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ABSTRACT For years, animal selection in livestock species has been performed by selecting animals based on genetic inheritance.
However, evolutionary studies have reported that nongenetic information that drives natural selection can also be inherited across
generations (epigenetic, microbiota, environmental inheritance). In response to this finding, the concept of inclusive heritability, which
combines all sources of information inherited across generations, was developed. To better predict the transmissible potential of each
animal by taking into account these diverse sources of inheritance and improve selection in livestock species, we propose the “trans-
missibility model.” Similarly to the animal model, this model uses pedigree and phenotypic information to estimate variance compo-
nents and predict the transmissible potential of an individual, but differs by estimating the path coefficients of inherited information
from parent to offspring instead of using a set value of 0.5 for both the sire and the dam (additive genetic relationship matrix). We
demonstrated the structural identifiability of the transmissibility model, and performed a practical identifiability and power study of the
model. We also performed simulations to compare the performances of the animal and transmissibility models for estimating
the covariances between relatives and predicting the transmissible potential under different combinations of sources of inheritance.
The transmissibility model provided similar results to the animal model when inheritance was of genetic origin only, but outperformed
the animal model for estimating the covariances between relatives and predicting the transmissible potential when the proportion of
inheritance of nongenetic origin was high or when the sire and dam path coefficients were very different.
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FOR years, animal selection in livestock species has been
performed by selecting animals to be the parents of the

next generation based on their breeding values for the trait of
interest (Fisher 1918). The theory behind this method is that,
in addition to the common environmental effects shared by
relatives, phenotypic resemblance between relatives is of ge-
netic origin. Selection is therefore efficient because additive
genetically caused phenotypic variation is intergenerational-
ly stable (Mameli 2004). Indeed, DNA sequence is transmit-
ted from parent to offspring (i.e., inherited), and, because
genes play an important role in the development of all

phenotypes, the transmission of this genetic information con-
tributes to the phenotypic similarity between parents and
offspring. However, it is very simplistic to consider that only
the DNA sequence is transmitted from one generation to the
next. Evolutionary studies have reported that nongenetic in-
formation that drives evolution, and natural selection can
also be inherited across generations [see Jablonka and
Lamb (2008), Bonduriansky et al. (2012), and O’Dea et al.
(2016) for examples describing how nongenetic inheritance
could be a key transient mechanism by which organisms
adapt to rapid environmental change]. In response to this
finding, evolutionary biologists have developed the concept
of inclusive or general heritability (Mameli 2004; Danchin
et al. 2011), which combines all sources of information in-
herited across generations. The existence of nongenetic in-
herited effects is one of the many explanations given to
the missing heritability problem that is reported mainly in
humans (Manolio et al. 2009), i.e., genetic variants in
genome-wide association studies (GWAS) cannot completely
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explain the heritability of traits. In addition to the possible
complex genetic architecture of traits (epistasis, imprinting,
etc.), it has been postulated that mechanisms unrelated to
the DNA sequence may explain the differences between her-
itability measurements using pedigrees or SNPs (Eichler et al.
2010; Sandoval-Motta et al. 2017). Many additional inheri-
tance mechanisms have been described, and sometimes it is
difficult to distinguish one from another (Rossiter 1996). For
simplicity, we propose to classify these mechanisms into two
main categories based on the medium of transmission: (1)
the inherited information is transmitted across generations
via a physical transmission support as is the case for epige-
netic marks (epigenetic inheritance), metabolites, and sym-
bionts (microbiota inheritance); and (2) the information is
not transmitted via a physical transmission support (environ-
mental inheritance). Numerous studies have emphasized
the importance of epigenetics in mammal and plant traits
(Quadrana and Colot 2016; Charlesworth et al. 2017). In
addition, there is now evidence that some epigenetic marks
(histone modifications, mRNA and DNA methylation, etc.)
that modulate gene expression are transmitted transgenera-
tionally (Miska and Ferguson-Smith 2016; van Otterdijk and
Michels 2016). Among the other information that is physi-
cally transmitted across generations, one of the most impor-
tant is probably themicrobiota. Themicrobiota consists of the
symbiotic microbial cells (bacteria, archaea, viruses, and eu-
karyotic microbes) that reside in, and on, the bodies of ani-
mals and plants (Turner et al. 2013; Shreiner et al. 2015).
These microbes have tremendous potential to impact physi-
ology, in both health and disease, of their host (Sommer and
Bäckhed 2013; Marchesi et al. 2015). The vertical transmis-
sion of the microbiota has been described in different species
(Cankar et al. 2005; Ley et al. 2006; Abecia et al. 2007;
Sylvain and Derome 2017), confirming that the microbiome
is part of the information transmitted across generations
(Sandoval-Motta et al. 2017). The term environmental inher-
itance that we propose here refers to other sources of infor-
mation transmitted across generations that do not rely on
a physical transmission medium, that is, information that
passes from one generation to another via learning mecha-
nisms [behavioral (Jablonka and Lamb 2014), cultural inher-
itance (Feldman and Cavalli-Sforza 1975; Danchin et al.
2011)] or transmission of environmental conditions (ecolog-
ical inheritance). All these phenomena have been explored in
evolutionary studies to understand the mechanisms that
drive natural selection (Mameli 2004). Although discussed
(Goddard and Whitelaw 2014), they are not yet taken into
account in the context of selection in livestock species. None-
theless, if, as stated in evolution studies, nongenetic inheri-
tance is much more important than genetic inheritance
(Mameli 2004), then not considering it for selection could
mean that the maximal progress for the selected population
may never be reached, or, even worse, that the transmissible
potential of an individual be misevaluated because themodel
(animal model) used to study the covariances between rela-
tives is inappropriate.

The aim of this studywas to present amodel for estimating
the inclusive heritability of traits in livestock species and pre-
dicting the transmissible potential of individuals based on
genealogical and phenotypic information. The first part of
the paper gives a brief overview of the mathematical models
proposed in the literature for modeling the different sources
of nongenetic inheritance and describes our transmissibility
model for inclusive heritability. The second part reviews the
properties of the transmissibility model: demonstration of the
structural identifiability of the model, comparison of the prac-
tical identifiability of the transmissibility model with that of a
model aiming to disentangle genetic and nongenetic sources of
inheritance, and power analysis of the transmissibility model.
The third part compares, using simulation studies, the perfor-
mances of the animal model and the transmissibility model for
selection (i.e., for estimating covariances between relatives
and predicting the transmissible potential of individuals).

Materials and Methods

Overview of the mathematical models for different
sources of inclusive inheritance in a livestock context

The path coefficient diagram describing the transmission of the
different inherited factors in livestock species is provided in Fig-
ure 1. Let us consider an offspring i born from sire s and dam d.

Genetic inherited effects: An animal receives half of its DNA
from its father and half from its mother. Following Mendelian
theory, the additive genetic value a (or breeding value) of an-
imal i is then ai ¼ 0:5ðad þ asÞ þ ea;i, where ea;i is the Mende-
lian sampling [i.e., the deviation of the breeding value of animal
i from the average breeding value for both parents (Falconer
1974)], considering no inbreeding, ea;i � N

�
0; 12s

2
a

�
, with s2

a
the additive genetic variance. Thus a � MVNð0;As2

aÞ with A
the numerator relationship matrix.

Epigenetic inherited effects: Tal et al. (2010) proposed a
mathematical model for the transmission of epigenetic marks
used later by Varona et al. (2015) and Paiva et al. (2018a) in
the context of animal breeding. The model is built on the
idea that, during the vertical transmission of epigenetic
marks frommother to offspring and from father to offspring,
an unknown proportion of them is lost (thus not transmitted
to the next generation). This unknown probability of chang-
ing the epigenetic state during gametogenesis and/or early
development is called the reset coefficient v; and can be
different for the sire and the dam (vs and vd, respectively).
Consequently, the model proposed for the epigenetic value
ðepiÞ of an individual is: epii ¼ lsepis þ ldepid þ eepi;i with
ls ¼ 0:5ð12 vsÞ; ld ¼ 0:5ð12 vdÞ and (under the assump-
tion that the variance s2

epi of transgenerational epigenetic
effects is constant across generations) eepi;i � N

�
0;h

12 1
4ð12vsÞ2 2 1

4ð12vdÞ2
i
s2
epi

�
. Thus epi � MVNð0;Ts2

epiÞ;
with T the matrix of epigenetic relationships between
individuals.
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Microbiota inherited effects: To our knowledge, no mathe-
matical model for the transmission of the microbiota has
been proposed in the literature. However, there is evidence
that part of the microbiota received by an offspring is ver-
tically transmitted and another part is horizontally trans-
mitted from environmental sources including comates
(Bright and Bulgheresi 2010). The vertical transmission re-
flects the inheritance of symbionts from the mother, and,
rarely, from both parents. This is particularly true in live-
stock species, where generally no direct contact between
sires and offspring is possible. Consequently the model for
the transmission of the “microbiota value” ðmicÞ of an indi-
vidual following these rules could be: mici ¼ gmicdþP
j2Ii

gj9micj þ emic;i, where g is the proportion of microbiota

inherited from the mother, gj9 is the proportion of micro-
biota transmitted by individual j sharing the same environ-

ment Ii as the target individual i, and emic;i � N
�
0;�

12 g2 2
P
j2Ii

gj9
2
�
s2
mic

�
. Thenmic � MVNð0;Bs2

micÞ, where

B is the microbial relationship matrix.

Cultural and behavioral inherited effects: Culture is a
systemof inheritance via social learning; it has been described
to be transmitted through vertical, horizontal, and oblique
pathways. Nearly 50 years ago, Feldman and Cavalli-Sforza
(1975) proposed a model for cultural inheritance. In their
model, the cultural value of an individual is defined as the
sum of a fraction of the cultural values of its parents and of
animals having an influence on the target animal (transmis-
sion through nonparental elders and animals of the same age

group). Due to the rearing conditions used in livestock spe-
cies, most often among the two parents only the dam can
have a parental cultural influence on her offspring (with sev-
eral exceptions in meat sheep, meat cattle species). Thus, the
model can be written as: culti ¼ kcultd þ

P
j2Ii

kj9cultj þ ecult;i�
0#k# 1; 0# kj9# 1; kþP

j2Ii
kj9 ¼ 1

�
; which is a model

equivalent to that proposed for microbiota inheritance. Con-
sequently, it will be difficult to distinguish cultural andmicro-
biota values in practice without a specific experimental
design or without additional information on the microbiota
and/or the behavior of animals. We thus propose, in
the context of selection in livestock species, to combine
them into a single term: the single-parent transmitted

value
�
spi ¼ dspd þ

P
j2Ii

dj9spj þ esp;i

�
. In addition, for simplic-

ity, we will consider that individuals j sharing the same envi-
ronment as the target individual i throughout its life are
sampled randomly in the population. The model describing
the vertical transmission of the single parent transmitted
value can therefore be simplified to: spi ¼ dspd þ esp;i;
ð0# d# 1Þwith  esp;i � Nð0; ð12 d2Þs2

spÞ. It should be noted
that this model is an oversimplification of the transmission
of culture/behavior/microbiota, the purpose of which is
solely to underline the difficulty of separating genetic from
nongenetic effects, even in a simple case.

Ecological inherited effects: In livestock species, unlike wild
species, animals do not choose their environment; it depends
entirely on the farming system used. Consequently, we con-
sider that there is no ecological inheritance in livestock
species.

Figure 1 Path coefficient diagram describing the transmission of the different inherited factors in livestock species. a, genetic effects; epi, epigenetic
effect; mic, microbiota effect; cult, cultural effect; y, phenotype; e, residual. Indices s, d, o and i refer to sire, dam, offspring, and comate i, respectively.
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Therefore, the different sources of inheritance in livestock
species can bemodeled using three different models: a model
in which both parents influence the inherited value with a
knowncoefficient of transmission (genetic effects); onewith a
unknown coefficient of transmission (epigenetic effects); and
a third model, in which, of the two parents, only the dam
vertically transmits the inherited information (microbiota,
cultural, and behavioral inheritance).

Model proposed for inclusive inheritance in
livestock species

Thephenotypeof an individual is the result of the combination
of all these inherited factors and other environmental effects.
To our knowledge, no studies have taken into account all of
these sources of variation in a singlemodel in order to explain
phenotypic variability. However, several have investigated
two inherited factors at a time (Tal et al. 2010; Danchin
et al. 2013; Varona et al. 2015) by considering additivity of
the effects of the different inherited factors. Under this as-
sumption, the phenotype of an individual considering all the
inherited factors is:

yi ¼ xibþ ai þ epii þ spi þ ei; (1)

where b is the vector of fixed effects, and xi the vector that
links the fixed effect to the observation of animal i;
ai; epii and spi are the additive genetic, epigenetic and sin-
gle-parent transmitted values of animal i, respectively,
that follow the aforementioned models; ei is the residual
with e � MVNð0; Is2

e Þ. Given the laws of transmission of
the different inherited factors; an animal i will transmit
1
2ai þ 1

2 ð12 vsÞepii to its offspring if i is a male (=sire trans-
missible potential of individual i), while it will transmit
1
2ai þ 1

2 ð12 vdÞepii þ dspi to its offspring if i is a female
(= dam transmissible potential of individual i). In this
model, the dam transmissibility (the dam-offspring regres-

sion) is bOD ¼ 0:5s2
aþ0:5ð12 vdÞs2

epiþds2
sp

s2
aþs2

epiþs2
spþs2

e
; and the sire transmissibil-

ity (the sire-offspring regression) is bOS ¼ 0:5s2
aþ0:5ð12 vsÞs2

epi

s2
aþs2

epiþs2
spþs2

e
.

These transmissibilities are useful to compute the response
to selection: R ¼ SmbOS þ Sf bOD; where Sf and Sm are the
female andmale selection differentials, respectively. Theoret-
ically, the parameters of Equation 1 are identifiable (see Ap-
pendix A for the demonstration). However, a very large
number of observations and a particular population structure
would be necessary to estimate them in practice. For these
reasons, we propose to combine the different transmissible
potentials of an individual i into a single “transmissible value”
ti with the following model of transmission:

ti ¼ vsts þ vdtd þ et;i; et;i � N
�
0;
�
12v2

s 2v2
d
�
s2
t
�
;

where vs; vd are the path coefficients of transmission from
the sire and the dam, respectively, that follow the following
constraints: 0#vs # 1; 0#vd # 1; 0#vs þ vd # 1: Thus,
in this model, the two path coefficients of transmission can be

0.5 as in the traditional animal model, , 0.5 in agreement
with the epigenetic model or one coefficient can be . 0.5 in
agreement with single parent inheritance, which is of partic-
ular interest for the dam side. The corresponding model
explaining phenotypic variation is:

yi ¼ xibþ ti þ ei

with t � MVNð0;Ms2
t Þ and e � MVNð0; Is2

e Þ; whereM is the
matrix of transmission between individuals (transmission re-
lationship matrix) and I the identity matrix. We call this
model the “transmissibility model”. The transmission rela-
tionshipmatrix is a symmetric matrix with 1’s on the diagonal
and rij as off-diagonal entries. For the case of two animals i; j

with n common ancestor ðlÞ rij ¼
Pn
l¼1

rij;l with rij;l ¼ v
kij;l
s v

qij;l
d ,

kij;l = kil þ kjl; qij;l ¼ qil þ qjl, where kil; qil are the number of
sire and dam transmissions between ancestor l and animal i,
respectively. The transmission relationship matrix can be
computed through its inverse, which can be easily obtained
by the following decomposition, M21 ¼ L0D21L; where D
is a diagonal matrix with variances of et relative to s2

t as
components (i.e., ð12v2

s 2v2
dÞ if both parents are known,

ð12v2
dÞ for animals of unknown sire, ð12v2

s Þ for animals of
unknown dam, and 1 for animals for which both parents are
unknown), L is a lower triangular matrix with 1’s on the di-
agonal and the negatives of the sire and dam coefficients of
transmission as off-diagonal entries.

In the transmissibilitymodel, theproportion of transmitted
variance is t2 ¼ s2

t
s2
t þs2

e
, the sire-offspring regression and the

dam-offspring regression (sire and dam transmissibilities)
are bOS ¼ vst

2   and  bOD ¼ vdt
2, respectively. The response

to selection is thus R ¼ Smvst
2 þ Sfvdt

2; where Sf and Sm
are the female and male selection differentials, respectively.

The parameters of the transmissibility model can be esti-
mated with the restricted maximum likelihood method
(REML) using ASReml, and the OWN Fortran program that
we have developed. This OWN Fortran program is freely
available on the zenodo website: https://doi.org/10.5281/
zenodo.1487869, it can be used to fit a transmissibility model
with different or equal path coefficients of transmission for
the sire and the dam.

In the transmissibility model, variance s2
t of the transmis-

sible potential, sire, and dampath coefficients of transmission
ðvs;vdÞ estimates depend on the relative proportion of vari-
ance and path coefficients of each inherited factor. Let us
describe different schematic cases that help to understand
the behavior of the transmissibility model. For simplicity,
we consider that phenotypes are derived from Equation 1
with sire and dam epigenetic path coefficients of transmission
equal to 0.25 and 0.40, respectively, single parent path co-
efficient of transmission equals to 0.9, total variance equals to

1, and
s2
aþs2

epiþs2
sp

s2
aþs2

epiþs2
spþs2

e
¼ 0:6 in all examples.

1. If the inheritance is mainly of genetic origin ðs2
a ¼

0:5;s2
epi ¼ 0:05;s2

sp ¼ 0:05Þ, the sire and dam path coef-
ficient of transmission estimated with the transmissibility
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model will be close to 0.5, but slightly higher for the dam
side ðvs ¼ 0:46;vd ¼ 0:54Þ; and s2

t
s2
t þs2

e
¼ 0:58; which is

close but , 0.6;
2. if the three inherited factors equally participate in the in-

heritance ðs2
a ¼ s2

epi ¼ s2
sp ¼ 0:2Þ; the dam path coeffi-

cient of transmission obtained with the transmissibility
model is higher than that of the sire (0.68 vs. 0.26), and
s2
t

s2
t þs2

e
decreases to 0.53. Finally,

3. if the inheritance is mainly of single-parent origin
ðs2

a ¼ 0:05;s2
epi ¼ 0:05;s2

sp ¼ 0:5Þ; then the disequilib-
rium between sire and dam path coefficient of transmis-
sion is high ðvs ¼ 0:05;vd ¼ 0:87Þ; and s2

t
s2
t þs2

e
is close to

0.6 (0.57). Additional expected estimates in the transmis-
sibility model compared to parameters of the true model
of inheritance are provided in Supplemental Material, Fig-
ures S1, S2, and S3.

Structural, practical identifiability, and power analysis

The parameters of the transmissibility model are structurally
identifiable (see Appendix B for the demonstration). Their
practical identifiabilitywas assessed by usingmethods proposed
by Visscher and Goddard (2015), Raffa and Thompson (2016),
and Raue et al. (2009). A detailed description of this practical
identifiability study is provided in Appendix C. Briefly, the prac-
tical identifiability study is as follows: the expected likelihood
ratio test (ELRT) comparing the true to the estimation model is
literally expressed as a function of the parameters and the struc-
ture of the population (i.e., number and size of families with
determined relationships). To do so, a simplified population
structure with homogeneous families is considered. Then, the
profile likelihood (PL), which reflects the minimal value of
ELRT, is computed for each parameter to estimate. A close in-
spection of changes in PL with the value of the parameter being
estimated enables the detection of directions where the likeli-
hood flattens out. In such situations, the parameter is consid-
ered as practically nonidentifiable. In addition, the power for
testing a given hypothesis can be derived from the ELRT as
described by Raffa and Thompson (2016).

We investigated the practical identifiability of the trans-
missibility model, and of a model that aims to distinguish
genetic fromnongenetic transmittedeffects. For simplicity,we
considered, for this practical identifiability study, that non-
genetic effects were of epigenetic origin only, i.e., the true
model is yi ¼ ai þ epii þ ei; and the two models of estimation
are yi ¼ ai þ epii þ ei (mod1) and yi ¼ ti þ ei. To ensure
structural identifiability in mod1, six different types of family
relationship are sufficient: sire – offspring, dam – offspring,
paternal half-sibs, maternal half-sibs, uncle-nephew and
aunt-nephew. Those relationships are also sufficient to en-
sure the structural identifiability of the transmissibility
model. We thus investigated the practical identifiability of
both mod1 and the transmissibility model for three different
pedigree sizes (small, medium, and large), which differed
according to the number of family relationships as described

in Table 1. Practical identifiability can be evaluated for an
infinite number of combinations of the true genetic, epige-
netic variances, and reset coefficients. We considered, as an
illustration, the case of a trait of moderate heritability (0.2),
equal genetic and epigenetic variances, and six different val-
ues of the sire and dam epigenetic coefficient of transmission
combination (lsld: 0.2 0.2, 0.2 0.3, 0.2 0.4, 0.3 0.3, 0.3 0.4,
and 0.4 0.4).

We then computed the power of the transmissibilitymodel to
detect nongenetic inheritance (i.e., at least one of the two path
coefficients of transmission differs from 0.5), while the true
model of transmission was yi ¼ ai þ epii þ ei using the three
aforementioned pedigree structures, and considering different
combinations of the genetic, epigenetic variances (i.e.,
s2
aþs2

epi

s2
aþs2

epiþs2
e
¼ 0:2; 0:4; or 0.6; s2

a
s2
aþs2

epi
¼ 0:3; 0:5; or 0.7) in the

case of equal sire and dam path coefficients of transmission.
Finally, we also computed, for medium pedigree sizes, the
power to detect nongenetic inheritance, when the sire and
dam have different epigenetic path coefficients of transmission
in the true model and different path coefficients of transmission
in the transmissibility model used for the estimation.

Validation of the transmissibility model
using simulations

Phenotype simulation: We performed a simulation study to
evaluate the ability of the transmissibility model in complex
pedigrees to: (1) detect nongenetic inheritance, (2) estimate
regression coefficients for different types of relatives, and (3)
predict the transmissible values of individuals. In the latter
two cases, the performances of the transmissibility model
were compared with those of the animal model.

Datasets consisted of a four-generation population. The first
generation comprised 25 sires and 100 dams that were ran-
domly mated to give birth to 800 offspring (eight offspring per
dam, sex ratio = 1/2). Among the progeny, 25 males and
100 females were sampled randomly to be the parents of the
next generation. The same process was repeated for each
generation. The final population comprised 2525 individuals.

The genetic, epigenetic, and single-parent transmitted
values for each animal i in the first generation were sam-
pled from the following distributions: ai � Nð0;s2

aÞ; epii �
Nð0;s2

epiÞ; spi � Nð0;s2
spÞ. Then, the different inherited val-

ues of animal j born to sire s and dam d in subsequent
generations were obtained by sampling from:

aj � N
�
1
2
as þ 1

2
ad;

s2
a
2

�
;

epij � N
�
1
2
ð12 vsÞepis

þ 1
2
ð12 vdÞepid;

h
12

1
4
ð12vsÞ2 2 1

4
ð12vdÞ2

i
s2
epi

�
;

spj � N
�
dspd;

�
12 d2

�
s2
sp

�
:
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Phenotypes were then generated for all individuals of the first
three generations, and for 1/4 of the animals of the last
generation (randomly sampled) by:

y � MVNðXbþ aþ epiþ sp; Is2
e Þ; where b = [10 20 30]T

is the vector of the effect of one factor with three levels. The
level of the factor is sampled randomly for each individual
from a uniform distribution. For the remaining 3/4 of the
animals of the last generation (600), no phenotypes were
generated. These individuals will be used to evaluate the
ability of the models to predict the transmissible potential of
an individual based on information from relatives only (no
phenotypic information). In addition, among these indi-
viduals, 400 were considered as having only one known
parent; only the sire was known for 200 and only the dam
was known for 200, randomly sampled. To do so, we mod-
ified the pedigree to change the ID of the sire or the dam to
unknown.

We simulated the four datasets described in Table 2. The
sum of the sire and dam transmissibility was the same in
all datasets, but datasets differed in the ratio of heritable

variance to phenotypic variance
s2
aþs2

epiþs2
sp

s2
aþs2

epiþs2
spþs2

e
, in the propor-

tion of genetic origin for the heritable variance, and in the
disequilibrium between sire and dam transmissibility. In
dataset 1, the heritable variance was of genetic ori-
gin only: sire and dam transmissibilities were equal
ðbOS=bOD ¼ 1Þ. In datasets 2 and 3, sire and dam transmis-
sibilities were different. The ratio of heritable variance to
phenotypic variance and the ratio of sire transmissibility to
dam transmissibility was the same for the two datasets�

s2
aþs2

epiþs2
sp

s2
aþs2

epiþs2
spþs2

e
¼ 0:409; bOS=bOD ¼ 0:78

�
but the proportion

of genetic origin for the heritable variance differed (63% in
dataset 2, and 10% in dataset 3). Finally, the last dataset
(dataset 4) had, as in dataset 3, a low proportion of genetic
origin for the transmitted variance (8%) associated with a
high disequilibrium between sire and dam transmissibility
ðbOS=bOD ¼ 0:37Þ.

Parameter estimation

Twomodels were used to analyze the phenotypes: the animal
model ðyi ¼ xibþ ai þ eiÞ and the transmissibility model
ðyi ¼ xibþ ti þ eiÞ.

For each dataset type, 100 independent replicates were
simulated.

Evaluation of the performance of the
transmissibility model

The performance of the transmissibility model was assessed
by:

1. Its ability to detect nongenetic inheritance. The animal
model is a special case of the transmissibility model for
which sire and dam coefficients of transmission are fixed
to 0.5; it is thus nested in the transmissibility model. After
model convergence, the null hypothesis H0 “sire and dam
coefficients of transmission are equal to 0.5” was tested
against the H1 hypothesis “almost one of the coeffi-
cients of transmission (sire or dam) differs from 0.5”
by performing a likelihood ratio test of size 5% compar-
ing the transmissibility model with the animal model
(mixture x2

1; x
2
2). Rejecting the null hypothesis H0 per-

mits the conclusion that the underlying model is not
purely additive genetic. The realized type I error is the
number of replicates over 100, for which H0 was
rejected when analyzing dataset 1, the power is the
number of replicates over 100 for which H0was rejected
when analyzing datasets 2–4.

2. Its ability to estimate the regression coefficient between dif-
ferent types of relatives. The regression coefficients
obtained with the two models of estimation were com-
pared with the expected values assuming the hypothesis
of the simulation model. Special attention was paid to the
sire-offspring and dam-offspring regression coefficients
(sire and dam transmissibilities). In addition, sire and
dam path coefficients of transmission and the ratio of
transmitted variance to phenotypic variance obtained
with the genetic and transmissibility models were exam-
ined in detail to better comprehend how these models
behave with data simulated according to a different model
(Equation 1).

3. Its ability to predict the transmissible potential of individu-
als. The sire and dam “transmissible values” obtained with
the transmissibility model ( bvst̂ for sires,cvdt̂ for dams) and
the additive genetic values predicted by the animal model
(0.5â for sires and dams) were compared with the simu-
lated transmissible values (weighted sum of the different
sources of inheritance, i.e., 0:5aþ 0:5ð12 vsÞepi for sires,
0:5aþ 0:5ð12 vdÞepiþ dsp for dams) for four different

groups of animals: all animals with a phenotype, prog-
eny without a phenotype and both parents known,

Table 1 Pedigree structure of the three populations considered for the practical identifiability study

Small Medium Large

Number of paternal half-sibs 25 * 30 half-sibs 250 * 30 half-sibs 500 * 100 half-sibs
Number of maternal half-sibs 25 * 30 half-sibs 250 * 30 half-sibs 500 * 100 half-sibs
Number of sire-offspring couples 1000 5000 25,000
Number of dam-offspring couples 1000 5000 25,000
Number of uncle-nephew couples 1000 5000 25,000
Number of aunt-nephew couples 1000 5000 25,000
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progeny without a phenotype and unknown dam, and
progeny without a phenotype and unknown sire. Compar-
ison was based on the correlation between the esti-
mated and simulated transmissible value, and the bias
was quantified using the coefficient of regression of the
simulated to the estimated transmissible value.

Data availability

The authors state that all information necessary for perform-
ing the simulation study presented in the manuscript are
represented fully within the manuscript. Code source and
tutorial to apply the transmissibility model are available
on the zenodo website https://doi.org/10.5281/zenodo.
1487869. Additional figures describing expected transmissi-
bility model estimates in comparison with the true model of
inheritance are available on Figshare. Figure S1 provides the
expected estimates in the transmissibility model, while the
true model is yi ¼ xibþ ai þ epii þ ei. Figure S2 provides
the expected estimates in the transmissibility model while
the true model is yi ¼ xibþ ai þ epii þ spi þ ei. Figure S3
compares the expected error term variance in the transmis-
sibility model to the Mendelian sampling variance. Supple-
mental material available at FigShare: https://doi.org/
10.25386/genetics.8275307.

Results

Practical identifiability and power analysis

The profile likelihoods of the transmissibility model and the
model designed to dissociate genetic from nongenetic trans-
mission (i.e., yi ¼ ai þ epii þ ei) are shown in Figure 2 for six
true values of the sire/dam reset coefficient. The shape of the
curve for each parameter to estimate illustrates its practical
identifiability. Structural nonidentifiable parameters are
characterized by a flat profile likelihood that can have
a minimum, but do not exceed a threshold for increasing
and/or decreasing values of the parameter. On one hand,
the profile likelihoods of parameters of the model that aims
at dissociating genetic from epigenetic effects were, in the

case of equal sire and dam epigenetic path coefficient of
transmission ðl ¼ 0:5ð12 vdÞ ¼ 0:5ð12 vsÞÞ, flat for increas-
ing values of the relative importance of the transmitted vari-

ance
��

H2
0 ¼ s2

aþs2
epi

s2
aþs2

epiþs2
e

��
and decreasing values of the relative

importance of the genetic variance
�
r0 ¼ s2

a
s2
aþs2

epi

�
, and for both

increasing and decreasing values of the epigenetic path coef-
ficient of transmission whatever the pedigree size. Difference
in the sire and dam epigenetic path coefficient of transmission
helps the practical identifiability of the parameters. However,
even for large pedigree sizes, the profile likelihood of the ge-
netic variance had difficulties exceeding the x2 threshold
value. On the other hand, even for small pedigree sizes, the
profile likelihood of the proportion of transmitted variance� s2

t
s2
t þs2

e

�
and path coefficients of the transmissibility model in-

creased substantially in both upwards and downward direc-
tions. These results indicate that all parameters of the
transmissibility model are practically identifiable even for
small pedigree size, while those of the model designed to dis-
sociate genetic from nongenetic transmission effects are not.

The power of the transmissibility model to detect non-
genetic inheritance, under the assumption that sire and dam
path coefficients of transmission are equal, as a function of the
epigenetic path coefficient of transmission is provided in Fig-
ure 3 for different combinations of the true genetic and epi-
genetic variances. Its power to detect nongenetic inheritance
increased with pedigree size, proportion of transmitted var-
iance and relative importance of epigenetic variance. For
small pedigree sizes, the nongenetic inheritance could only
be detected in favorable cases: epigenetic path coefficient of
transmission above a certain threshold but significantly,0.5
ð0:1, l, 0:4Þ, proportion of transmitted variance.0.4 and
relative importance of epigenetic variance.0.5. For medium
pedigree sizes, the model’s power to detect nongenetic in-
heritance was .80% for many combinations of the true pa-
rameters. For large pedigree sizes, the power was close to
100% for all combinations. However, if the true epigenetic
path coefficient of transmission was close to 0.5, the model was
unable to detect nongenetic inheritance, regardless of pedigree

Table 2 Parameters of the simulations

Dataset 1 Dataset 2 Dataset 3 Dataset 4

s2
e 75 75 75 75

s2
a 34.357 33 5 5

s2
epi 0 17 45 45

1
2 ð12 vsÞ 0 0.059 0.333 0.200
1
2 ð12 vdÞ 0 0.265 0.411 0.475
s2
sp 0 2 2 10.099

d 0 0.7 0.7 0.7
s2
aþs2

epiþs2
sp

s2
aþs2

epi
þs2

spþs2
e

0.314 0.409 0.409 0.445

s2
a

s2
aþs2

epiþs2
sp

1.000 0.635 0.096 0.083

Sire transmissibility bOS 0.157 0.138 0.138 0.085
Dam transmissibility bOD 0.157 0.176 0.176 0.229

Phenotypes were simulated under the following model: yi � Nðxibþ ai þ epii þ spi ;s2
eÞ.
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size, because epigenetic transmission was confounded with ge-
netic inheritance (same mode of transmission). The power of
the transmissibility model to detect nongenetic inheritance con-
sidering different path coefficients of transmission for the
sire and the dam is provided in Figure 4. Once again, its
power to detect nongenetic inheritance increased with the
pedigree size, proportion of transmitted variance, relative
importance of epigenetic effects, and the distance of the
path coefficients to 0.5. In addition, the power to detect

nongenetic effects increased with the disequilibrium be-
tween sire and dam transmissibility.

Simulation

The power of the transmissibility model to detect nongenetic
inheritance was 12, 61, and 96% for datasets 2, 3, and 4,
respectively. The realized type I error was 4%.

The regression coefficients for different relatives were
calculated by using the variance component and path

Figure 2 Profile likelihood vs. parameters to estimate in a model designed to disentangle genetic and epigenetic effects and in the transmissibility
model. The true model is yi ¼ ai þ epii þ ei . The values of the true model are H2 ¼ s2

aþs2
epi

s2
aþs2

epiþs2
e
¼ 0:4, r = s2

a

s2
aþs2

epi
¼ 0:5, and six different combinations for

the epigenetic path coefficient of transmission are considered. The two models of estimation are yi ¼ ai þ epii þ ei (mod1) and the transmissibility
model yi ¼ ti þ ei . First four left panels: profile likelihoods for the parameters H2

0, r0; ls0; and ld0 for mod1. Three last panels: profile likelihoods for
t20;vs0; and vd0. Top to bottom: small, medium, and large pedigree sizes; colors of lines: different values of the combination ls; ld . Dotted horizontal
line: the x2 threshold value.
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coefficients of transmission used for the simulation or esti-
mated using the transmissibility and animal models as de-
scribed in Appendix D. The sire and dam transmissibilities
(bOS, bOD) obtainedwith the animal and transmissibility mod-
els are shown in Figure 5. When phenotypes were generated
according to the animal model (dataset 1), the sire and dam
transmissibilities obtained with the transmissibility and ani-
mal models were similar, and in line with the simulated trans-
missibilities. The SD of the transmissibilities were slightly
larger for the transmissibility model, in comparison with

the animal model (0.024 vs. 0.021 for sire transmissibility
and 0.023 vs. 0.021 for dam transmissibility). The transmis-
sibility model provided a good estimation of the dam and sire
transmissibilities for datasets 2–4 (on average 0.17, 0.17,
and 0.22 for the dam, and 0.15, 0.14, and 0.09 for the sire
for datasets 2–4). For datasets 2–4, the animal model tended
to underestimate the dam transmissibility on the one hand,
and overestimate the sire transmissibility on the other hand.
These under- and over-estimations increased with the pro-
portion of nongenetic heritable variance, and with the

Figure 3 Power to detect nongenetic inheritance with a transmissibility model considering equal path coefficients of transmission for the sire and the
dam. The true model is yi ¼ xibþ ai þ epii þ ei ; considering same sire and dam epigenetic path coefficients of transmission ðl ¼ ls ¼ ldÞ. Values of
the true model are H2 ¼ s2

aþs2
epi

s2
aþs2

epi
þs2

e
¼ 0:2;0:4 or 0.6, r = s2

a

s2
aþs2

epi
¼ 0:3;0:5; or 0.7 and varying values for the path coefficient of transmission

l 2 ½0:05; 0:5�. The model of estimation is the transmissibility model yi ¼ xibþ ti þ ei ; which considers the same path coefficients of transmission
for the sire and the dam ðvd ¼ vs ¼ vÞ. The null hypothesis H0 is v ¼ 0:5, the alternative hypothesis is H1 v 6¼ 0:5.
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disequilibrium between sire and dam transmissibilities. The
ratio of the regression coefficient between other relatives
obtained with the animal and transmissibility models to the
expected regression coefficient under the simulated model
are presented in Figure 6. Both models provided good esti-
mations for all the regression coefficients for dataset 1. As for
the sire and dam transmissibilities, the discrepancy between
the regression coefficients estimated with the animal model
and the values expected using the simulated model increased
with the proportion of nongenetic heritable variance and
the disequilibrium between sire and dam transmissibilities

(datasets 2–4). The greatest difference between estimated
and simulated regression coefficients was for paternal half-
sibs, paternal half-sibs of the dam-offspring (four times
higher than the simulated value), and between paternal
half-sibs of the sire and offspring (six times higher than the
simulated value) in dataset 4. The regression coefficients
obtained with the transmissibility model were still well esti-
mated when the proportion of nongenetic heritable variance
increased (datasets 2 and 3). However, with the transmissi-
bility model, an increase in the proportion of heritable vari-
ance from a single parent origin resulted in a bias in the

Figure 4 Power to detect nongenetic inheritance with the transmissibility model considering different path coefficients of transmission for the sire and

the dam. The true model is yi ¼ xibþ ai þ epii þ ei . Values of the true model are H2 ¼ s2
aþs2

epi

s2
aþs2

epi
þs2

e
¼ 0:2;0:4; or 0.6, r = s2

a

s2
aþs2

epi
¼ 0:3; 0:5; or 0.7 and

varying values for the sire and dam epigenetic path coefficient of transmission ls 2 ½0:05;0:5�and  ld 2 ½0:05;0:5�: The model of estimation is the
transmissibility model yi ¼ xibþ ti þ ei . The null hypothesis H0 is vd ¼ vs ¼ 0:5, the alternative hypothesis is H1 vd 6¼ 0:5 or vs 6¼ 0:5

1084 I. David and A. Ricard



estimation of the regression coefficients between the off-
spring and its paternal uncle (the average ratios with simu-
lated values were 0.71 and 1.40 for paternal and maternal
half sibs of the dam, respectively).

The proportion of transmitted variance ðt2Þ and sire and
dam path coefficients of transmission estimated with the
transmissibility model, and heritability h2 obtained with
the animal model, are presented in Table 3 for all datasets.
The heritabilities estimated with the animal model were sim-
ilar for datasets 1–3 (0.31–0.32) and slightly (but not signif-
icantly) higher for dataset 4 (0.36). The general trend was an
increase of the proportion of transmitted variance estimated
with the transmissibility model from dataset 1–4. When data
were simulated using the animal model (dataset1), the coef-
ficients of transmission obtained with the transmissibility
model were on average slightly lower than 0.5 (0.46 and
0.47 for the sire and the dam path coefficient, respectively)
and the proportion of transmitted variance was slightly larger
than the simulated heritability (0.35 vs. 0.31). In datasets
2–4, the estimated sire coefficient of transmission was lower
(significantly in dataset 4) than the dam coefficient of trans-
mission, in accordance with the lower sire than dam simu-
lated transmissibility.

The correlations between the true and predicted trans-
missible potentials obtained with the transmissibility and
animal models for the different datasets are presented in

Table 4. When the transmissible potential was mainly of ge-
netic origin (datasets 1 and 2), the correlations between true
and predicted sire or dam transmissible potentials were the
same for the transmissibility and animal models for all types
of animals (with or without phenotypes). Within the sub-
group of animals without phenotypes, the correlation be-
tween simulated and predicted transmissible potentials was
highest when both parents were known. When the transmis-
sible potential was mainly not of genetic origin (datasets 3
and 4), the correlations between simulated and predicted
dam transmissible potentials were slightly (but not signifi-
cantly) higher for the transmissibility model in comparison
with the animal model, except for animals without pheno-
types and unknown dam. The biases in the estimation of the
transmissible potential obtained with both models are pre-
sented in Table 5. When the transmissible potential was
mainly of genetic origin, there was no important bias in the
prediction, whatever the model or animal subtype. When the
transmissible potential was mainly not of genetic origin
(datasets 3 and 4), its prediction tended to be less biased
with the transmissibility model than with the animal model,
the bias being higher for the sire transmissible potential than
for the dam transmissible potential (on average 0.64 and
0.96 for sires with phenotype; 1.13 and 1.00 for dams with
phenotype, 0.52 and 0.97 for sires without phenotype, 0.91
and 1.02 for dams without phenotypes for the animal and

Figure 5 Sire and dam transmissibilities estimated using the animal and transmissibility models for the different datasets. Dotted lines show the
simulated values.
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transmissibility model, respectively). Within the group of an-
imals without phenotypes, the biases obtained with the ani-
mal model were higher for animals (sires or dams) with an
unknown dam (ranging from 0.32 to 0.75), whereas the
biases obtainedwith the transmissibility model were relevant
for the sire transmissible potential of animals without pheno-
types and one unknown parent only (ranging from 0.87 to
1.28) but the SD was significant.

Discussion

Analyzing phenotypes with a model designed to disentangle
the different sources of inheritance from each other is chal-
lenging. This difficulty is well illustrated by the profile like-
lihoods obtained with a model aimed at dissociating genetic
and nongenetic inheritance, even if the parameters of such a
model are theoretically identifiable. For equal sire and dam
epigenetic path coefficient of transmission, on the one hand,

all values of l ¼ 0:5ð12 vdÞ ¼ 0:5ð12 vsÞ resulted in similar
profile likelihoods. On the other hand, the profile likelihood was
flat for all estimated values of r ¼ s2

a
s2
aþs2

epi
, 0.5 and of

H2 ¼ s2
aþs2

epi

s2
aþs2

epiþs2
e

. 0.4. These results suggest a certain amount
of mutual dependency between the estimates for the variance
components, probably due to the excessive flexibility of the
model via l that compensates the changes in the value of the
different variance components in both upwards and down-
ward directions. If the l estimate is close to 0.5 then the
epigenetic effect will mimic genetic effects and compensate
a decrease in its variance (i.e., different genetic and epige-
netic variances combinations ðr0Þ lead to the same likeli-
hood), and if the l estimate is close to 0, then the
epigenetic effect will mimic residual effects (different values
of H2

0 lead to the same likelihood). These findings are in line
with the conclusions on this model reported by Varona et al.
(2015). Identifiability is improved for H2 and ld ; when the
sire and dam path epigenetic coefficients of transmission

Figure 6 Ratio of regression coefficient be-
tween relatives to simulated regression co-
efficient estimated by the animal and
transmissibility models for the different data-
sets. The types of relatives are: 1, paternal
grand dam-offspring; 2, maternal grand
dam-offspring; 3, paternal half-sib of the sire
(paternal uncle 1)-offspring; 4, maternal half-
sib of the sire (paternal uncle 2); offspring; 5,
paternal half-sib of the dam (maternal uncle
1)-offspring; 6, maternal half-sib of the dam
(maternal uncle 2)-offspring; 7, paternal half-
sibs; 8, full-sibs.
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differ significantly. However, difficulties to separate genetic
and epigenetic variances remain. As detailed in Appendix A,
when only pedigree information is available, the possibility to
separate the different components in Equation 1 arises from
the comparison between the covariance between different
categories of relatives. Depending on the values of the pa-
rameters in Equation 1, these covariances can be very similar,
and a very large amount of specific structured data required
to estimate the parameters for the different sources of inher-
itance. The same difficulties have been encountered when
estimating the variance components in models aimed at sep-
arating different kinds of genetic effects [maternal and social
effects (Gerstmayr 1992; Cantet and Cappa 2008)]. Because
the data structure often does not meet the requirements
needed to disentangle the different sources of inheritance
[also suggested by Varona et al. (2015) when applying a
model aimed at separating genetic and nongenetic heritance
with the same sire and dam path coefficients of transmission
in a large dataset of 78,209 birth weight records], and be-
cause this distinction is not required for selection, we pro-
posed the transmissibility model. This model combines the
different inherited factors into a single transmissible value
that could prove useful for selection. The objective of this
model is not to quantify the different sources of inheritance
but to take them into account for selection. Less information
is needed to estimate the variance components of this model
as illustrated by its profile likelihood that shows that, even for
small pedigree sizes, the parameters of the transmissibility
model were practically identifiable, and justifies its applica-
tion to real data.

If the objective is to disentangle the different sources of
inheritance, then additional information is required to ensure
the practical identifiability of the variance components of the
different inherited factors. To study epigenetic inheritance,
high-throughput technologies that quantify DNAmethylation
are now well established (Couldrey and Cave 2014). DNA
methylation information obtained at the individual level
can be used to build the epigenetic relationship matrix T be-
tween individuals that will be integrated into the model to
explain phenotypic variability. However, it should be noted
that if stable epigenetic mutations are in high linkage disequi-
librium with the single nucleotide polymorphisms (SNPs)
available on the SNP chip for the species studied, this method
will not bring anything new to genomic selection (Goddard
and Whitelaw 2014). DNA methylation information from

relatives could also be used to estimate the probability of
epigenetic marks being erased during vertical transmission,
and provide an estimation of the path coefficients of trans-
mission for this inherited factor that could be included in the
model as a known parameter. Accounting for epigenetic ef-
fects in themodel could also be performed by adding the level
of methylation of each individual (Cortijo et al. 2014) as a
covariate explaining phenotype. For microbial inheritance,
16S rDNA amplicon sequencing is now used routinely for
microbial community profiling. Information on operational
taxonomic units (OTUs) can then be used to evaluate the
“distance” between the microbiota of two individuals to com-
pute the microbial relationship matrix B (Lozupone et al.
2011; Camarinha-Silva et al. 2017; Xia and Sun 2017). The
Bmatrix is then considered as known in the model and facil-
itates the estimation of the different variance components.
However, recent studies aimed at estimating microbiota var-
iance using this approach reported that almost all the genetic
variance passes intomicrobiota variance (Gilbert et al. 2018).
These results suggest that there is still some confusion about
the two factors, which can be explained by the genetic origin
of the variability of the microbiota (Davenport 2016;
Camarinha-Silva et al. 2017). Analyzing the two phenotypes
(trait of interest, microbiota) with a recursivemodel (Gianola
and Sorensen 2004) would probably help understanding this
point. However, further research is needed to implement this
kind of model on such a complex trait (beta diversity). To
decipher genetic from cultural effects, an experimental de-
sign based on partial cross-fostering has been proposed by
Danchin et al. (2013). However, it is not clear how this pro-
cedure avoids confusion between the microbiota and the cul-
ture as their modes of transmission are so close. Extracting
the cultural relationship between individuals by social net-
work analysis (Scott 2017)would probably bemore effective.
Nonetheless, this requires direct or indirect recording of an-
imal behavior that can be time-consuming and/or expensive
and/or difficult to set up for a large number of animals. At
present, it seems unrealistic to try to record all this additional
information in order to disentangle the different sources of
inheritance in the context of genetic evaluation. The trans-
missibility model overcomes these difficulties by combining
all these inherited factors into a single value: the transmissi-
ble potential t.

To complete the practical identifiability study and to better
understand the behavior of the transmissibilitymodel and the

Table 3 Proportion of transmitted variance and coefficients of transmission estimated with the
transmissibility model and heritability estimated with the animal model for each dataset

Dataset 1 Dataset 2 Dataset 3 Dataset 4

Animal model h2 0.32 6 0.04 0.31 6 0.05 0.31 6 0.05 0.36 6 0.05
Transmissibility

model
t2 0.35 6 0.06 0.36 6 0.06 0.40 6 0.09 0.42 6 0.09

Sire coefficient of
transmission

0.46 6 0.06 0.42 6 0.06 0.35 6 0.06 0.22 6 0.06

Dam coefficient of
transmission

0.47 6 0.07 0.47 6 0.07 0.44 6 0.09 0.55 6 0.10
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animalmodel in regard togenetic andnongenetic inheritance,
we evaluated by simulation the performance of the trans-
missibility model, and compared the results with the animal
model.We deliberately used a differentmodel to simulate the
data from the models used for the estimations (except for
dataset 1 which coincide with an animalmodel). Indeed, our
purpose was to not favor one of the models but to evaluate
their performances in the “real” world. Consequently, except
for dataset 1, the variance components obtained with the
two models are not comparable to those used for the simu-
lation and the performance of the models were assessed as
their ability to match as closely as possible the expected co-
variances between relatives and to predict the transmissible
potential of individuals.

The covariances between different kinds of relatives are
used to estimate the parameters of the transmissibility and
animal models. On the one hand, the animal model has to fit
these different covariances with themajor restriction of using
equal to 0.5 sire and dampath coefficients of transmission. On
the other hand, the transmissibility model offers more flexi-
bility with sire and dam path coefficients of transmission than
can vary from 0 to 1, although their summust always be, 1.
This higher flexibility resulted in a closer fit of the transmis-
sibility model with the simulated model compared with the
animal model in different situations as shown in Figure 5 and
Figure 6. When data were simulated under the assumption
that the covariance between relatives is of genetic origin only,
the path transmission coefficients (sire and dam) estimated
with the transmissibility model were close but , 0.5. This
apparent underestimation is the consequence of the bounded
parameter space for the sum of the two path coefficients of
transmission. Indeed, pure genetic inheritance correspond to a
transmissibility model with parameters at the boundary of the
parameter space (sum of the sire and dam path coefficients of

transmission = 1). The distribution of the estimated sum of
these two path coefficients over the simulation is thus trun-
cated to the right with a point mass at 1. This problem of
parameter estimation at the boundary of parameter space
has been reported previously (Kopylev 2012). It is thus not
possible to obtain an average estimation of the two parameters
at 0.5. However, the transmissibility model was able to cor-
rectly estimate the covariance between relatives and correctly
assess that the inheritance was of genetic origin only, as con-
firmed by the realized type I error obtained, which was close
to 5%. The predicted transmissible potentials were similar to
the breeding values obtained with the animal model. The
transmissibility model is thus able to model appropriately
the genetic transmission of phenotypes. When data were sim-
ulated under the assumption that the covariance between
relatives is of both genetic and nongenetic origin, the trans-
missibility model was able to correctly estimate sire and dam
transmissibilities in all situations,whichwas not the case of the
animal model, especially when the transmissibilities were very
different (dataset 4). On the one hand, the flexibility of the
transmissibility model that results from the possibility of using
different values for sire and dam path coefficients of transmis-
sion enables it to adjust the estimated regression between
relatives to the simulated values, even if the simulation model
is different. Of course, all the regression coefficients could not
be estimated exactly, especially when the sources of inheri-
tance were diverse and of non-negligible importance (i.e.,
the simulated model differed greatly from the estimation
model; dataset 4). In such cases, the limitations of the trans-
missibility model that arise from the use of equal transmitted
variance for both sexes become apparent. However, the bias in
the estimation of part of the regression coefficients is low, and
involves coefficients of low values. On the other hand, to fit as
close as possible to the simulated regression coefficients with

Table 4 Correlation (mean 6 SD) between predicted and true transmissible potential for the different datasets

Model Dataset 1 Dataset 2 Dataset 3 Dataset 4

Animals with phenotype Animal Sire 0.71 6 0.03 0.68 6 0.03 0.67 6 0.03 0.61 6 0.03
Dam 0.71 6 0.03 0.71 6 0.02 0.68 6 0.03 0.70 6 0.02

Transmissibility Sire 0.71 6 0.03 0.67 6 0.03 0.68 6 0.03 0.60 6 0.03
Dam 0.71 6 0.03 0.71 6 0.02 0.69 6 0.02 0.71 6 0.02

All animals without phenotypes Animal Sire 0.42 6 0.05 0.40 6 0.06 0.32 6 0.05 0.28 6 0.05
Dam 0.42 6 0.05 0.39 6 0.05 0.32 6 0.05 0.31 6 0.05

Transmissibility Sire 0.42 6 0.05 0.39 6 0.06 0.32 6 0.05 0.28 6 0.05
Dam 0.42 6 0.05 0.38 6 0.05 0.33 6 0.05 0.34 6 0.05

Animals without phenotypes,
both parents known

Animal Sire 0.52 6 0.07 0.49 6 0.08 0.39 6 0.08 0.34 6 0.08
Dam 0.52 6 0.07 0.47 6 0.07 0.39 6 0.07 0.38 6 0.07

Transmissibility Sire 0.51 6 0.07 0.48 6 0.08 0.39 6 0.08 0.34 6 0.09
Dam 0.51 6 0.07 0.47 6 0.07 0.40 6 0.08 0.42 6 0.08

Animals without phenotypes,
dam known

Animal Sire 0.37 6 0.07 0.34 6 0.07 0.29 6 0.07 0.30 6 0.07
Dam 0.37 6 0.07 0.35 6 0.07 0.31 6 0.08 0.39 6 0.07

Transmissibility Sire 0.37 6 0.07 0.34 6 0.07 0.30 6 0.08 0.30 6 0.07
Dam 0.37 6 0.07 0.35 6 0.07 0.32 6 0.07 0.40 6 0.07

Animals without phenotypes,
sire known

Animal Sire 0.38 6 0.09 0.36 6 0.09 0.26 6 0.09 0.19 6 0.09
Dam 0.38 6 0.09 0.33 6 0.09 0.25 6 0.09 0.14 6 0.08

Transmissibility Sire 0.38 6 0.09 0.35 6 0.09 0.26 6 0.09 0.18 6 0.09
Dam 0.38 6 0.09 0.32 6 0.09 0.25 6 0.09 0.14 6 0.07

1088 I. David and A. Ricard



its intrinsic constraints, the animal model estimated a genetic
variance that resulted in an estimated equal sire and dam
transmissibility

�
1
2h

2
�
between the sire- and dam-simulated

transmissibilities. This phenomenon is particularly apparent
when the disequilibrium between sire and dam transmissibil-
ities is important. As a consequence, the estimations of the
different regressions between other relatives obtained with
this approach are biased. Thus, the transmissibility model bet-
ter estimate covariances between relatives than the animal
model in the case of nongenetic inheritance.

Nevertheless, the greater flexibility of the transmissibility
model compared with the animal model has certain disad-
vantages. Indeed, the estimation of the path coefficients of
transmission in the transmissibility model is more time-con-
suming than parameter estimation in the animal model. We
evaluated that the CPU time for one iteration of convergence
on a linux system and intelXeonE5-2698v3 processor is pro-
portional to the cube of the number of individuals in the

pedigree
�
CPUðsÞ ¼ 2*ðnb individuals

1000 Þ3
�
. To overcome this

computation time problem, it is preferable to estimate path
coefficients on a representative subset of the data, and to fix
them to these estimated values when applying the transmis-
sibility model to a large dataset.

Correlations between true and predicted transmissible
values were similar for the animal model and the transmis-
sibility model. The incorrect estimation of some regressions
between relatives with the animal model did not influence
these correlations. This is because these correlations were
mainly dependent on the information used to build the eval-
uations and not on the regression coefficient and theywere the
same for bothmodels. Thehigh correlations (1, 0.98, 0.96, and
0.96 for datasets 1–4) between EBV obtained with the animal
model and predicted transmissible values obtained with the

transmissibility model confirm that, opposite to expectation,
the animal model is unable to isolate the genetic component of
inherited factors; genetic and nongenetic sources of inheri-
tance being integrated in the EBV. Thus, when there are non-
genetic sources of inheritance, selection based on EBV
obtainedwith the animal model does not correspond to a pure
genetic selection, but rather to selection on transmissible val-
ues. In this context, the limits of the animal model were ob-
served on the bias. This bias was important and leads to an
overestimation or an underestimation of the transmissible val-
ues depending on the source of information available: the
performance of the paternal ormaternal half-siblings, the sire’s
or the dam’s own performance. Therefore, in practice, if the
animal model performs well when very standardized selection
schemes are used, with very homogeneous selection informa-
tion between candidates, and in the absence of overlapping
generations, it would not in all other conditions. This was
probably the reason for the slight discrepancy between corre-
lations for the two models for dataset 4 when all nonpheno-
typed animals are combined in a single set even though the
information available for each individual is different; whereas
the correlations are similar when the same kind of information
is available. In the presence of overlapping generations, the
biased estimations obtained do not ensure a fair comparison
between candidate animals. In this case, which is common in
real-life situations, the transmissibility model will be more ef-
fective than the animal model for selecting animals on their
transmissible potential to improve the trait of interest in the
selected population, provided that the nongenetic inheritance
of this trait is not negligible. It should be noted that, when
selection is relaxed, unlike with pure genetic selection, part
of the benefit on the transmissible potential achieved by pre-
vious selection will theoretically gradually disappear, and only
genetic progress will be maintained. This proportion depends

Table 5 Bias (mean 6 SD) in the estimation of the transmissible potential for the different datasets

Model Dataset 1 Dataset 2 Dataset 3 Dataset 4

Animals with phenotype Animal Sire 1.01 6 0.07 0.89 6 0.08 0.81 6 0.07 0.46 6 0.04
Dam 1.01 6 0.07 1.06 6 0.09 1.03 6 0.09 1.23 6 0.10

Transmissibility Sire 1.04 6 0.13 0.98 6 0.13 0.98 6 0.15 0.94 6 0.24
Dam 1.03 6 0.13 1.04 6 0.13 1.00 6 0.12 0.99 6 0.10

All animals without phenotypes Animal Sire 0.99 6 0.14 0.89 6 0.14 0.65 6 0.12 0.38 6 0.08
Dam 0.99 6 0.14 0.97 6 0.15 0.83 6 0.15 0.98 6 0.18

Transmissibility Sire 1.10 6 0.23 1.10 6 0.26 1.02 6 0.31 0.91 6 0.34
Dam 1.08 6 0.24 1.07 6 0.23 1.04 6 0.30 1.00 6 0.27

Animals without phenotypes,
both parents known

Animal Sire 0.98 6 0.15 0.89 6 0.16 0.65 6 0.15 0.38 6 0.10
Dam 0.98 6 0.15 0.96 6 0.17 0.83 6 0.18 0.98 6 0.22

Transmissibility Sire 1.09 6 0.24 1.10 6 0.28 1.01 6 0.33 0.91 6 0.37
Dam 1.08 6 0.24 1.07 6 0.25 1.03 6 0.33 1.00 6 0.29

Animals without phenotypes,
dam known

Animal Sire 1.02 6 0.22 0.88 6 0.20 0.70 6 0.20 0.44 6 0.12
Dam 1.02 6 0.22 1.03 6 0.22 0.93 6 0.25 1.33 6 0.28

Transmissibility Sire 1.14 6 0.31 1.05 6 0.29 1.01 6 0.35 0.87 6 0.36
Dam 1.15 6 0.44 1.11 6 0.35 1.07 6 0.38 1.03 6 0.32

Animals without phenotypes,
sire known

Animal Sire 1.01 6 0.27 0.92 6 0.25 0.63 6 0.24 0.32 6 0.16
Dam 1.01 6 0.27 0.95 6 0.27 0.75 6 0.28 0.55 6 0.31

Transmissibility Sire 1.16 6 0.40 1.25 6 0.51 1.12 6 0.59 1.28 6 0.86
Dam 1.13 6 0.34 1.11 6 0.37 1.05 6 0.50 1.01 6 0.55
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on the relative importance of the nongenetic effect in the
inherited factors. Indeed, nongenetic effects are diluted in fu-
ture generations (Tal et al. 2010), resulting in a decline to 0 of
their average effects when there is no selection. The long-term
benefit of selection will thus depend mainly on the genetic
benefit, which will be conserved even when selection is re-
laxed. Additional calculations on the simulated data showed
that the correlation between the true breeding values and the
sire- or dam-estimated transmissible potentials, and their bias,
were in the same range for the transmissible and the animal
models (results not shown), indicating that, even if selection is
relaxed, the long-term benefit of the transmissibility model
will be higher than that obtained with the animal model. It
should be noted that these results were obtained for a re-
stricted set of simulated data (datasets 1–4); additional inves-
tigations are necessary to ensure that the same conclusion can
be drawn in all situations.

Evidence of the vertical transmission of nongenetic effects
has been reported widely in livestock (Abecia et al. 2007;
Sanga 2010; Braunschweig et al. 2012; Feeney et al. 2014).
However, the quantification of nongenetic inheritance for
traits under selection is rare. Paiva et al. (2018a) reported
an epigenetic heritability of 0.10 for body weight in meat
quails, while Difford et al. (2018) estimated simultaneously
that significant parts of the variance for CH4 emission in
cattle were explained by genetics and the microbiota (0.21
and 0.13, respectively). To our knowledge, the part of vari-
ance explained by culture/behavioral inheritance has never
been reported in the literature for livestock species. The lim-
ited amount of data on the quantification of nongenetic in-
heritance in livestock is probably due to the novelty of the
subject for these species and the lack of easy tools for esti-
mating it. The transmissibility model will help overcome this
obstacle by estimating a deviation from the pure genetic in-
heritance using routinely recorded field data (phenotype and
pedigree). Analysis of the power of the transmissibility model
to detect nongenetic inheritance demonstrated that its power
depends on pedigree size, the relative importance of the non-
genetic inheritance and also the difference between the sire
and dam path coefficients of transmission. There is nothing
we can do for the two last components, but we suggest using
populations with complex pedigree structures, because more
information will be provided for the same computing time.

We designed our transmissibility model to take into ac-
count nongenetic sources of inheritance in order to estimate
the path coefficients of transmission between parents and
offspring, and to predict the transmissible potential of indi-
viduals. Estimations are based on the covariances between
different types of relatives. It shouldbenoted that phenomena
other than nongenetic inherited factors reported here, such as
the X-chromosomal inheritance, parent-of-origin effects, mi-
tochondrial inheritance, etc., can causedeviation fromthe law
of transmission assumed in the animalmodel (Hutchison et al.
1974; Fernando and Grossman 1990; Neugebauer et al.
2010). Disentangling all these phenomena with no informa-
tion other than pedigrees and phenotypes is challenging (and

certainly unfeasible), and has never been attempted before.
Another phenomenon that could create confusion with non-
genetic effects is the maternal effect. Indeed, maternal genetic
effects induce different covariances between the offspring
and the mother, and between the offspring and the father
(Table D1 in Appendix D), that can mimic the transmission
of nongenetic effects. To illustrate this point, we performed
an additional simulation of 100 replicates (results not
shown) in which the phenotypes were generated with the
same parameters as in dataset 3 plus a maternal effect with
a genetic variance =5 (independent from direct genetic ef-
fects). The application of the transmissibility model to these
simulated data resulted in a higher estimated value for the
dam coefficient of transmission than obtained for dataset
3 (0.53 vs. 0.44) while the estimates of the sire coefficient
of transmission and t2 remained similar to those obtained for
dataset 3. This result illustrates that maternal effects have
been wrongly integrated into the dam transmissible poten-
tial. To avoid such confusion between maternal genetic ef-
fects and nongenetic effects, it is possible to include maternal
genetic effects in the transmissibility model as an additional
random effect (demonstration of the structural identifi-
ability of the model is provided in Appendix E). The appli-
cation of the transmissibility model with maternal genetic
effects to the aforementioned simulated data (i.e., dataset
3 + maternal genetic effects) resulted in estimates of the
sire/dam coefficients of transmission and t2 similar to
those obtained with the transmissibility model applied to
dataset 3, while the estimates of the maternal genetic var-
iance were in line with those simulated (4.7 on average).
This result confirms that it is possible to disentangle ma-
ternal genetic effects and nongenetic effects with the trans-
missibility model.

It should be noted that our transmissibility model assumes
that the transmitted variance s2

t is the same for all individuals
in the population, and is constant across generations. How-
ever, epigenetic, microbiota, and cultural effects are subject
to change with environmental conditions (Aguilera et al.
2010; Spor et al. 2011). It should be possible to take into
account this influence of the environment on part of the her-
itable factors by considering the transmitted variance as a
function of the environment or of time in a manner similar
to that used in the structured antedependence model (SAD)
(David et al. 2017) (the transmissibility model is a particular
form of the SAD model).

Finally, our model combines the different sources of in-
heritance intoa single transmissible value.However, theOWN
Fortran programwe propose to run the transmissibilitymodel
allows the different sources of inheritance to be separated if
required, especially genetic and epigenetic inheritance, as
described by Varona et al. (2015) or Paiva et al. (2018a,b).
Furthermore, unlike previous methods proposed, the pro-
gram that we propose has the advantage of (1) using a fre-
quentist method for the estimations (faster than the Bayesian
approach), (2) estimating the path coefficients (conversely
to the grid search proposed by Paiva et al. 2018a), and (3)
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allowing for different path coefficients for sires and dams,
which has never been proposed before.
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Appendix

Appendix A: Demonstration of the Structural Identifiability of the Parameters in a model with genetic,
epigenetic and single-parent transmitted effects

Structural identifiability of the parameters in Equation 1 was demonstrated as follows: the

yi ¼ xibþ ai þ epii þ spi þ ei; e � MVN
�
0; Is2

e
�

ai ¼ 0:5as þ 0:5ad þ ea;i;a � MVN
�
0;As2

a
�

epii ¼ 0:5ð12 vsÞepis þ 0:5ð12 vdÞepid þ eepi;i ¼ lsepis þ ldepid þ eepi;i; epi � MVN
�
0;Ts2

epi

�
spi ¼ dspd þ esp;i; sp � MVN

�
0;Ss2

sp

�

Let us consider

r ¼ s2
a

s2
a þ s2

epi

u ¼ s2
sp

s2
a þ s2

epi þ s2
sp

a ¼ s2
a þ s2

epi þ s2
sp

Six parameters describing the different sources of inheritance have to be estimated: s2
a;s

2
sp;s

2
epi; ls; ld; d. They can be obtained

using the covariances between relatives described in Table A1.

Table A1 List of covariances between phenotypes of relatives useful for identifiability of the parameters in
Equation 1

Covariance between
Formula for the covariance given

Equation 1

COVS-O Sire -offspring
�
1
2 rð12 uÞ þ lsð12 rÞð12 uÞ	a

COVD-O Dam-Offspring
�
1
2 rð12 uÞ þ ldð12 rÞð12 uÞ þ du

	
a

COVPGS-O Paternal grand sire-offspring
�
1
4 rð12 uÞ þ l2s ð12 rÞð12 uÞ	a

COVMGS-O Maternal grand sire-offspring
�
1
4 rð12 uÞ þ lsldð12 rÞð12 uÞ	a

COVMGD-O Maternal grand dam-offspring
�
1
4 rð12 uÞ þ l2dð12 rÞð12 uÞ þ d2u

	
a

COVPU-O paternal half-sib of the sire
(paternal uncle 1) - offspring

�
1
8 rð12 uÞ þ l3s ð12 rÞð12 uÞ	a

COVPUGD-O maternal half-sib of the sire (paternal uncle 2)
�
1
8 rð12 uÞ þ lsl

2
dð12 rÞð12 uÞ	a

• Estimation of ls
2COVPGS2O 2COVS20 ¼ ½ð12 rÞð12 uÞlsð2ls 2 1Þ�a

2COVPU2O 2COVPGS20 ¼ �ð12 rÞð12 uÞl2s ð2ls2 1Þ	a
Thus  ls ¼ 2COVPU2O 2COVPGS20

2COVPGS2O 2COVS20

• Estimation of ld
2COVMGS2O 2COVS20 ¼ ½ð12 rÞð12 uÞlsð2ld 2 1Þ�a

2COVPUGD2O 2COVMGS20 ¼ ½ð12 rÞð12 uÞlsldð2ld 2 1Þ�a
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Thus; ld ¼ 2COVPUGD2O 2COVMGS20

2COVMGS2O 2COVS20

• Estimation of s2
a; s2

epi

2COVPGS2O

COVS20
¼ rþ 4l2s ð12 rÞ

rþ 2lsð12 rÞ;   thus  r ¼
4ls
�
ls2

COVPGS2O
COVS20

�
4ls
�
ls2

COVPGS2O
COVS20

�
þ 2 COVPGS2O

COVS20
2 1

:

Let us consider  a ¼ að12 uÞ

a ¼ COVS20

0:5rþ lsð12 rÞ

But  a ¼ s2
a þ s2

epi; thus  s
2
a ¼ ar  and  s2

epi ¼ að12 rÞ:

• Estimation of d

d2ua ¼ COVMGD2O 2 a
�
0:25rþ l2dð12 rÞ�

dua ¼ COVD2O 2 að0:5rþ ldð12 rÞÞ;

thus  d ¼ COVMGD2O 2 a
�
0:25rþ l2dð12 rÞ�

COVD2O 2 að0:5rþ ldð12 rÞÞ :

• Estimation of s2
sp

s2
sp ¼ ua ¼ COVD2O 2 að0:5rþ ldð12 rÞÞ

d
:

Appendix B: Demonstration of the Structural Identifiability of the Parameters in the Transmissibility Model

yi ¼ xibþ ti þ ei; e � MVN
�
0; Is2

e
�

ti ¼ vsts þ vdtd þ ea;i; t � MVN
�
0;Ms2

t
�

Three parameters describing the different sources of inheritance have to be estimated: s2
t ;vs;and vd.

The following covariances between relatives are useful for estimating the aforementioned parameters:

COVS2O ¼ vss
2
t

COVD2O ¼ vds
2
t

COVPGS2O ¼ v2
s s

2
t

• Estimation of vs

vs ¼ COVPGS2O=COVS2O

• Estimation of s2
t

s2
t ¼ COVS2O=vs; thus

s2
t ¼ COV2

S2O


COVPGS2O

• Estimation of vd

vd ¼ COVD2O


s2
t ; thus

vd ¼ COVD2O*COVPGS2O


COV2

S2O
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Appendix C: Practical Identifiability and Power Analysis

Weassume that the truemodel is themodel developed inEquation 1, single parent transmitted value andfixed effects excluded:

y ¼ aþ epiþ e ð1Þ

with VðaÞ ¼ As2
a;VðepiÞ ¼ Ts2

epi

• log likelihood computation.
According to Visscher and Goddard (2015) or Raffa and Thompson (2016), the symmetric Amatrix can be decomposed and

written as:

A ¼ UDU

with UU’ ¼ U
0
U ¼ I and D is a diagonal matrix containing eigenvalues of A.

Consider now simplified relationships summarized asN independent families subdivided intoNcfamilies with nc individuals
of homogeneous relationship c ðN ¼PNcÞ. The total number of animals is n ¼PncNc. In that case, the A matrix is block-
diagonal, and the eigenvalues di of each block are nc 2 1 eigenvalues of value ð12 cÞ; and 1 eigenvalue of value ð1þ cðnc 2 1ÞÞ,
andU is block diagonal with Helmert matrices, the coefficients of which depend only on the size of the family nc (Searle 1982).
So, the T matrix, which follows the same pattern as A, i.e. blocks of N homogeneous families with epigenic relationships, can
also be decomposed and written as:

T ¼ UPU9;

where theP matrix is a diagonal matrix of eigenvalues di of T, and U is the same block Helmert matrix. The eigenvalues di are
linked directly to the reset coefficients ns and nd. Assuming that one ancestor links the animals of the family with ks and kd
paternal and maternal paths, the di are:-

-  ðnc 2 1Þ  eigenvalues of  
 
12

�
1
2
ð12nsÞ

�ks�1
2
ð12ndÞ

�kd
!

-  1  eigenvalue of

 
1þ ðnc2 1Þ

�
1
2
ð12nsÞ

�ks�1
2
ð12ndÞ

�kd
!

Define y* ¼ U21y ¼ U0y, then

y* ¼ U ’aþ U ’epiþ U ’e ¼ a* þ epi*

With

V
�
y*
� ¼ U

0
AUs2

a þ U
0
TUs2

epi þ U
0
Us2

e ¼ Ds2
a þPs2

epi þ Is2
e

Let us consider

r ¼ s2
a

s2
a þ s2

epi
  and H2 ¼

s2
a þ s2

epi

s2
a þ s2

epi þ s2
e

V
�
y*
� ¼ �DrH2 þPð12 rÞH2 þ I

�
12H2��s2

with s2 the total variance assumed known.
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The log likelihood with respect to H2; r and ns; nd can then be expressed as:

logL1 ¼ 2
1
2

h
nlog

�
s2�þX log

�ðdi 2 1ÞrH2 þ ðdiðns; ndÞ2 1ÞH2ð12 rÞ þ 1
�þ ð1
s2

X
y*i

2
.�ðdi 2 1ÞrH2

þ ðdiðns; ndÞ2 1ÞH2ð12 rÞ þ 1
�i
:

Similarly, we can derive the log likelihood under the transmissibility model:

y ¼ tþ e ð2Þ

with VðtÞ ¼ Ms2
t , as:

logL2 ¼ 2
1
2

h
nlog

�
s2�þX log

��
d’iðvs;vdÞ21

�
t2 þ 1

�
þ ð1
s2

X
y*i

2
.��

d’iðvs;vdÞ2 1
�
t2 þ 1

�i

With d’i the eigenvalues of the M matrix and t2 ¼ s2
t

s2
t þs2

e
:

• Parameter estimates.
We computed parameter estimates assuming the true model was the genetic and epigenetic model (1) and model used for

estimation either the same (1) or the transmissibility model (2).
Parameter estimates were computed using

E
�
y*i

2
�
¼ �ðdi 2 1ÞrH2 þ ðdiðns; ndÞ2 1ÞH2ð12 rÞ þ 1

	
s2

with the true parametersH2; r ; and ns; nd; and thenmaximizing the expected log likelihood EðLogL1Þ, considered as a function
of a point identified by subscript 0:

EðlogL1Þ ¼ 2
1
2

�
nlog

�
s2�þX log

�ðdi 2 1Þr0H2
0 þ �di�ns;0; nd;0�2 1

�
H2
0ð12 r0Þ þ 1

�
þ
X ðdi 2 1ÞrH2 þ ðdiðns; ndÞ21ÞH2ð12 rÞ þ 1�ðdi2 1Þr0H2

0 þ �di�ns;0; nd;0�2 1
�
H2
0ð12 r0Þ þ 1

��;
with the constraints 0#H2

0 # 1; 0# r0 # 1 0# ns;0 # 1, 0# nd;0 # 1 so that:n
Ĥ
2 br ; n̂s; n̂d

o
¼ argmaxðEðlogL1ÞÞ

For the transmissibility model, parameter estimates were computed using the same true model (1), with the same true
parameters and Eðy*i 2Þ and maximizing EðLogL2Þ:

EðlogL2Þ ¼ 2
1
2

�X
log
��

d’i
�
vs;0;vd;0

�
21
�
t20 þ 1

�
þ
X ðdi 2 1ÞrH2 þ ðdiðns; ndÞ2 1ÞH2ð12 rÞ þ 1��

d’i
�
vs;0;vd;0

�
2 1
�
t20 þ 1

� �

with the constraints 0# t20 #1; 0#vs;0 þ vd;0 # 1; so thatn
t̂2; v̂s; v̂d

o
¼ argmaxðEðlogL2ÞÞ

• Profile likelihood.
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We studied the practical identifiability using profile likelihood (Raue et al. 2009) for each parameter of the epigenetic-genetic
model and transmissibility model using expected likelihood ratio tests:

ELRT1 ¼ 2
�
E
�
logL1

�
H2
0 ; r0; ns;0; nd;0

��
2 E

�
logL1

�
Ĥ
2
; r̂; n̂s; n̂d

���

for model 1, and as follows for the transmissibility model:

ELRT2 ¼ 2
�
E
�
logL2

�
t20;vs;0;vd;0

��
2 E

�
logL2

�
t̂2; v̂s; v̂d

���
:

The profile likelihoods for each parameter u0 ¼ fH2
0 ; r0; ns;0; nd;0g in the definition domain are:

PL1
�
u0;i
� ¼ min

i6¼j
ðELRT1ðu0ÞÞ:

And for the transmissibility model u0 ¼ ft20;vs;0;vd;0g:

PL2
�
u0;i
� ¼ min

i6¼j
ðELRT2ðu0ÞÞ:

The profile likelihood can then be plotted as a function of the parameters to check for structural identifiability.

• Power computation.

The power to detect nongenetic inheritance was calculated for the transmissibility model only.
For the transmissibility model assuming equal path coefficients of transmission for the sire and the dam (v ¼ vs ¼ vd), the

power was calculated to test the hypothesis v 6¼ 0:50 with:

12 F
�
xa; df ; ELRT2

� bt2; 0:50; 0:50��:
For the transmissibility model assuming different path coefficients of transmission for the sire and the dam, the power was also
calculated to test the hypothesis that at least one of vs;vd is different than 0:50 with:

max
�
12 F

�
xa; df ; ELRT2

� bt2; 0:50;minðv̂d; 0:50 Þ
��

; 12 F
�
xa; df ; ELRT2

� bt2;minðv̂s; 0:50Þ; 0:50
���

where F is the cumulative distribution function of a noncentral x2 evaluated at xa the ð12aÞ quantile for a x2 distributionwith
one degree of freedom (df) and noncentrality parameter zero. The number of dfwas set to 1 to deal with pointwise confidence
intervals.

Model for Inclusive Inheritance 1097



Appendix D: Regression Coefficient for Different Types of Relatives Depending on the Model

See Table D1.

Table D1 Regression coefficient between relatives depending on the model

Covariance between offspring
and Formula for the regression coefficients

Simulated model Simulated value Transmissibility
model

Animal model Maternal model

yi ¼ xibþ ai þ epii þ spi þ ei yi¼ xibþ ti þ ei yi¼ xibþ uiþ ei yi¼ xibþ uiþmdþ ei

epii ¼ 1
2lsepis þ 1

2ldepid þ eepi;i

spi ¼ dspd þ esp;i

Sire 1
2s

2
a þ 1

2lss
2
epi 0.157 0.138 0.138 0.085 vss

2
t

1
2s

2
u

1
2s

2
u þ 1

4su;m

Dam 1
2s

2
a þ 1

2lds
2
epi þ ds2

sp 0.157 0.176 0.176 0.229 vds
2
t

1
2s

2
u

1
2s

2
u þ 5

4su;m þ 1
2s

2
m

Paternal grand dam 1
4s

2
a þ 1

4lslds
2
epi 0.079 0.067 0.058 0.041 vsvds

2
t

1
4s

2
u

1
4s

2
u þ 1

8su;m

Maternal grand dam 1
4s

2
a þ 1

4l
2
ds

2
epi þ d2s2

sp 0.079 0.082 0.077 0.121 v2
ds

2
t

1
4s

2
u

1
4s

2
u þ 5

8su;m þ 1
4s

2
m

Paternal half-sib of the sire
(paternal uncle 1)

1
8s

2
a þ 1

8l
3
ss

2
epi 0.039 0.033 0.018 0.007 v3

ss
2
t

1
8s

2
u

1
8s

2
u

Maternal half-sib of the sire
(paternal uncle 2)

1
8s

2
a þ 1

8lsl
2
ds

2
epi 0.039 0.033 0.025 0.020 vsv

2
ds

2
t

1
8s

2
u

1
8s

2
u þ 1

4su;m

Paternal half-sib of the dam
(maternal uncle 1)

1
8s

2
a þ 1

8l
2
s lds

2
epi 0.039 0.033 0.021 0.011 v2

svds
2
t

1
8s

2
u

1
8s

2
u þ 1

4su;m

Maternal half-sib of the dam
(maternal uncle 2)

1
8s

2
a þ 1

8l
3
ds

2
epi þ d3s2

sp 0.039 0.040 0.035 0.066 v3
ds

2
t

1
8s

2
u

1
8s

2
u þ 1

2su;m þ 1
2s

2
m

Paternal half-sib 1
4s

2
a þ 1

4l
2
ss

2
epi 0.079 0.065 0.049 0.023 v2

ss
2
t

1
4s

2
u

1
4s

2
u

Full-sib 1
2s

2
a þ 1

4 ðl2s þ l2dÞs2
epi+d

2s2
sp 0.157 0.148 0.127 0.144 ðv2

s þ v2
dÞs2

t
1
2s

2
u

1
4s

2
u þ su;m þ s2

m

Appendix E: Demonstration of the Structural Identifiability of the Parameters in a Transmissibility Model
with Maternal Effects

yi ¼ xibþ ti þmd þ ei; e � MVN
�
0; Is2

e
�

ti ¼ vsts þ vdtd þ ea;i;�
t
m

�
� MVN

�
0
0
;

�
Ms2

t st;m
st;m As2

m

��
;

Five parameters describing the different sources of inheritance have to be estimated: s2
t ;vs,vd;s

2
m; and st;m. They can be

obtained using the covariances between relatives described in Table E1.

Table E1 List of covariances between phenotypes of relatives useful for parameter identifiability in the
transmissibility model with maternal effects

Covariance between Formula for the covariance

COVS-O Sire-offspring vss
2
t þ vsvdst;m

COVD-O Dam-offspring vds
2
t þ ðv2

d þ 1Þst;m þ 0:5s2
m

COVPGD-O Paternal grand dam-offspring vsvds
2
t þ vsv

2
dst;m

COVPU-O Paternal half-sib of the sire (paternal
uncle 1) - offspring

v3
ss

2
t

COVPHS Paternal half-sibs v2
ss

2
t

• Estimation of vs
vs ¼ COVPu2O

COVPHS
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• Estimation of vd

vd ¼ COVPGD2O

COVS2O

• Estimation of s2
t

s2
t ¼ ðCOVPHSÞ3

ðCOVPU2OÞ2

• Estimation of st;m

st;m ¼ COVS2O 2vss
2
t

vsvd

, thus

st;m ¼
COVS2OCOVPHS

�
COVS2OCOVPU2O 2 ðCOVPHSÞ2

�
COVPGD2OðCOVPU2OÞ4

• Estimation of s2
m

s2
m ¼ 2

�
COVD2O 2

�
vds

2
t þ

�
v2
d þ 1

�
st;m

�	
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