface. The greater the density and slope of the response

surface, the greater the impact degree. Obviously, the map of A

and B is the steepest (corresponding Figures 2A,B,

respectively), and the map of D and E is flattest

(corresponding Figures 2C,D, respectively). These results

illustrated that time (A) and temperature (B) have an

important impact on the yields of HAN-monosaccharide,

but acid concentration (D) and molar ratio (E) have a poor

impact. So, in this experiment, the derivation conditions of

HAN-monosaccharide were optimized by using RSM, and the

optimization conditions for derivatization of monosaccharide

were as follows: Time: 4 h, Temperature: 80°C, Kinds of acid:

acetic acid, Acid Concentration: 2 eq, and Molar ratio: 1:1.

UV-vis spectra of HAN

Based on Lambert-Beer law (A = lg (1/T) = εbc), the

molar extinction coefficient of synthesized HAN could be

obtained by UV-visible spectrophotometer. According to the

Lambert-Beer law, the molar extinction coefficient was

calculated. The result showed that the main ultraviolet

absorption peak of PMP is at 245 nm, and two absorption

peaks of HAN are at 277 and 448 nm respectively, which are

larger than PMP (Figure 3A). The absorption peak at 448 nm

indicates that HAN has fluorescence absorption. By

calculating the molar absorption coefficient in CH3OH, ε

(PMP) = 12881.92 L/mol/cm, ε (HAN) = 16138.41 L/mol/

cm, it indicates that HAN possess highly sensitive than PMP

(Figure 3B).

FIGURE 2
Response surface plots showing effects of variables on the derivatization of HAN. [(A). The response surface of the effect of exaction time (A, h)
and temperature (B, °C); (B). The response surface of the effect of temperature (B, °C) and kinds of acid (C); (C). The response surface of the effect of
kinds of acid (C) and acid concentration (D, eq); (D). The response surface of the effect of acid concentration (D, eq) and molar Ratio (E, eq)].

FIGURE 3
(A) UV on the derivatization of naphthalimide hydrazine; (B)
The ε value of HAN and PMP in CH3OH.
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Mechanism analysis of HAN-glc by FT-IR,
UV-vis, NMR, and HRMS

The possible derivatization mechanism was further

investigated through a series of physical devices including FL

spectrophotometer, FT-IR spectrophotometer, UV-Vis and

NMR technique, as well as HRMS.

As the picture being shown in Figure 4A, the methanol

solution of HAN showed strong fluorescence under 365 nm

fluorescent lamp. However, the conjugate HAN-Glc display

weak yellow fluorescence. This naked-eye observation result is

consistent with fluorescence spectrometry detection presented in

Figure 4B. Compared with HAN, the ultraviolet absorption

spectrum of the conjugate is slightly weakened, but the main

absorption peak (at 277 and 448 nm) still remains (Figure 4C),

which provided a possibility for further HPLC-UV analysis.

To further investigate the molecular structure characteristics of

the conjugate HAN-Glc, infrared spectroscopy and NMR analysis

were adopted. As the FT-IR spectra of conjugate HAN-Glc being

shown in Figure 4D, the stretching vibration of O–HorC–H residue

exhibited the peak at 3,436 cm−1, and the C–H stretching in Glc

appeared at 2,926 cm−1 (Dong et al., 2021). The absorption bands at

1,637 cm−1 were related to the C=O or C=N stretching vibration

(Demircioglu et al., 2014; Zhu et al., 2021). The peak at 1,363 cm−1

assigned to the stretching of C–N, and the peak at 1,583 cm−1 was

attributed to the N–H bending in HAN-Glc (Zhang S. et al., 2021).

Moreover, the absorption peaks at 1,253 and 1,078 cm−1 were

assigned to the C-O-H link bonds (Wang et al., 2021). The

above FT-IR result displayed a strong C=N double bonds was

formed, demonstrating that glucose molecule bonded with the

derivatization agent HAN and producing desired HAN-Glc. In

addition, the formation of C = N double bonds was also

observed in NMR spectra, and corresponding 1H NMR data of

crude conjugate HAN-Glc were showed as follow: 1H NMR

(600MHz, Methanol-d4) δ 8.34 (d, J = 7.1 Hz, 3H), 8.18 (d, J =

8.7 Hz, 1H), 7.47 (s, 1H), 6.59 (s, 1H), 4.83 (s, 32H), 4.76 (d, J =

5.2 Hz, 1H), 4.53 (d, J = 18.8 Hz, 1H), 4.37 (dd, J = 57.8, 8.3 Hz, 1H),

3.85—3.74 (m, 1H), 3.75—3.66 (m, 2H), 3.64 (td, J = 9.6, 9.1, 6.1 Hz,

1H), 3.60 (s, 1H), 3.54—3.37 (m, 2H), 3.26 (s, 5H), 1.74—1.67 (m,

2H), 1.46 (q, J = 7.5 Hz, 2H), 1.22 (s, 11H), 0.98 (t, J = 7.4 Hz, 3H),

0.84 (s, 3H). It is worth noting that the δ = 8.34 was presented in 1H

NMR of HAN-Glc (see Figure 4E). As well known, the chemical

shift of hydrogen located at the carbon of C=Nbond generally below

δ = 8.4 (Owen et al., 2009). Therefore, we infer that the analyte

contains C=N double bonds in its structure. In addition, HRMS

spectra also provides further support. As shown in Figure 4F, the

peak at m/z 446.1883, which was assignable to [HAN-Glc + H]+

(calc. m/z 446.1883) in the ESI mass spectrum.

Method validation

A series of experiments regarding linearity, LOD, LOQ and

reproducibility were performed to validate the developed

FIGURE 4
Mechanism analysis: (A) Fluorescence photograph of HAN andHAN-Glc solutions under a wavelength of 365 nm; (B) fluorescence spectrum of
HAN and HAN-Glc; (C) UV-Vis spectrum of HAN and HAN-Glc, (D) FT-IR profile of HAN-Glc, (E) NMR spectra of HAN-Glc, and (F) HRMS data of
HAN-Glc.
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method. For the construction of the calibration curves, different

concentrations of Glc, Man, Rha, Gal, GlcA, GalA standards in

the range of 45–776 μg/ml. The calibration curves were

constructed by plotting the peak area against the spiked

concentrations of Glc, Man, Rha, Gal, GlcA, GalA, and

conducting a linear fitting to the result. The linear regression,

LOD and LOQ data are listed in Table 1. As shown in Table 1,

satisfactory correlation coefficients for the six compounds were

obtained ranging from 0.9990 to 0.9993. The LOD values for the

six sugars were in the range of 10.82–76.09 μg/ml. The precision

of the proposed method was repeatedly tested after 8 times of

continuous injection, based on which the relative standard

deviation (RSD) of 6 mixtures of monosaccharides were

calculated. The RSDs were in the range of 0.78–1.34%

(Table 2). The stability of the proposed method was evaluated

by being injected 5 times at 4 h and once 24 h after mixing. The

results showed that the RSDs were in the range of 0.80–2.93%

(Table 2), indicating that the proposed method provides good

reproducibility. The recoveries at three different concentrations

of 6 kinds of monosaccharide were mixed with standard

solutions in the linear range for carrying out the sample

adding recovery test. Each sample was repeatedly injected

3 times. The average value for each component were obtained

by comparing the amounts calculated from the calibration curves

with the corresponding spiking amounts. As shown in Table 2,

the recoveries were in the range of 99.22–103.70%,

demonstrating a satisfactory accuracy of the proposed method.

The validated method possesses well linear relation, good

accuracy, as well as high sensitivity and stability, and thus

could meet the requirement of determination of Glc, Man,

Rha, Gal, GlcA, GalA in polysaccharides.

Quality control for polygonatum
sibiricum red

Indirect analysis of monosaccharides in PSP samples was

performed by HPLC-DAD technique. In the established method,

a HPLC column coupled with derivatization analytes was used

for indirect analysis of saccharides. Due to lack of ultraviolet

chromophores, monosaccharide molecules cannot be observed

by ultraviolet technique. As displayed in Figure 5A, mixture

containing six monosaccharides, were not observed in HPLC

chromatogram using our established method. However, after

derivatization reaction of HAN and each standard of six

monosaccharides, Glc, Man, Rha, Gal, GlcA, and GalA, the

metabolites of the different monosaccharide conjugated with

HAN could be observed and even well separated using the

TABLE 1 Linearity, regression line and LOD of the derivatives with the proposed method.

Monosaccharides TR (min) Linear equation Linear range
(μg/mL)

R2 LOD (μg/mL) LOQ ((μg/ml)

Glc 11.71 y = 8576.8x + 319.13 45–540 0.9992 23.49 165.12

Rha 16.31 y = 3,864.1x + 194.23 82–492 0.9993 54.88 300.22

Man 12.76 y = 2,975.8x - 22.823 45–72 0.9993 10.82 18.18

Gal 10.77 y = 1,242.6x - 41.423 45–72 0.9990 40.27 56.46

GlcA 4.03 y = 467.37x + 36.341 194–776 0.9993 57.24 372.24

GalA 4.92 y = 528.3x - 24.443 97–776 0.9990 76.09 145.67

TABLE 2 Precisions, Stability test, Repeatability test and Sample adding recovery test of N2-monosaccharides.

Monosaccharides TR (min) Mean (μg/ml) Precision Stability Repeatability Sample adding
recovery

RSD (%) RSD (%) RSD (%) (%)

Glc 11.71 90 0.94 2.12 4.41 101.44

Rha 16.31 82 1.34 2.93 3.33 102.25

Man 12.76 90 1.17 0.82 2.64 99.81

Gal 10.77 90 0.78 1.21 1.03 103.70

GlcA 4.03 97 0.81 0.80 0.61 99.22

GalA 4.92 97 0.79 0.73 0.57 100.36

Frontiers in Chemistry frontiersin.org07

Wang et al. 10.3389/fchem.2022.969014

https://www.frontiersin.org/journals/chemistry
https://www.frontiersin.org
https://doi.org/10.3389/fchem.2022.969014


established method, and corresponding results displayed in

Figure 5B may meet the requirements of qualitative and

quantitative detection. Subsequently, indirect analysis of

monosaccharides in PSP samples was performed. The PSP

samples were hydrolyzed and then derived using HAN. The

obtained samples were tested by HPLC technique, and resulting

HPLC chromatogram is shown in Figure 5C. As shown in

Figure 5A, due to lack of ultraviolet chromophores, all

monosaccharides cannot be observed under established

HPLC-DAD chromatogram condition. Remarkably, according

to the HPLC chromatogram of Figure 5B, we found that

derivatives containing uronic acid, such as HAN-GlcA and

HAN-GalA, generally with high polarity, peaked before 5 min.

Subsequently, derivatives containing aldose, such as HAN-Gal,

HAN-Glu, and HAN-Man, peaked between 10 min and 13 min.

Finally, derivatives containing desose, HAN-Rha, with the lowest

polarity, peaked at the end of the chromatogram. Because of the

products HAN-monosaccharides possessing UV absorbance at

448 nm and thus could be observed by HPLC-DAD technique.

The observed six peaks were identified and labeled: Peak 1, HAN-

GlcA, tR = 4.03 min; Peak 2, HAN-GalA, tR = 4.92 min; Peak 3,

HAN-Gal, tR = 10.77 min; Peak 4, HAN-Glc, tR = 11.71 min;

Peak 5, HAN-Man, tR = 12.76 min; Peak 6, HAN-Rha, tR =

16.31 min. Therefore, this establishedmethod performed the well

separation for HAN-monosaccharides, and by transformation,

achieved the indirect determination for the content of different

monosaccharides. The degree of separation of all six components

aforementioned is greater than 1.5, ensuring the requirements for

HPLC separation. Four peaks attributed to HAN-Glc, HAN-Gal,

HAN-GlcA and HAN-GalA were found and the contents of

HAN-Glc, HAN-Gal, HAN-GlcA and HAN-GalA are calculated

according to the linear equation. The result was listed in Table 3.

By transformation, the corresponding molar ratio of Glc, Gal,

GlcA and GalA is 16.67:52.94:10.58:19.81 in PSP samples. The

high content of galactose, different from other Polygonatum

species such as Polygonatum cyrtonema Hua, is one of the main

characteristics of P. sibiricum Red. The result is basically

consistent with a previous report (Wang et al., 2020). Finally,

we have successfully achieved the determination of

monosaccharide composition in PSP analytes. Therefore, our

constructed method can meet the quality control of P. sibiricum

Red. polysaccharide.

Potential applications

The fluorescence properties of HAN were investigated in

the presence of 9 monosaccharides (Glc, Xyl, Gal, Man, Ara,

Rha and GalA) in CH3OH (Supplementary Figure S1). The

derivatization of monosaccharides with HAN (1 equiv.)

induced an obvious fluorescence enhancement at 448 nm.

Among them, the fluorescence intensity of Man, Glc and

Gal is the highest, Rha, GalA and GlcA is lower, Rib, Xyl

and Ara (the equivalent is 2) is lowest. We inferred that the

observed difference of fluorescence change mainly comes

from three reasons: First, the formed imine bond by

reacting HAN with various different monosaccharides be

capable of rotation, resulting in the occurrence of internal

charge transfer (ICT) and corresponding fluorescence signal

decrease. Second, the transformation rate of different

monosaccharides to corresponding HAN-monosaccharides

are also diverse. The probe derivatives containing high

concentrations were more severely quenched. Finally,

molecular weight of different monosaccharides is partly

responsible for the fluorescence change. Comparison with

relatively smaller monosaccharides, the bigger saccharide

molecule may slightly prevent molecular rotation at the

position of formed imine part. Fluorescence detection

results show that 6 kinds of monosaccharides including

FIGURE 5
(A) HPLC-DAD chromatogram of mixing monosaccharide
standard samples; (B) HPLC-DAD chromatogram of mixing HAN-
monosaccharide standard samples; (C) HPLC-DAD
chromatogram of PSP after derivatization; (Peak 1, HAN-
GlcA, tR = 4.03 min; Peak 2, HAN-GalA, tR = 4.92 min; Peak 3,
HAN-Gal, tR = 10.77 min; Peak 4, HAN-Glc, tR = 11.71 min; Peak 5,
HAN-Man, tR = 12.76 min; Peak 6, HAN-Rha, tR = 16.31 min).

TABLE 3 Determination of monosaccharide composition of PSP.

Monosaccharides Concentration (μg/mg) Molar %

Glc 60.55 16.67

Gal 192.27 52.94

GlcA 41.39 10.58

GalA 77.55 19.81
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Man, Glc, Gal, Rha, GalA and GlcA could be used for the

determination of derivatization. The concentration-

dependent reaction of Glc and Gal with HAN along with

the fluorescence signal change were also presented in Figure 6.

Conclusion

In conclusion, we had developed a naphthalimide-based

pre-column derivatization HPLC method, successfully

achieving the quality control of P. sibiricum Red.

polysaccharide. The synthesized HAN reacts with diverse

monosaccharides under optimized conditions according to

response surface methodology, and with the help of HPLC, we

realized simultaneous quantitation of four monosaccharides

from PSP. The synthesized HAN exhibited a turn-on

fluorescence response toward monosaccharide with a bright

orange fluorescence under UV radiation, implying that HAN

is a potential for fluorescence determination of diverse

monosaccharides.
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FIGURE 6
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fluorescence intensity at 540 nm as a function of the HAN-Glc and HAN-Gal concentration.
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