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a b s t r a c t 

Cognitive fluctuations are a core symptom in dementia with Lewy bodies (DLB) and may relate to pathological 

alterations in distributed brain networks. To test this we analysed resting state fMRI changes in a cohort 

of fluctuating DLB patients ( n = 16) compared with age matched controls ( n = 17) with the aim of finding

functional connectivity (FC) differences between these two groups and whether these associate with cognitive 

fluctuations in DLB. Resting state networks (RSNs) were estimated using independent component analysis 

and FC between the RSN maps and the entirety of the brain was assessed using dual regression. The default

mode network (DMN) appeared unaffected in DLB compared to controls but significant cluster differences 

between DLB and controls were found for the left fronto-parietal, temporal, and sensory–motor networks. 

Desynchronization of a number of cortical and subcortical areas related to the left fronto-parietal network 

was associated with the severity and frequency of cognitive fluctuations. Our findings provide empirical 

evidence for the potential role of attention–executive networks in the aetiology of this core symptom in DLB. 
c © 2014 Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND license 

( http: // creativecommons.org / licenses / by-nc-nd / 3.0 / ). 
. Introduction 

Dementia with Lewy bodies (DLB) accounts for approximately 4–

% of dementia cases ( McKeith et al., 2007 ). It is characterized by com- 

lex visual hallucinations (VHs), cognitive fluctuations, and parkin- 

onism. These three core features help differentiate DLB from other 

ementias such as Alzheimer’s disease (AD) with the presence of at 

east two out of the three required to make a diagnosis of probable 

LB ( McKeith et al., 2005 ). Out of the three core features, probably 

he least understood is that of cognitive fluctuations and this lack of 

nowledge has hampered the development of appropriate treatment 

or this deleterious symptom in DLB ( Bostr ̈om et al., 2007 ). 

As a core feature, cognitive fluctuations may be more specific to 

LB than parkinsonism ( Tiraboschi et al., 2006 ). Quantitatively and 

ualitatively, cognitive fluctuations appear to relate to intrinsic brain 

rocesses rather than environmental or situational factors ( Bradshaw 
* Corresponding author. 

E-mail address: luis.peraza-rodriguez@newcastle.ac.uk (L.R. Peraza). 

213-1582/ $ - see front matter c © 2014 Published by Elsevier Inc. This is an open access artic

.0 / ). 

ttp://dx.doi.org/10.1016/j.nicl.2014.03.013 
et al., 2004 ; Walker et al., 2000 ), may associate with attentional im- 

pairments, and often co-occur with visual hallucinations. Their pres- 

ence can have significant functional impacts upon patients and their 

carers ( Ballard et al., 2001a ; Ballard et al., 2001b ). 

Neurobiologically, cognitive fluctuations are likely to arise from 

distributed functional network perturbations rather than specific 

structural abnormalities ( Taylor et al., 2013 ); on electroencephalogra- 

phy (EEG), increased and fluctuating slow wave activity occurs in pos- 

terior regions in DLB patients compared to Alzheimer’s disease (AD) 

patients and these changes have been correlated with the frequency 

and severity of clinically observed cognitive fluctuations ( Bonanni et 

al., 2008 ; Walker et al., 2000 ). Similarly, relative decreases in cerebral 

perfusion in posterior parietal areas covariant with relative increases 

in perfusion in distributed motor networks have been observed in 

fluctuating DLB patients ( Taylor et al., 2013 ). Another approach which 

may be sensitive to cortical network disturbances associated with 

cognitive fluctuations is resting state blood oxygen level dependent 

(BOLD) functional magnetic resonance imaging (fMRI) as this allows 

the characterization of resting state networks (RSNs) that are task 
le under the CC BY-NC-ND license ( http: // creativecommons.org / licenses / by-nc-nd / 
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free and thus are not confounded by task dependent differences in

cognitive or motor function which may be compromised in patients

with dementia and / or parkinsonism. 

Current research on RSNs and dementia has focussed mainly on

AD, where the current consensus points to a disconnection of the

default mode network (DMN) as intrinsic to this type of dementia

(see for instance Greicius et al., 2004 ; Binnewijzend et al., 2012 , and

Mevel et al., 2011 ). This network is highly related to consciousness

and memory ( Andrews-Hanna et al., 2010 ; Raichle et al., 2001 ) which

are primarily affected in AD. In DLB, recent work by Galvin et al.

(2011), Kenny et al. (2012) and Franciotti et al. (2013) has examined

the DMN although findings on how it is altered in DLB have been

inconsistent which may, in part, relate to methodological and cohort

differences between studies. 

Given the intimated role of the DMN in internal mentation and its

role in attentional / behavioural performance ( Wen et al., 2013 ) it has

been speculated that alterations in the DMN may relate to cognitive

fluctuations in DLB. However resting fMRI data on this is limited. A

report by Franciotti et al. (2013) focussed on the role of the DMN in

DLB cognitive fluctuations and they found, contrary to expectation,

that the DMN in DLB patients with cognitive fluctuations was as active

as in healthy controls, in contrast to AD patients where it was under-

active. It was suggested that this either represented a compensatory

attempt to maintain DMN function ( Kenny et al., 2012 ), due to the

fact that there is relatively greater pathological load in AD compared

to DLB, or that there is a loss of frontal inhibition of the DMN in DLB. 

Alternatively, it may be that there is a failure to switch out of the

DMN to task positive or attentional networks which is more relevant

for attentional lapses ( Weissman et al., 2006 ); Sauer et al. (2006)

observed that despite being relatively intact in DLB, the DMN failed

to deactivate during motion and colour tasks, which may be indicative

of impairments in changing from resting state to focussed attention. 

Therefore, RSNs other than the DMN may be more apposite to

DLB and the manifestation of cognitive fluctuations, in particular the

fronto-parietal networks (also known as executive control networks),

and which include both the dorsal attention network (DAN) and ven-

tral attention network (VAN) ( Agosta et al., 2012 ; Beckmann et al.,

2005 ; Fox et al., 2006 ). 

Our questions were therefore to, firstly, establish if the DMN was

functionally impaired in DLB patients compared to similarly aged

controls and, secondly, in an exploratory data-driven manner, deter-

mine what other RSNs aside from the DMN are altered in DLB and if

these RSN changes were associated with the severity and frequency

of cognitive fluctuations. 

In this study we employed a “dual-regression” analysis ( Filippini et

al., 2009 ) approach on DLB patients with cognitive fluctuations com-

pared to age matched controls. Dual regression has been used suc-

cessfully in other studies investigating dementia (e.g. Binnewijzend et

al., 2012 ). In dual regression the selected RSN maps are used in a spa-

tial regression per subject to obtain a single time series which then is

regressed again (hence the name of dual regression) to obtain subject

specific spatial correlation maps. Dual regression may be superior to

using the original independent component time series as seeds since

it recovers more features for an individual subject’s correlation map. 

2. Methods 

2.1. Subjects 

Participants ( n = 16 DLB and n = 17 controls) were recruited

from the local dwelling population of patients who had been referred

to local old age psychiatry and neurology services. Approval for the

current study was granted by the Newcastle Ethics Committee. 

Diagnosis of DLB was performed by two experienced clinicians

using standardized clinical diagnostic criteria. Nine out of the 16 DLB

participants had previously undergone dopaminergic imaging and of
these all had reduced bilateral uptake of tracer within their striata.

Clinical assessments included the Cambridge Cognitive Examination

(CAMCOG), Mini-Mental State Examination (MMSE), Neuropsychi-

atric Inventory (NPI) ( Cummings et al., 1994 ), and the Unified Parkin-

son’s Disease Rating Scale (UPDRS) ( Fahn and Elton, 1987 ). Prior to

MRI acquisition, the Clinical Assessment of Fluctuations (CAF) ( Walker

et al., 2000 ) was administered to patients to assess cognitive fluctu-

ations; this measure provides a quantification of the frequency and

duration of fluctuations in patients. For assessment of visual hallu-

cinations, caregivers were asked to complete the hallucinations sub-

scale of the NPI, with specific reference to the occurrence of visual

hallucinations in the past month in terms of severity and frequency

(NPI hall ). 

Similarly aged controls were selected from friends and spouses

of patients and demonstrated no history of psychiatric or neurologi-

cal brain disease and an MMSE score > 26. From our DLB group, 13

participants were taking cholinesterase inhibitors, 8 l -DOPA based

medications, one of the DLB participants was taking a dopamine ago-

nist, two subjects antidepressants, and two low dose benzodiazepines

(clonazepam) for suspected REM-sleep behaviour disorder. 

2.2. Data acquisition 

Imaging was performed using a 3 T Philips Intera Achieva scanner.

Structural images were acquired with a magnetization prepared rapid

gradient echo (MPRAGE) sequence, sagittal acquisition, echo time

4.6 ms, repetition time 8.3 ms, inversion time 1250 ms, flip angle = 8 ◦,

SENSE factor = 2, and in-plane field of view 240 × 240 mm with slice

thickness 1.0 mm, yielding a voxel size of 1.0 × 1.0 × 1.0 mm. Rest-

ing state scans were obtained with a gradient echo echo-planar imag-

ing (GE-EPI) sequence with 25 contiguous axial slices, 128 volumes,

anterior–posterior acquisition, in-plane resolution = 2 × 2 mm, slice

thickness = 6 mm, repetition time = 3000 ms, echo time = 40 ms,

and field of view = 260 × 260 mm. An axial orientation gradient

echo T1 weighted image was also acquired to aid in coregistering the

resting state to the structural TR 223 ms, TE 2.3 ms, flip angle 80 ◦,

slice thickness 4 mm, and pixel size 1.5 × 1.5 mm. 

2.3. Analysis of MRI and resting state 

Data analysis for RSN inference was performed using time con-

catenated (controls + DLB subjects) MELODIC from the FMRIB’s Soft-

ware Library (FSL version 4.1; http: // www.fmrib.ox.ac.uk / fsl ). Pre-

processing included FSL tool FLIRT motion correction with spatial

smoothing FWHM of 6.0 mm, and high pass filter cutoff equivalent

to 150 s. Registration to the MNI152 standard brain for both struc-

tural and functional MRI was carried out using FSL tool FNIRT (non-

linear coregistration with 10 mm warp resolution). The concatenated

volumes were decomposed in 42 spatial component maps. Compo-

nent maps of interests were selected by visual inspection according

to previous literature ( Agosta et al., 2012 ; Beckmann et al., 2005 ;

Damoiseaux et al., 2006 ) and having a concentrated power spectrum

below 0.1 Hz. The maps derived are shown in Supplementary Fig. S1

and included the central and lateral visual networks, DMNs I and II,

left (L) and right (R) fronto-parietal, sensory–motor, and temporal

networks. 

Group averages and between subject analyses for group compar-

isons were performed using dual-regression (available in FSL 4.1).

For statistical significance non-parametric permutation was imple-

mented in dual-regression (10,000 permutations), where corrections

for age, sex and grey matter (using feat gm prepare script available

in FSL 4.1) were also included as covariates in the design matrix.

Finally, in order to assess positive relations of the dual-regressed

time series we implemented contrast masking, i.e. group compar-

ison results were masked by group average maps (voxels that fell

http://www.fmrib.ox.ac.uk/fsl
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ithin either DLB or control group average maps, thresholded at p - 

alue < 0.05, familywise error (FWE) correction for multiple compar- 

son using threshold free cluster enhancement (TFCE)). No statistical 

orrection for multiple RSNs was implemented. 

.4. Statistical analysis of clinical measures. 

Statistical results in Table 1 including the two-sample t -tests were 

btained using R (version 2.15.3, psych library). The association of 

SNs was tested by Spearman’s rank correlation against the CAF scale 

or cognitive fluctuations. As part of a secondary analysis we also 

onsidered RSN alterations associated with other DLB symptoms in- 

luding the degree of parkinsonism (UPDRS) and the severity and 

requency of visual hallucinations (NPI hall ) in DLB patients. Statistical 

ignificance for regression of clinical measures with seeded signifi- 

ant clusters given by dual regression (subjects’ normalized z -score 

mages) was tested using nonparametric permutations (10,000 per- 

utations) for Spearman’s correlations (with correlation equating 

ero as null hypothesis) and implemented in Python (scipy.stats li- 

rary version 0.9.0). Only clusters > 10 voxels were analysed for cor- 

elation with clinical scores. 

Furthermore, as an alternative method we also run a non- 

arametric permutation analysis to further assess relations between 

he core clinical scores and the significant clusters using the FSL gen- 

ral linear model (GLM) tool to create a one-group design matrix 

DLB) with the clinical scores as covariates of interest. Significance 

as assessed using the FSL randomize function. The non-parametric 

nalysis is shown in Supplementary material, Section 2 . 

. Results 

.1. Demographics and clinical measures 

Our study included 16 patients diagnosed with DLB and 17 con- 

rol subjects. Demographic and clinical scores including relevant sub- 

cales are shown in Table 1 . Both groups, DLB patients and controls, 

re matched for age ( p -values = 0.524). 

As expected, compared to controls, the DLB group was cognitively 

mpaired, had a variable degree of cognitive fluctuations as measured 

y the CAF, as well as evidence of parkinsonism and recurrent visual 

allucinations with variable frequency and severity. 

.2. Resting state networks and dual-regression 

A total of 42 component maps were obtained by MELODIC using 

efault FSL parameters for data dimension estimate (17 component 

aps were identified as noise or artefactual origin, 11 components 

ere identified as resting state networks, and the remaining 14 maps 

ere of unknown origin). From the identified RSNs, the L / R fronto- 

arietal, sensory–motor, DMN (I and II), temporal, and medial and lat- 

ral visual networks were selected for dual regression. The automatic 

ELODIC threshold which fits a mixture model to the histogram of 

ntensity values (alternative hypothesis test at p > 0.5) for each map 

as used for visual inspection. 

For dual regression, significant decreased FC in DLB compared to 

ontrols (DLB < controls; p -value < 0.05, FWE corrected for mul- 

iple comparisons using TFCE) was found for three networks; the L 

ronto-parietal, temporal, and sensory–motor networks. No statistical 

ifferences were found for the DMN (I and II), the R fronto-parietal, 

nd the medial and lateral visual networks. None of the RSNs showed 

ignificant increased FC (DLB > controls; p -value < 0.05 FWE cor- 

ected). 

Significant clusters from these networks for the DLB < control 

omparisons are reported in Table 2 . Nine clusters were found for 

he L fronto-parietal network covering several regions such as the 

 pallidum, L / R putamen, lingual gyrus, intracalcarine cortices, and 
R frontal operculum ( Fig. 1 a). For the temporal network shown in 

Fig. 1b , fourteen clusters were found covering the L / R lingual gyrus, 

R putamen, R precentral gyrus, L cingulate gyrus (middle) and L / R 

intracalcarine cortices. The sensory–motor network showed ten clus- 

ters. The largest one widely distributed encompassing both occipital 

(e.g. L / R lateral occipital cortex, L / R lingual gyrus) and parietal (e.g. L 

supramarginal gyrus) areas. Two smaller clusters cover the R superior 

temporal and the L middle cingulate gyri as shown in Fig. 1c . 

A potential confound affecting the patterning of RSNs, particu- 

larly in a neurodegenerative group may have been volumetric loss 

specific to the DLB group. To test this, we carried out a voxel-based 

morphometry (VBM) analysis using the statistical parametric map- 

ping software, SPM8 ( http: // www.fil.ion.ucl.ac.uk / spm / ). However 

we found no structural differences between the groups that may have 

affected our functional findings ( Supplementary material, Section 3 ); 

only two significant clusters were identified and these lay external to 

our functional results given by dual-regression. 

3.3. Regression analysis with cognitive fluctuations and other clinical 

variables 

Inferred clusters (DLB < controls) were seeded and 15 indices (i.e. 

those clusters > 10 voxels) from the normalized z -score images were 

extracted from the DLB group. Regression results and significant un- 

corrected p -values are shown in Table 3 , which shows the clusters 

where significant correlations were found with the CAF score. Sig- 

nificant correlations for the L fronto-parietal network were found 

between clusters FPN-1, FPN-3, FPN-4 and FPN-6 (which include the 

L pallidum, L lingual gyrus, and the R putamen, see Table 2 ) and the 

CAF score. Clusters for the temporal and sensory–motor RSNs did not 

show significant correlations with CAF. 

The non-parametric permutation analysis to assess relations be- 

tween the CAF scores and LFPN clusters showed similar results (see 

Supplementary material, Section 2 ). 

4. Discussion 

In summary, we found from our exploratory dual-regression anal- 

ysis that the sensory–motor, temporal and L fronto-parietal networks 

showed significantly lower FC at several regions in DLB patients 

compared to controls. For the sensory–motor network decreased FC 

(DLB < controls) was observed in three main clusters covering several 

regions on posterior areas of the brain (occipital and parietal areas 

mainly; Fig. 1c ); for the temporal network, significantly decreased 

FC was seen in the L / R lingual gyri and intracalcarine cortices, the 

L lateral occipital cortex, R insular cortex, the L / R cingulate gyrus, 

and the temporal occipital fusiform cortex ( Fig. 1b ). Finally our dual- 

regression results showed significant clusters for the L fronto-parietal 

network in regions that include the L / R putamen, L / R pallidum, R 

frontal operculum, and R supramarginal gyrus ( Fig. 1a ). In contrast, 

we were not able to find significant differences in the DMN between 

DLB patients and the control group and these results concord with 

previous publications reporting a spared or increased DMN in DLB 

( Franciotti et al., 2013 ; Kenny et al., 2012 ; Sauer et al., 2006 ). We 

discuss the implications of these findings apposite to these networks 

below. 

4.1. Sensory–motor network 

This network is central to the execution of voluntary movements 

( Biswal et al., 1995 ) and abnormalities in the functional connectiv- 

ity of the sensory–motor network have been reported in Parkinson’s 

patients. In addition the topography features of this network may 

be dopamine dependent ( Esposito et al., 2013 ). Therefore, given the 

presence of parkinsonism in DLB, it is not unsurprising that we found 

that FC of this network was affected. Exploratory analysis tentatively 

http://www.fil.ion.ucl.ac.uk/spm/
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Table 1 

Demographic, clinical and cognitive measures. 

DLB 

(n = 16) 

Controls 

(n = 17) p -Value 

M:F (% female) 13:3 (19%) 14:3 (18%) χ 2 = 0.0067, p = 0.934 a 

Age 76.2 ± 5.7 77.3 ± 4.7 t 31 = 0.415, p = 0.524 b 

MMSE 24.2 ± 3.75 29.1 ± 0.83 t 31 = 27.38, p < 0.001 b 

UPDRS total 15.94 ± 5.93 1.41 ± 1.87 t 31 = 92.46, p < 0.001 b 

CAMCOG total 78.8 ± 11.9 96.4 ± 3.43 t 31 = 33.95, p < 0.001 b 

CAF total 3.56 ± 4.35 na na 

NPI total 8.60 ± 5.59 c na na 

NPI hallucinations subscale 1.75 ± 1.84 na na 

Values expressed as mean ± 1SD. 

Abbreviations: DLB, dementia with Lewy bodies; MMSE, Mini-Mental State Examination; CAMCOG, Cambridge Cognitive Examination; NPI, Neuropsychiatric Inventory; CAF, 

Clinical Assessment of Fluctuations; UPDRS, Unified Parkinson’s Disease Rating Scale; na, not applicable. 
a Chi-square test. 
b Student’s t -test — controls and DLB. 
c ( n = 15). 

Table 2 

Cluster report from dual regression output of significant clusters. All clusters are FWE corrected for multiple comparisons using TFCE. Fronto-parietal network (FPN), sensory–motor 

network (SMN), temporal network (TN). * indicates the lowest p -value region. 

Number of voxels p -Value MNI (X, Y, Z) Location 

Cluster code Fronto-parietal network [Max z -score] 

FPN-1 107 0.022 [ −26, −10, 0] L pallidum*, L putamen 

FPN-2 103 0.03 [38, 26, 8] R frontal operculum*, R inferior 

frontal gyrus, 

FPN-3 93 0.03 [ −2, −70, 0] L lingual gyrus*, L / R intracalcarine 

cortices, R lingual gyrus 

FPN-4 67 0.029 [34, −2, 4] R putamen*, R pallidum 

FPN-5 27 0.033 [34, −30, 32] R white matter*, R supramarginal 

gyrus 

FPN-6 26 0.027 [14, 10, −4] R putamen*, R pallidum 

3 clusters < 10 voxels 

Sensory–motor network 

SMN-1 2226 0.001 [ −42, −74, −4] L lateral occipital cortex, inferior 

division*, L / R lingual gyrus, R / L 

intracalcarine cortex, L / R 

precentral gyrus, L / R precuneus, L 

planum temporale 

SMN-2 30 0.005 [50, −10, 12] R superior temporal gyrus, 

posterior division*, R planum 

temporale 

SMN-3 21 0.034 [ −6, −6, 32] L middle cingulate gyrus* 

7 clusters < 10 voxels 

Temporal network 

TN-1 834 0.003 [ −10, −82, −12] L lingual gyrus*, R lingual gyrus, 

L / R intracalcarine cortex, L lateral 

occipital cortex, inferior division, L 

temporal occipital fusiform cortex. 

TN-2 786 0.01 [ −10, −6, 32] L cingulate gyrus (middle*), R 

cingulate gyrus. 

TN-3 206 0.01 [38, −2, 4] R insular cortex*, R putamen, R 

frontal orbital cortex 

TN-4 67 0.011 [34, 6, 24] R precentral gyrus*, R inferior 

frontal gyrus 

TN-5 21 0.034 [22, −38, −12] R lingual gyrus*, R 

parahippocampal gyrus, posterior 

division 

TN-6 15 0.036 [ −10, −18, −8] L white matter*, L brain stem, L 

thalamus 

8 clusters < 10 voxels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

supported this as there was a trend association between the severity

of parkinsonism as measured by the UPDRS and the functional dis-

connectivity of this network (Spearman’s rank correlation between

cluster SMN-1 and UPDRS score: p -value = 0.073 uncorrected). The

lack of strong relationship may be driven by the tendency to less

parkinsonism and known variability in nigrostriatal neuronal loss in

DLB ( Colloby et al., 2012 ). 

Prior evidence from covariant analyses of perfusion data in DLB
have suggested that the expression of both anti-correlated motor

(e.g. supplementary motor area and putamen) and non-motor (pari-

etal) networks is intrinsic to cognitive fluctuations and attentional

dysfunction in DLB ( Taylor et al., 2013 ). These areas overlap with the

sensory–motor network reported here although in the present co-

hort we found no evidence of an association between CAF and the FC

reduction in the sensory–motor network of DLBs. Possible explana-

tions for this may be differences in the sample, investigative modality
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Fig. 1. Dual regression significant clusters shown in blue colour ( p -value < 0.05, FWE corrected). Resting state networks are shown in green. a) Left fronto-parietal network. 

b) Temporal network. c) Sensory–motor network. Dual-regression results are corrected for sex, age, and grey matter. Brain images are nonlinear coregistered average brains 

transformed to MNI152 space and shown in radiological convention. 

Table 3 

Correlation with DLB core clinical measures; CAF with dual-regression significant 

clusters. 

Cluster Spearman’s rank correlation ( p -value) 

FPN-1 0.603 (0.0184) 

FPN-2 0.482 (0.0630) 

FPN-3 0.612 (0.0124) 

FPN-4 0.519 (0.0442) 

FPN-5 0.066 (0.7926) 

FPN-6 0.551 (0.0344) 

(

s

4

a

d

n

c

resting state vs. perfusion) or analysis approach between the present 

tudy and that of Taylor et al. (2013) . 

.2. Temporal network 

This network covers the auditory system, in specific the primary 

nd secondary auditory cortices. Alterations in FC in this network 

id not associate with cognitive fluctuations in DLB although it is 

otable that the temporal occipital fusiform cortex is mainly asso- 

iated with body and face recognition and the lingual gyri on the 
other hand have been associated with processing of complex images. 

Certainly visuo-perceptual deficits ( Mosimann et al., 2004 ) and ab- 

normalities in the ventral visual stream ( Harding et al., 2002 ; Taylor 

et al., 2012 ) have been reported in DLB. Similarly a diffusion tensor 

imaging (DTI) study published by Kiuchi et al. (2011) found lower 

fractional anisotropy (FA) in visual-related areas in DLB patients and 

lower FA values in bilateral inferior occipitofrontal fasciculus (IOFF; 

connecting the orbitofrontal cortex with the occipital lobe) and the L 

inferior longitudinal fasciculus (ILF; connecting the inferior temporal 

cortex with the occipital lobe). These findings concord with our results 

showing a disconnection between occipital regions and the tempo- 

ral RSN. However on our secondary analyses none of the significant 

clusters related to the temporal RSN correlated with the severity or 

frequency of visual hallucinations ( p -values > 0.13) suggesting that 

FC alterations of the temporal network of DLBs while perhaps being 

permissive to the manifestation of hallucinations, do not predict, in 

themselves, hallucination severity or frequency. 

Furthermore, we did not see a significant correlation between the 

thalamic cluster (TN-6) and cognitive fluctuations. This was some- 

what surprising given that the thalamus has roles in mediation of 
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arousal and attention ( Portas et al., 1998 ). In DLB, specifically, alter-

ations in thalamic perfusion in DLB patients have also been related to

this symptom ( O’Brien et al., 2005 ) and more recent work with func-

tional resting state MRI has also found altered connectivity between

the thalamus and frontal and limbic (cingulate cortex) regions ( Kenny

et al., 2013 ) although the relationship of this altered connectivity to

clinical symptom expression was not described in this paper. 

Explanations for the apparent lack of association between thalamic

changes in RSN connectivity and cognitive fluctuations in our study

may include the lower disease severity of DLB group compared to

other studies. However it is notable that thalamic involvement in the

manifestation of fluctuations has not been noted in other perfusion

studies which take a network perspective ( Taylor et al., 2013 ). Further

studies focussing on the structure–function role of the thalamus in

DLB which include active attentional task comparisons with resting

state may be helpful. 

4.3. Left fronto-parietal network and default mode network 

The fronto-parietal network, also known in the literature as the

attentional network, is composed of the VAN and DAN. The VAN is

known to respond to task-relevant distractors, and the DAN responds

together with the VAN when reorientation of attention is needed

( Fox et al., 2006 ). Even though the attentional system is reported as

bilateral for attentional tasks, in resting state it is lateralized for the

VAN while the DAN remains bilateral ( Fox et al., 2005 ). 

In the present study areas with reduced FC with this network in

DLBs included the putamen and pallidum, R frontal operculum, and

R supramarginal gyrus; these are areas which have been implicated

in the attentional control network ( Coull, 2004 ; Eckert et al., 2009 ),

and specifically we found that the putamen and pallidum bilaterally

showed significant correlation with the CAF score. Given the confla-

tion between attention dysfunction and cognitive fluctuations in DLB

( Ballard et al., 2001a ) it is not unsurprising that attentional networks

have implicated in the aetiology of cognitive fluctuations ( Bonnani

et al., 2008 ; Franciotti et al., 2013 ). Interestingly, we did not see any

association with FC in this network and the severity of parkinsonism

(as measured by the UPDRS) given the association with a number of

putamenal clusters. However the fronto-parietal attentional network

is not a motor network and thus this finding is perhaps unsurprising;

rather the finding of putamen disconnectivity may point towards the

cognitive role of subcortical motor areas ( van Schouwenburg et al.,

2013 ) and is in tune with previous data implicating motor networks

in attentional and cognitive dysfunction in DLB ( Taylor et al., 2013 ). 

Our findings of an intact DMN in DLB compared to controls, yet ab-

normal fronto-parietal network which associates with the CAF, point

towards this latter network having a specific role in DLB associated

cognitive fluctuations. This is consistent with previous findings pre-

sented by Franciotti et al. (2013) suggesting decreased resting state FC

between frontal and parietal areas in DLB patients with more marked

cognitive fluctuations although this was observed in the right hemi-

sphere rather than the left, unlike the current study. 

Lateralization in our results towards the L fronto-parietal network

is challenging to explain, although our findings are consistent with

previous data by Kiuchi et al. (2011) who observed a lateralization of

the DLB pathology towards the left brain hemisphere by a disconnec-

tion of white matter tracts. 

It is notable that recent work by Wymbs et al. (2012) found a re-

lation between both the putamina and the left fronto-parietal net-

work with motor chunking and event segmentation; the latter being

a method used by the brain to divide our daily living activities in a

set of shorter segments that are concatenated and where attention

is increased at the end and start of each event ( Kurby and Zacks,

2008 ) and thus, speculatively, our observation of lower functional

connectivity between the left fronto-parietal network with putame-

nal regions and its correlation with the CAF score might imply that
cognitive / attentional fluctuations might relate to aberrant event seg-

mentation although specific task-related paradigms would be needed

to test this hypothesis. 

4.4. Common elements in dysfunctional networks in DLB 

All three of the RSNs (L fronto-parietal, temporal, and sensory–

motor networks) that displayed reduced FC in DLB compared to con-

trols had functional disconnectivity with occipital lobe structures,

specifically the lingual gyrus and calcarine cortices. The ubiquity of

desynchronization of the lingual and calcarine gyri that we observed

across several RSNs in the present study is in keeping with poste-

rior, occipital changes which occur in this condition (for example,

perfusion and metabolism deficits; Lobotesis et al., 2001 ; Teune et

al., 2010 ; Colloby et al., 2002 ) and which have been postulated to

link with the increased propensity of visuo-perceptual deficits and

visual hallucinations which typify DLB ( Taylor et al., 2012 ). However

despite evidence of desynchronization of these non-visual RSNs with

occipital lobe regions, surprisingly, we did not see any gross differ-

ences in functional connectivity in visual RSNs in themselves. This

may reflect the variable findings reported across different investiga-

tive modalities, on the one hand, demonstrating specific deficits in

visual areas in DLB patients ( Fong et al., 2011 ; Sato et al., 2007 ) and

others suggesting, that certainly early / lower visual areas are intact

( Taylor et al., 2011 ; Taylor et al., 2012 ). The present findings may sug-

gest that abnormalities in the visual system in DLB are arising as a

consequence of changes in regions reciprocally connected but exter-

nal to the visual system and / or in the connectivity of these regions

with (e.g. top-down attentional networks) visual areas. For example

desynchronization of L fronto-parietal, temporal, and sensory–motor

networks with visual areas may be explained by structural connec-

tivity changes in the white matter that connects the occipital lobe

to higher association areas and this is supported by a number of DTI

studies which have demonstrated occipital white matter abnormali-

ties ( Kiuchi et al., 2011 ; Watson et al., 2012 ). Alternatively, our failure

to see visual RSN abnormalities may be related to the relatively mild

cognitive impairment and low visual hallucination symptom score in

our cohort (see Table 1 ); it may be that with more severely affected

DLBs, alterations in visual RSNs may become more manifest. 

Functional disconnection between controls and DLBs was also evi-

dent in the clusters which covered several regions including the puta-

men and pallidum with regard to both the fronto-parietal and tem-

poral networks. Given the presence of parkinsonism in DLB patients

it is not surprising that subcortical motor areas may display abnor-

malities although we failed to see any clear correlation between these

clusters and the severity of parkinsonism on our secondary analyses

as measured on the UPDRS. However it may be that these areas are

more relevant to cognitive fluctuations since these showed discon-

nection from the LFPN; in support of this covariant perfusion changes

between putamen and parietal areas ( Taylor et al., 2013 ) appear to

associate with cognitive fluctuations in DLB ( Ballard et al., 2001a ),

and the present data provide further support for a role in cognitive

fluctuations in DLB by subcortical motor networks. 

4.5. Limitations 

The data presented, despite our a priori focus on cognitive fluc-

tuations remains exploratory and thus, in particular, correlations be-

tween clinical variables and functional connectivity in DLBs need to

be treated with caution and need replication. 

Diagnosis of patients was on the basis of antemortem clinical ex-

amination rather than pathological diagnosis which represents an-

other potential limitation. However this was mitigated against by the

use of standardized clinical criteria and robust, well validated clini-

cal scales and the diagnostic approach applied to the current patient

cohort has been shown to have high specificity in autopsy validation
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tudies ( McKeith et al., 2000 ). Another limitation is that 15 out of 16 

f the DLB patients were on cholinesterase inhibitors which may have 

iased our findings; for example Possin et al. (2013) found restored 

esting state activity compared to healthy controls with improve- 

ents in controlled attention in Parkinson’s disease patients under 

ivastigmine treatment. In addition, in our study, the DLB group was 

elatively mild in terms of cognitive impairment and neuropsychi- 

tric symptoms compared to previous resting state studies in DLB 

see for instance Franciotti et al., 2013 ) and this may contribute to co- 

ort specific differences in resting state findings. However despite our 

LB group being cognitively milder and on medications, our patients 

xpressed a wide range of cognitive fluctuations in terms of severity 

nd frequency which strongly coupled with RSN disconnections. Thus 

e would argue that even in mild DLB, RSN disconnectivity is evident 

nd may be helpful in early diagnosis although our data would need 

o be contrasted against a control dementia group. 

. Conclusions 

In conclusion, we found a number of RSNs which were function- 

lly disconnected in DLB compared to controls and specifically that 

here was an association between disconnectivity of the L fronto- 

arietal network with cognitive fluctuations. Our results provide sup- 

ort for the concept that cognitive fluctuations in DLB depend upon 

istributed cortical and subcortical networks and may involve atten- 

ional systems. However our present data cannot determine whether 

isruption to the fronto-parietal RSN is merely correlative with cog- 

itive fluctuations or is actually causally linked. 

Further studies characterizing how longitudinal changes in RSNs, 

ainly the fronto-parietal network, relate to cognitive fluctuations 

re necessary as well as fMRI attention-task related studies to explore 

he dynamic switching between default brain states and task-positive 

etworks in DLB. 
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