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Abstract: Dolutegravir (DTG) is a potent anti-HIV drug that is used to treat HIV globally. There have
been reports of mutations in the HIV-1 3′-polypurine tract (3′PPT) of the nef gene, contributing to
DTG failure; however, there are limited ‘real-world’ data on this. In addition, there is a knowledge
gap on the variability of 3′PPT residues in patients receiving combination antiretroviral therapy
(cART) with and without viral load (VL) suppression. HIV-1 subtype C (HIV-1C) whole-genome
sequences from cART naïve and experienced individuals were generated using next-generation
sequencing. The nef gene sequences were trimmed from the generated whole-genome sequences
using standard bioinformatics tools. In addition, we generated separate integrase and nef gene
sequences by Sanger sequencing of plasma samples from individuals with virologic failure (VF)
while on a DTG/raltegravir (RAL)-based cART. Analysis of 3′PPT residues was performed, and
comparison of proportions computed using Pearson’s chi-square test with p-values < 0.05 was
considered statistically significant. A total of 6009 HIV-1C full genome sequences were generated and
had a median log10 HIV-1 VL (Q1, Q3) copies/mL of 1.60 (1.60, 2.60). A total of 12 matching integrase
and nef gene sequences from therapy-experienced participants failing DTG/ RAL-based cART were
generated. HIV-1C 3′PPT nef gene sequences from therapy-experienced patients failing DTG cART
(n = 12), cART naïve individuals (n = 1263), and individuals on cART with and without virological
suppression (n = 4696) all had a highly conserved 3′PPT motif with no statistically significant
differences identified. Our study confirms the high conservation of the HIV-1 nef gene 3′PPT motif
in ‘real-world’ patients and showed no differences in the motif according to VL suppression or
INSTI-based cART failure. Future studies should explore other HIV-1 regions outside of the pol gene
for associations with DTG failure.

Keywords: HIV-1; nef ; Botswana; drug resistance mutations; 3′-polypurine tract; dolutegravir

1. Introduction

Dolutegravir (DTG) is a widely used second-generation integrase strand transfer
inhibitor (INSTI) with a high genetic barrier to resistance [1–5]. It prevents the HIV
integrase enzyme from incorporating viral DNA into the host cell genome [1]. However,
resistance mutations within the integrase enzyme can cause reduced susceptibility to
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DTG [1,6]. Most major DTG resistance mutations amongst therapy-experienced individuals
are usually located within the HIV-1 catalytic core domain of the integrase region [1,7].
However, a handful of studies have suggested associations between DTG failure and
mutations outside the integrase region in the 3′-polypurine tract (3′PPT) of the HIV-1 nef
gene [8,9].

The nef gene of HIV-1 is a small accessory protein of about 206 amino acids that
contributes to HIV disease progression mainly by downregulating the expression of CD4
and major histocompatibility complex class I molecules, amongst other functions [10–13].
It has a highly conserved purine-dominated 15-nucleotide sequence (3′PPT) that is involved
in the reverse transcription process, resulting in the production of double-stranded viral
DNA, enabling the integration into the host cell genome [14–16].

Malet et al. unexpectedly cultured a virus that had mutations in the 3′PPT motif
conferring resistance to DTG [8]. Similar mutations were identified in the guanine-tract
(G-tract) motif at the 3′ end of 3′PPT of one patient with virologic failure (VF) while on a
DTG monotherapy trial [9].

A subsequent study by Malet et al. with a larger number of individuals failing
INSTI-based regimens revealed a highly conserved 3′PPT with no associations with DTG
failure discernible [17]. Further in vitro work went on to confirm this [18]. A recent study
from Cameroon amongst INSTI-naïve individuals also showed a highly conserved 3′PPT
region [19]. Furthermore, analysis of publicly available HIV-1 nef gene sequences from
the Los Alamos HIV-1 database reveals a highly conserved 3′PPT region across various
subtypes [17].

Given these inconsistent study results and the fact that there are limited ‘real-world’
data on the contribution of 3′PPT to failure of DTG-based regimens, we conducted this
study to address these knowledge gaps. In our study, we sought to determine the diversity
of 3′PPT of the HIV-1 subtype C (HIV-1C) nef gene amongst cART-naïve and cART-treated
individuals with and without VF. We also assessed whether HIV-1C mutations in 3′PPT
contribute to VF amongst individuals failing INSTI-based cART regimens regardless of the
presence of mutations in the integrase region.

2. Materials and Methods
2.1. Selection of Study Population and HIV-1 Genotyping

Participant samples were obtained from two studies conducted in Botswana. The first
study consisted of sequences generated from residual plasma specimens obtained from
therapy-experienced individuals experiencing VF while on DTG- or raltegravir (RAL)-
based cART described elsewhere (BOSELE study; Figure 1) [7]. VF was defined as two
or more consecutive plasma HIV-1 RNA levels (viral loads (VL)) > 400 copies/mL as per
standard of care guidelines in Botswana. The HIV-1 integrase region was amplified using
nested reverse transcription-polymerase chain reactions (RT-PCRs) where necessary and
sequenced using a BigDye™ Terminator v3.1 Cycle Sequencing Kit (Applied Biosystems,
Carlsbad, CA, USA) on a 3130xl Genetic Analyser (Life Technologies Corporation, Ap-
plied Biosystems, Carlsbad, CA, USA) as previously described [7,20]. Sequencing of the nef
gene was attempted from the same HIV-1 extracts that integrase sequences were success-
fully generated from. Briefly, products of about 620 base pairs were amplified using nested
RT-PCRs where necessary using the following primers numbered relative to HIV-1 reference
strain (HxB2) nucleotide positions (shown in brackets): NEF8683F_pan TAGCAGTAGCT-
GRGKGRACAGATAG (8683–8707), NEF9536R_pan TACAGGCAAAAAGCAGCTGCT-
TATATGYAG (9507–9536), NEF8746_SgrI_AscI_F AGAGCACCGGCGCGCCTCCACAT-
ACCTASAAGAATMAGACARG (8736–8772), and NEF9474_SacII_ClaI_R GCCTCCGCG-
GATCGATCAGGCCACRCCTCCCTGGAAASKCCC (9449–9491) [21]. Amplicons were
bidirectionally Sanger-sequenced as described above. The Sequencher software, version 5.0
(Gene Codes Corporation, Ann Arbor, MI, USA), was used to manually edit our elec-
tropherograms and form contigs with further downstream analysis carried using the
BioEdit software.
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Figure 1. Study schema depicting the selection of study sequences. (A), selection and analysis of 3′PPT nef gene sequences
according to participant cART status and HIV-1 RNA levels; (B), selection and analysis of 3′PPT of nef gene amongst
individuals with VF while on DTG/RAL-based cART. Seqs, sequences; PID, participant identification number; VL, viral load;
VF, virologic failure; RAL, raltegravir; DTG, dolutegravir; cART, combination antiretroviral therapy; 3′PPT, 3′-polypurine
tract; RT, reverse transcriptase HIV-1 gene; PR, protease HIV-1 gene; DRMs, drug resistance mutations; HIV-1C, HIV-1
subtype C.

The second group consisted of full-genome HIV-1C sequences obtained from par-
ticipants enrolled in a large community-randomised HIV-1 prevention trial described
elsewhere (BCPP study) [22,23]. The sequences were aligned to the HIV reference strain
(HxB2) at the nucleotide level using virulign [24] and block-trimmed to the nef gene of
HxB2 in the BioEdit, version 7.2.0, software [25]. We included two nucleotides before and
one nucleotide after the 3′PPT nef gene sequence to have a complete amino acid coding for
the 3′PPT tails. The sequences were assessed for hypermutations using the Hypermut tool
at the Los Alamos National Laboratory HIV Database website (http://www.hiv.lanl.gov/
accessed on 8 March 2021). All sequences were exported to Microsoft® Excel® for Mi-
crosoft 365 MSO (16.0.13901.20148) 32-bit for further downstream analysis, and graphs
were created. Additional statistical computations were performed using Stata version 14
(Stata Corporation, College Station, TX, USA) and R version 4.0.3; Pearson’s chi-square test
was used to compare the proportion of 3′PPT of nef gene mutations per position by ART
status and VL suppression. p-Values < 0.05 were considered statistically significant.

The Abbott RealTime HIV-1 assay, Cobas TaqMan/Cobas AmpliPrep HIV test (Roche
Molecular Systems, Branchburg, NJ, USA), or Aptima HIV-1 Quant assay on Panther
Systems (Hologic Inc., San Diego, CA, USA) was used to quantify HIV-1 RNA levels.

2.2. Ethical Statement

Both study protocols were approved by the health research and development division
of the Botswana Ministry of Health and Wellness (Botswana’s IRB of authority). For the
BOSELE study participants, a waiver of informed consent was obtained, and for the BCPP
study, all the participants provided informed consent. The BCPP study was approved
by the IRB at the U.S. Centers for Disease Control and Prevention and is registered at

http://www.hiv.lanl.gov/
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ClinicalTrials.gov (NCT01965470). All studies were conducted according to the principles
stated in the Declaration of Helsinki.

3. Results

A total of 6021 HIV-1C nef gene sequences were available for analysis from both
studies, and their basic demographics are shown in Table 1.

Table 1. Basic demographics of 6009 HIV-1C diagnosed, cART-naïve, and cART-experienced individuals.

Basic Characteristics * HIV-1C Diagnosed Participant Sequences
Available for Analysis (n = 6009)

** Sequences from
Participants with VF on

DTG cART (n = 40)

Age (years), median (Q1, Q3) 40 (33, 48) 41 (26, 45)

† Gender

Female n (%) 4241 (71%) 15 (44%)

Male n (%) 1757 (29%) 19 (56%)

Unknown n (%) 11 (0.2%) ** N/A

Median log 10 HIV-1 RNA (Q1, Q3) copies/mL 1.60 (1.60, 2.60) 4.53 (3.98, 5.10)

* Participants from BCPP study, ** We generated 40 sequences representing 34 ‘unique’ individuals from an ongoing study characterizing
therapy-experienced participants experiencing VF while on DTG/RAL cART. † Analysable gender data available for 5998 individuals;
rest of dataset contained ‘ND’ shown as ‘Unknown’. ND, not documented; VF, virologic failure; DTG, dolutegravir; cART, combination
antiretroviral therapy; BCPP, Botswana Combination Prevention Project. Column 3 of this table is the same dataset represented in Column
3 of Table 1 of Seatla et al. [7]. This table has been modified with permission from Seatla et al. [7].

We included two nucleotides before (HxB2 nct position 9067 and 9068) and one
nucleotide after 3′PPT (HxB2 nct position 9084) in our analysis of the 15-nucleotide 3′PPT
region (5′ AAAAGAAAAGGGGGG 3′-HXB2 numbering 9069 to 9083) to complete the
amino acid translation of the flanking regions of 3′PPT (Table 2, Figure 2).

All nucleotide positions of our HIV-1C nef gene 3′PPT sequences were highly con-
served regardless of whether cART-naïve (n = 1263), on ART with VL < 400 (n = 4483)
copies/mL, or on cART with VL ≥ 400 copies/mL (n = 213) groups (Figure 2). In addition,
there was no statistically significant difference between ‘cART naïve’ and ‘on cART’ groups
(p = 0.81), ‘on cART < 400′ and ‘on cART≥ 400′ groups (p = 0.88), ‘ART naïve’ and ‘on cART
< 400′ groups (p = 0.72), ‘cART naïve’ and ‘on cART ≥ 400′ groups (p = 0.99), ‘on cART and
cART < 400′ groups (p = 0.86), ‘on cART and cART ≥ 400′ groups (p = 0.92), and ‘on ART’
and individuals with VF while on DTG/RAL cART group (p = 0.81). Analysis of sequences
derived from buffy coat (n = 6009) adjusted for hypermutations (n = 2992) also revealed
highly conserved nef 3′PPT residues with no statistically significant difference determined.
The terminal six guanine stretch of 3′PPT also showed a high degree of conservation with
all nucleotide residues having a mean rate of 99.47% (Figure 2, Supplementary Materials).

Figure 2. HIV-1C nef gene 3′PPT variability amongst 6009 sequences from individuals on cART and not on cART. 3′PPT,
3′polypurine tract; cART, combination antiretroviral therapy; HIV-1C, HIV-1 subtype C.
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Table 2. HIV-1C nef 3′PPT variability amongst 12 therapy-experienced individuals experiencing VF while on DTG/RAL cART.

B Major DRMs 3′PPT of the HIV-1 nef Gene
HxB2_nct_positions 9067 9068 9069 9070 9071 9072 9073 9074 9075 9076 9077 9078 9079 9080 9081 9082 9083 9084

HxB2_NEF_nct position 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288

HXB2_NEF_gene_seqs. RT
(NRTI; NNRTI) PI INSTI T T A A A A G A A A A G G G G G G A

¥ 139-0001-8 M41L, D67N, K70KR,
V75M, M184V, L210W,

T215Y, K219E;
A98G, Y181C, G190A

M46I, I47V,
I54L, L76V,
I84V, Q58E,

N83D

E138K,
S147G,
Q148R,
N155H,
(E157Q)

T T A A A A G A A A A G G G G G G A

¥ 139-0002-8 ± K70R,
M184V;K219N/Y181C

(20APRIL2009)
± D67N, K70R,
M184V/NONE
(18AUG2016)

± V32I, I47V,
I54L, I84V

(20 APRIL2009)
± V32I, I47V,

I54L, I84V
(18AUG2016)

E138K,
G140A,
S147G,
Q148R,
(T97A)

T T A A A A G A A A A G G G G G G A

¥ 139-0004-6 ± M41L, T69G, K70R,
M184V, T215C, K219E;

A98G, K101E

± M46I, I54V,
L76V, V82A

T66A,
G118R,

E138EAKT

T T A A A A G A A A A G G G G G G A

139-0005-3 * M184V; A98G * Q58E * ND T T A A A A G A A A A G G G G G G A
¥ 139-0012-9 ± M184V, M41L, T215Y;

ND (9 June 2010)
± M46I,V82A

Accessory;
L10F, L24I

(9 June 2010)

N155NH
(D232DN)

T T A A A A G A A A A G G G G G G A

139-0013-0 ± M184V, A62V, M41L
(28 July 2011); ± E138K

(3 February 2016),
± * E138K

(24 January 2018)

± V11IV
(28 July 2011)

ND T T A A A A G A A A A G G G G G G A

139-0015-4 * ND * ND * ND T T A A A A G A A A A G G G G G G A
139-0017-2 * ND * ND * ND T T A A A A G A A A A G G G G G G A
139-0018-3 ± D67G, K70E, M184V;

Y181C, G190A
* ND * ND T T A A A A G A A A A G G G G G G A

139-0021-4 * K65N; V179D * ND * ND T T A A A A G A A A A G G G G G G A
139-0026-8 * ND * ND * ND T T A A A A G A A A A G G G G G G A
139-0119-5 * ND; K103N, P225H * ND * ND T T A A A A G A A A A G G G G G G A

Leucine, Leu, L Lysine, Lys, K Glutamic acid, Glu, E Lysine, Lys, K Glycine, Gly, G Glycine, Gly, G

B Major DRMs assessed by using the Stanford HIV drug resistance database; * denotes that RT-PCR testing for IN, RT, and PR was performed on the same (unique) sample from each patient. ± Historical
DRMs denoted with ‘±’ retrieved from electronic databases and/or patients’ medical charts. Mutations listed within brackets ‘()’ are accessory mutations. ¥ denotes the same participants as listed in Table 2 of
Seatla et al. [7]. ND, no mutations detected; cART, combination antiretroviral therapy; GRT, genotypic resistance testing; RT, reverse transcriptase; NRTI, nucleoside/nucleotide reverse transcriptase inhibitors;
NNRTI, non-nucleoside reverse transcriptase inhibitors; PR, protease; PI, protease inhibitor; HxB2, HIV reference sequence_K03455; INSTI, integrase strand transfer inhibitors; DRMs, drug resistance mutations.
Light blue colour depicts the 3′PPT of the HIV-1 nef gene, yellow and orange colours depict the amino acid translation of the 3-nucleotide sequence. Adapted from Figure 2a of Malet et al. [8], Figure 1 of Malet I
et al. [17], and with permission from Table 2 of Seatla et al. [7].
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4. Discussion

We analysed 12 HIV-1C nef 3′PPT sequences (eight had paired integrase sequences
without INSTI drug resistance mutations and four had paired IN sequences with INSTI
drug resistance mutations) from patients with VF while on DTG/RAL-based cART to search
for changes in 3′PPT sequence that could be linked to DTG VF as previously reported,
and we did not find any. Amongst the eight patients who were failing an INSTI-based
regimen but who did not have INSTI resistance mutations in the integrase region, all had
a 100% conservation in their 3′PPT sequences (they had no mutations at the nucleotide
or amino acid level). In addition, we analysed 1263 3′PPT sequences from patients who
were cART naïve to investigate HIV-1C 3′PPT variability. We further analysed 4696 3′PPT
sequences from patients on cART (but not on a DTG-based regimen) stratified according to
virological suppression and found no 3′PPT region variability.

Malet et al. found some significant variability at position 9071 (25% and 10% in
HIV-1 subtype B and CRF01, respectively) [17] and position 9075 (10% variability in HIV-1
subtype D). In our analysis, position 9071 revealed a variability of 0.29% (n = 6009) and 0%
(n = 12) of sequences from patients not exposed to DTG cART and those failing DTG/RAL
cART, respectively. Position 9075 was also conserved with a variability of 0.4% (n = 6009)
and 0% (n = 12) amongst the two groups. Perhaps this difference in variability could be
explained by the different HIV-1 subtypes—all our sequences were HIV-1C.

We observed a high conservation amongst the six nucleotides of the G-tract residues
of 3′PPT (mean of 99.47%) similar to what others have found (99.95%) [8,17–19].

We did not explore the entire HIV-1C genome (5′ long terminal repeat (LTR), gag,
protease, reverse transcriptase, vif, vpr, vpu, envelope, and 3′ LTR) for other mutations
that could be linked to INSTI resistance. We did not measure plasma DTG or RAL levels to
check whether issues of nonadherence could be contributing to VF.

In conclusion, we conducted one of the largest analyses of the HIV-1C 3′PPT region,
showing great conservation of the region at the nucleotide and amino acid level. Al-
though we did not detect any association of 3′PPT mutations with VF on INSTI-based
cART, our data were limited on the number of 3′PPT sequences generated from patients
failing an INSTI-containing regimen without INSTI mutations. However, our data add to
a growing list of studies that have found no association of 3′PPT mutations with INSTI
resistance [17,18]. Future studies should also investigate the role of other HIV-1 genes
outside of Pol as this might enhance our understanding of mechanisms associated with
INSTI resistance.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/pathogens10081027/s1, Table S1: HIV-1C nef 3′PPT variability amongst 12 therapy expe-
rienced individuals experiencing VF while on DTG/RAL ART. We included the two proximal and
last distal nct positions to the 3′PPT to complete aminoacid picture of the region; 3′polypurine tract,
3′PPT; nct, nucleotide; VL, viral load; seqs., sequences; VF, virological failure; DTG, dolutegravir;
RAL, raltegravir; cART, combination antiretroviral therapy, Adapted from Figure 2a of Malet I
et al. [7]; Figure S1: HIV-1C nef 3′PPT variability amongst sequences from individuals on cART and
not on ART, n = 5959. cART, combination antiretroviral therapy; 3′PPT, 3′polypurine tract; Figure S2:
HIV-1C nef 3′PPT variability amongst cART naive individuals, n = 1263; Figure S3: HIV-1C nef 3′PPT
variability amongst individuals on ART with VL ≤ 400 copies/mL, n = 4483; Figure S4: HIV-1C
nef 3′PPT variability amongst individuals on ART with VL > 400 copies/mL, n = 213; Figure S5:
HIV-1C nef 3′PPT variability amongst sequences from individuals on ART and not on ART, n = 2992
(hypermutations removed); Figure S6: HIV-1C nef 3′PPT variability amongst ART naive individuals,
n = 762 (hypermutations removed); Figure S7: HIV-1C nef 3′PPT variability amongst individuals on
ART with VL ≤ 400 copies/mL, n = 2074 (hypermutations removed); Figure S8: HIV-1C nef 3′PPT
variability amongst individuals on ART with VL > 400 copies/mL, n = 119 (hypermutations removed).

https://www.mdpi.com/article/10.3390/pathogens10081027/s1
https://www.mdpi.com/article/10.3390/pathogens10081027/s1
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