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Abstract

Background: Whole body ischemia-reperfusion injury (IRl) after cardiopulmonary resuscitation (CPR) induces a
generalized inflammatory response which contributes to the development of post-cardiac arrest syndrome (PCAS).
Recently, pattern recognition receptors (PRRs), such as toll-like receptors (TLRs) and inflammasomes, have been shown to
mediate the inflammatory response in IRI. In this study we investigated monocyte PRR signaling and function in PCAS.

Methods: Blood samples were drawn in the first 12 hours, and at 24 and 48 hours following return of spontaneous
circulation in 51 survivors after cardiac arrest. Monocyte mRNA levels of TLR2, TLR4, interleukin-1 receptor-associated
kinase (IRAK)3, IRAK4, NLR family pyrin domain containing (NLRP)1, NLRP3, AIM2, PYCARD, CASP1, and IL1B were
determined by real-time quantitative PCR. Ex vivo cytokine production in response to stimulation with TLR ligands
PamsCSK,4 and lipopolysaccharide (LPS) was assessed in both whole blood and monocyte culture assays. Ex vivo
cytokine production of peripheral blood mononuclear cells (PBMCs) from a healthy volunteer in response to
stimulation with patients’ sera with or without LPS was assessed. The results were compared to 19 hemodynamically
stable patients with coronary artery disease.

Results: Monocyte TLR2, TLR4, IRAK3, IRAK4, NLRP3, PYCARD and IL1B were initially upregulated in patients following
cardiac arrest. The NLRP1 and AIM2 inflammasomes were downregulated in resuscitated patients. There was a
significant positive correlation between TLR2, TLR4, IRAK3 and IRAK4 expression and the degree of ischemia as assessed
by serum lactate levels and the time until return of spontaneous circulation. Nonsurvivors at 30 days had significantly
lower mRNA levels of TLR2, IRAK3, IRAK4, NLRP3 and CASP1 in the late phase following cardiac arrest. We observed
reduced proinflammatory cytokine release in response to both TLR2 and TLR4 activation in whole blood and monocyte
culture assays in patients after CPR. Sera from resuscitated patients attenuated the inflammatory response in cultured
PBMCs after co-stimulation with LPS.

Conclusions: Successful resuscitation from cardiac arrest results in changes in monocyte pattern recognition receptor
signaling pathways, which may contribute to the post-cardiac arrest syndrome.

Trial registration: The trial was registered in the German Clinical Trials Register (DRKS00009684) on 27/11/2015.

Keywords: Post-cardiac arrest syndrome, Cardiopulmonary resuscitation, Toll-like receptor, Inflammasome, Endotoxin
tolerance, Monocyte

* Correspondence: alexander.asmussen@uniklinik-freiburg.de

Equal contributors

'Department of Cardiology and Angiology |, Heart Center Freiburg
University, Hugstetter Stral3e 55, Freiburg im Breisgau 79106, Germany
Full list of author information is available at the end of the article

) - © 2016 The Author(s). Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
() B|°Med Central International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://crossmark.crossref.org/dialog/?doi=10.1186/s13054-016-1340-3&domain=pdf
http://www.drks.de/DRKS00009684
mailto:alexander.asmussen@uniklinik-freiburg.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/

Asmussen et al. Critical Care (2016) 20:170

Background

The annual incidence of sudden cardiac arrest ranges
between 50 and 100 per 100,000 in the general popula-
tion in North America and Europe. A recent registry
study for out-of-hospital cardiac arrest (OHCA) shows that
although a return of spontaneous circulation (ROSC) is ob-
tained in 34.4 %, the prognosis of patients suffering sudden
cardiac arrest still remains poor, with an overall survival to
hospital discharge rate of 9.6 % [1]. This high mortality rate
in patients who initially achieve ROSC can be attributed to
a unique pathophysiological condition involving multiple
organs known as post-cardiac arrest syndrome (PCAS)
[2, 3]. PCAS is characterized by its four major clinical
components, namely (1) anoxic brain injury, (2) myo-
cardial dysfunction, (3) systemic ischemia-reperfusion
response, and (4) the persistent precipitating pathology
[3]. On a pathophysiological level, the initial tissue in-
jury during sudden whole-body ischemia is thought to
be aggravated during reperfusion through cardiopulmo-
nary resuscitation and finally by ROSC, resulting in the
generation of reactive oxygen species and thereby indu-
cing oxidative stress [4—6]. These events lead to the
induction of a systemic inflammatory response with
neutrophil activation [7], elevation of plasma cytokines
[8] and severe endothelial injury [9-11]. These deleteri-
ous pathological processes contribute to microcircula-
tory disorder [12—-14] and vascular leakage [14, 15] and
may finally result in a clinical condition comparable to
septic shock [8, 16]. However, up to this day, the only
causative treatment in post-cardiac arrest care remains
therapeutic hypothermia [17].

The aim of this study was to investigate the potential
involvement of the innate immune system as a potential
modulating factor in the inflammatory response follow-
ing cardiac arrest. While its important role is well docu-
mented in sepsis [18], trauma [19], and tissue damage
after ischemia-reperfusion injury (IRI) in specific organs
[20], little is known about the contribution of innate im-
munity to the systemic inflammatory response syndrome
after cardiac arrest. As one of the evolutionary oldest
barriers against pathogen invasion, the innate immune
system recognizes pathogen-associated molecular patterns
(PAMPs) via germline-encoded pattern-recognition recep-
tors (PRRs), which lead to an antimicrobial response.
Toll-like receptors (TLRs), members of membrane-bound
PRRs, and the inflammasomes, which are PRRs located in
the cytoplasm, therefore play a pivotal role in the first line
of host defense against pathogens by inducing proinflam-
matory cytokines like interleukin-1 beta (IL-1p) and tumor
necrosis factor alpha (TNFa) [21, 22]. It is now evident
that these PRRs also play a crucial role in conditions of
sterile inflammation, like in IRI, as these receptors also
recognize a heterogeneous group of endogenous alarm sig-
nals. These danger-associated molecular patterns (DAMPs)
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[23], such as heat-shock proteins, uric acid, genomic
double-stranded DNA, and components of the extracellu-
lar matrix, are cell-derived molecules that are released by
injured or distressed cells and tissue [24] and can contrib-
ute to inflammation via activation of PRRs [25, 26].

In the current study we therefore investigated the
involvement of the toll-like receptors and the inflamma-
some in the systemic inflammatory condition following
survived cardiac arrest. Our working hypothesis was that
global ischemia-reperfusion injury, induced by circula-
tory arrest and cardiopulmonary resuscitation, results in
the release of DAMPs which activate PRRs. We further
hypothesized that this activation results in an expres-
sional change of these receptors at the mRNA level,
which alters the response of these PRRs to subsequent
stimuli.

Methods

Patient recruitment

The study was approved by the ethics committee of the
University Medical Center Freiburg (approval number
328/09) and conforms to the declaration of Helsinki.
The trial was registered in the German Clinical Trials
Register (DRKS00009684). We prospectively enrolled 55
patients who had undergone successful cardiopulmonary
resuscitation (CPR), and were admitted to our intensive
care unit at the University Hospital of Freiburg,
Germany. The patients’ next of kin were informed about
the study details. Informed consent was obtained retro-
spectively from patients who survived to hospital dis-
charge with a good neurological outcome. A total of 20
patients with both stable and unstable coronary artery
disease (CAD), but without acute myocardial infarction,
were included in this study as control subjects, because
the comorbidities and pharmacological and interven-
tional treatment of patients with sudden cardiac arrest is
most closely reflected by this group of patients. Written
informed consent was obtained from all patients in the
control group. Four patients (cases) and one control sub-
ject were retrospectively excluded from the study because
of violation of the exclusion criteria, which was not
evident at the time of study enrollment.

Inclusion and exclusion criteria

Patients older than 18 years with either in-hospital cardiac
arrest (IHCA) or out-of-hospital cardiac arrest (OHCA)
due to any cause, who received cardiopulmonary resusci-
tation for longer than 5 minutes (including downtime
before the beginning of CPR) were included in this study.
Patients with preexisting acute or chronic inflammatory
or infectious disease, and patients taking immunosuppres-
sive medication were excluded from this study, as in these
patients a modulation of the monocyte inflammasome or
TLR signaling can be expected [22, 27]. Furthermore,
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patients with apparent multiple organ dysfunction syn-
drome prior to cardiac arrest were excluded from this
study [28].

Sample collection

Blood samples were drawn from resuscitated patients via
an arterial line within the first 12 h after admission to
our hospital, and after 24 and 48 h, respectively. In the
control group, a single blood specimen was collected by
sterile venipuncture with a 21-gauge butterfly needle.
Samples were drawn slowly and immediately processed.

Monocyte purification

Peripheral blood mononuclear cells (PBMCs) were puri-
fied from fresh citrated blood by Biocoll-1.077 density gra-
dient separation (Biochrom, Berlin, Germany) at 460 x g
for 30 minutes at room temperature. The mononuclear
cell layer was removed and washed two times in cold
Dulbecco’s phosphate-buffered saline (DPBS) (Life Tech-
nologies, Carlsbad, CA, USA), w/o CaCl, and MgCl,, with
2 mM EDTA, by centrifugation at 200 x g for 12 minutes
at 4 °C. Monocytes were isolated by negative selection
with the Monocyte Isolation Kit II (Miltenyi Biotech,
Bergisch-Gladbach, Germany) according to the manufac-
turer’s instructions. Monocyte purification success was
verified by flow cytometry analysis.

RNA extraction

Total RNA was extracted by phenol/guanidine-based
lysis of monocyte samples and silica membrane-based
purification with the miRNeasy Mini Kit (Qiagen, Venlo,
Netherlands) according to the manufacturer’s protocol.
RNA quality and quantity was assessed by Nanodrop
spectrophotometer (Thermo Fisher Scientific, Waltham,
MA, USA). An absorption coefficient at 260 nm/280 nm
from 1.8 to 2.0 was considered as pure RNA and led to
further processing of the RNA specimen.

cDNA synthesis and quantitative real-time PCR

RNA was reverse transcribed with the Transcriptor First
Strand ¢cDNA Synthesis Kit (Roche, Basel, Switzerland).
The converted cDNA was used for quantitative real-time
polymerase chain reaction (qPCR) analysis with the Light
Cycler 480 SYBR Green Master I Kit on a Light Cycler 480
Instrument II (Roche, Basel, Switzerland). Primer-pairs
were designed with Beacon Designer software (Premier
Biosoft, Palo Alto, CA, USA) and are listed in a supple-
mentary table (Additional file 1). Intron-spanning primer-
pairs were preferred over intron-flanking primer-pairs.
Primer-pair efficiency was determined using a standard
curve dilution method. A primer-pair efficiency of 90—
110 % was accepted. Relative quantification was used
to assess the gene expression of selected genes linked
to monocyte TLR and inflammasome signaling. Gene
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expression was normalized to the two reference genes RNA
polymerase 2 (POL2RA) and Beta-2 microglobulin (f2M).
POL2RA has been shown to be constantly expressed over
multiple mammalian cell lines [29], whereas 32M has been
shown to be steadily expressed in activated monocytes after
stimulation with lipopolysaccharide (LPS) [30]. Relative
copy numbers (RCN) of the selected genes were calculated
using the equation:

RCN = E™4¢

where E is the primer efficiency of the target gene and
ACt is the difference of the threshold cycles of the target
gene and the geometric mean of the threshold cycles of
the two reference genes.

Stimulation of whole blood samples, cultured monocytes
and PBMCs
NH4-heparinized whole blood (100 pl) was stimulated in
sterile 96-well plates with 100 pl TLR4 ligand LPS from
Escherichia coli 055:B5 (Sigma, Missouri, USA) at a final
concentration of 10 ng/ml and 100 ul of the synthetic
TLR2 ligand Pam3;CSK, (Merck Millipore, Darmstadt,
Germany) at a final concentration of 500 ng/ml as previ-
ously described [31]. For stimulation of isolated mono-
cytes, 10° purified monocytes were resuspended in 900 pl
Roswell Park Memorial Institute (RPMI)-1640 medium
supplemented with 2 mM L-glutamine, 1 % non-essential
amino acid solution, 200 U/ml penicillin, 200 pg/ml
streptomycin, and 10 % fetal calf serum in sterile 12-well
plates. Monocytes were stimulated with 100 pl LPS for a
final concentration of 10 ng/ml. PBMCs were isolated
from a healthy control. For stimulation of PBMCs, 0.5 x
10° PBMCs were resuspended in 400 pl RPMI-1640
medium supplemented with 2 mM L-glutamine, 1 % non-
essential amino acid solution, 200 U/ml penicillin, 200 pg/
ml streptomycin, and incubated with 100 pl serum at a
final concentration of 20 % from either resuscitated
patients or patients with CAD. Additionally, 0.5 x 10°
PBMCs were co-stimulated with 20 % patient serum and
10 ng/ml LPS in the previously described cell culture
medium. Whole blood, monocyte, and PBMC cultures
were incubated for 12 h at 37 °C and 5 % CO,. The culture
supernatant was stored at —20 °C for further analysis.
TNF-a was determined in TLR2 ligand-activated whole
blood supernatants using an enzyme-linked immunosorb-
ent assay (ELISA) (PeliKine compact, Sanquin Reagents,
Amsterdam, Netherlands). IL-1p was determined in TLR4
ligand-stimulated whole blood, monocyte, and PBMC
culture supernatants (RayBio Human IL-1p ELISA, Ray-
Biotech, Norcross, GA, USA) according to the manufac-
turer’s protocol. The resulting cytokine concentration was
standardized to the patient’s white blood count in whole
blood culture supernatants.
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Statistics

Statistical analysis was performed using SPSS 21 (IBM,
Armonk, NY, USA). Gaussian distribution was verified by
visualization of the respective histograms, the Shapiro-
Wilk test, and a calculation of the z score of skewness and
kurtosis. A z score of 1.96 was considered as statistically
not significant and a normal distribution was assumed
[32]. The assumption of homogeneity of variances was
verified by the nonparametric Levene test [33]. Fisher’s
exact test was used to compare categorical variables. Nor-
mally distributed unpaired data on an interval scale
consisting of multiple groups were analyzed with one-way
analysis of variance (ANOVA) and post-hoc analysis with
all-pairwise comparison. Non-normally distributed unpaired
data on an interval scale consisting of two groups were
analyzed using the Mann—Whitney U test. Non-normally
distributed unpaired data on an interval scale consisting of
multiple groups were analyzed with Kruskal-Wallis test and
post-hoc analysis using the Dunn-Bonferroni approach.
Correlation between selected variables was estimated by
Spearman's rank correlation. Statistical significance was
defined as a two-tailed p value <0.05. Continuous variables
are reported as mean value + standard deviation (SD).
Bar graphs illustrate the mean value, with the error bars
indicating the SD.

Results

Patient characteristics

A total of 51 patients who had undergone cardiopulmo-
nary resuscitation (CPR group) and 19 patients with
CAD were included in this study. The majority of the
study population was male. Mean age at the time of the
investigation did not differ significantly between the two
groups (66.5 + 11.5 in the resuscitation group vs. 68.9 £
11.6 in the CAD group; p =0.44). Of the resuscitated
patients, 67 % had significant CAD vs. 100 % in the
CAD group (p =0.003). Although more patients in the
CPR group underwent coronary angiography prior to
(<12 h before) study enrollment (CPR group 76 % vs.
CAD group 42 %; p=0.01), there was no difference
between the two groups in the resulting coronary revas-
cularization through percutaneous coronary intervention
(PCI) (CPR 45 % vs. CAD 42 %; p = 1.0) (Table 1).

Both groups had comparable prevalence of preexisting
medical conditions such as chronic heart failure, periph-
eral artery disease, pulmonary hypertension, and chronic
liver, renal, or pulmonary disease. The cardiovascular risk
profile of patients with CAD indicated greater prevalence
of dyslipidemia in the CAD group (68 % vs. 31 % in the
resuscitation group; p = 0.007) (Table 1).

Among the study population 80 % had experienced
OHCA and 20 % of the study population were successfully
resuscitated from IHCA. Ventricular fibrillation and ven-
tricular tachycardia were the most common initial rhythm
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presentations after cardiac arrest (57 %), while 43 % of the
resuscitated patients had asystole or pulseless electrical ac-
tivity. The mean duration of CPR was 29.8 + 19.1 minutes
and the no-flow time was 2.4 + 3.9 minutes. The sequen-
tial organ failure assessment (SOFA) score was calculated
daily in the first 3 days after cardiac arrest and did not
differ between the three measuring points in patients after
CPR (Table 1).

Mean time from ROSC to blood sampling was 6.5 +
2.9 h for the first, 25.2 + 3.1 h for the second, and 48.8 +
3.0 h for the third specimen of blood. A summary of
routine laboratory values is shown in a supplementary
table (Additional file 2).

Monocyte TLR and inflammasome mRNA expression in
patients after cardiopulmonary resuscitation and the
control group

In order to evaluate the potential role of PRRs in the
immunoinflammatory syndrome following cardiac ar-
rest, monocyte mRNA levels of genes related to TLR
and inflammasome signaling were assessed in patients
after CPR and the control group with CAD. Monocyte
mRNA levels, expressed as relative copy numbers, are
depicted in Fig. 1 and listed in a supplementary table
(Additional file 3).

TLR signaling

Compared to the control group, we observed significant
upregulation of surface PRR TLR2 in the early phase
after cardiac arrest, which was subsequently downregu-
lated in the later phase. Resuscitated patients had signifi-
cantly higher mRNA levels of the surface PRR TLR4 in
the first 12 h and 48 h after CPR with a trend towards
higher levels in the intermediate phase. Likewise, IRAK4,
the main kinase to further promote TLR signaling acti-
vation, was upregulated in patients in the early phase
after cardiac arrest. Consistent with these results, signifi-
cantly higher levels of IL1B mRNA could be detected in
monocytes in the early phase after cardiac arrest. Con-
versely, we also observed significantly higher mRNA
levels of IRAK3, a negative regulator of monocyte TLR
signaling, in the first 24 h after CPR. We went on to in-
vestigate whether intracellular PRRs displayed similar
regulation after CPR.

Inflammasome signaling

We detected distinct expression patterns of the investi-
gated PRRs, with significant upregulation of monocyte
NLRP3 mRNA levels in the first and the second blood
sampling after cardiac arrest. In contrast, monocyte
mRNA expression of the NLRP1 inflammasome was sig-
nificantly downregulated compared to the control group
in the first 12 h and at 48 h after ROSC. Likewise, we
observed significantly lower mRNA expression levels of
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Table 1 Patient characteristics
CPR group (n=51) CAD group (n=19) P value
Age (years) 6649 +11.53 68.89+11.60 0441
Gender male:female 39:12 154 1.0
CPR scene
OHCA 41 (80 %) N/A
IHCA 10 (20 %) N/A
Etiology of cardiac arrest
Cardiac 32 (63 %) N/A
Non-cardiac 13 (25 %) N/A
Unknown 6 (12 %) N/A
Initial rhythm
VT/VE 29 (57 %) N/A
Asystole/PEA 22 (43 %) N/A
Time from collapse to CPR (minutes) 243+388 N/A
Time from collapse to ROSC (minutes) 29.84+19.11 N/A
Interventions
Therapeutic hypothermia performed 50 (98 %) N/A
Coronary angiography <12 h prior to study enroliment 39 (76 %) 8 (42 %) 0.01
PCl <12 h prior to study enrollment 23 (45 %) 8 (42 %) 1.0
Consecutive organ failure
Acute heart failure 19 (37 %) 0 (0 %) 0.002
Acute respiratory failure 7 (14 %) 0 (0 %) 0177
Acute liver failure 0 (0 %) 0 (0 %) N/A
Acute renal failure 16 (31 %) 0 (0 %) 0.004
Sequential organ failure assessment (SOFA) score
Day 1 after ROSC 1053 £ 1.75 N/A
Day 2 after ROSC 1083 +1.63 N/A
Day 3 after ROSC 10.85+1.83 N/A
Medical history
Coronary artery disease 34 (67 %) 19 (100 %) 0.003
Peripheral artery disease 3(6 %) 1 (5 %) 1.0
Chronic heart failure 9 (18 %) 3 (16 %) 1.0
Pulmonary hypertension 6 (12 %) 0 (0 %) 0.180
Chronic lung disease 14 (27 %) 1 (5 %) 0.052
Chronic liver disease 0 (0 %) 0 (0 %) N/A
Chronic kidney disease 6 (12 %) 5 (26 %) 0.155
Cardiovascular risk factors
Hypertension 29 (57 %) 15 (79 %) 0.104
Diabetes 13 (25 %) 6 (32 %) 0.763
Dyslipidemia 16 (31 %) 13 (68 %) 0.007
Smoking 19 (37 %) 12 (63 %) 0.063
Overweight 14 (27 %) 7 (37 %) 0.559

Acute heart failure was defined by clinical signs of cardiac decompensation or cardiogenic shock. Acute renal failure was defined as an increase in serum
creatinine >0.3 mg/dl or >1.5-fold increase from baseline creatinine within the first 48 h. Acute liver failure was defined as an increase in total bilirubin serum
levels and an increase in the international normalized ratio (INR) value above the normal values of our central laboratory. Acute respiratory failure was defined as

an oxygenation index (ratio of PaO2 (mmHg) and FiO2 (%)) <200 mmHg

CPR cardiopulmonary resuscitation, CAD coronary artery disease, OHCA out-of-hospital cardiac arrest, IHCA in-hospital cardiac arrest, VT ventricular tachycardia,
VF ventricular fibrillation, PEA pulseless electrical activity, ROSC return of spontaneous circulation, PC/ percutaneous coronary intervention, N/A not applicable
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(See figure on previous page.)

Fig. 1 Monocyte toll-like receptor (TLR) and inflammasome mRNA expression in patients who had experienced cardiac arrest and the control group.
Shown are monocyte mRNA expression levels of TLR2 (a), TLR4 (b), interleukin-1 receptor-associated kinase (IRAK)3 (c), IRAK4 (d), NLR family pyrin domain
containing (NLRP)1 (e), NLRP3 (f), absent in melanoma (AIM)2 (g), PYD and CARD domain containing (PYCARD) (h), caspase 1 (CASP1) (i), and IL1B (j),
expressed as mean relative copy numbers (RCN) and standard deviation, from patients after cardiopulmonary resuscitation (CPR) in the first 12 h (CPR t1;
n=30), after 24 h (CPR t2; n=29) and 48 h (CPR t3; n = 23) following return of spontaneous circulation, and mRNA expression levels in the control group
(coronary artery disease (CAD); n = 19). Statistical hypothesis testing was performed using the Kruskal-Wallis test and post-hoc analysis with all-pairwise
comparison using the Dunn-Bonferroni approach (*p <0.05; *p <0.01; **p <0.001).

AIM2 in the first 24 h after CPR. Monocyte mRNA
levels of the adaptor protein PYCARD were significantly
upregulated at 24 h after ROSC. We did not observe a
change in monocyte CASP1 mRNA expression in pa-
tients who had experienced cardiac arrest compared to
patients with CAD.

Kinetics of TLR and inflammasome mRNA expression levels
in the time course after cardiac arrest

In analysis of time-dependent expression of monocyte
mRNA in patients after cardiac arrest, significantly
higher levels of TLR2, TLR4, IRAK3, NLRP3, and IL1B
were observed in patients in the early hours after ROSC
compared to the later phase. In contrast, we noticed sig-
nificant downregulation of AIM2 in monocytes from
patients during the first 24 hours after CPR. Following
the notion that these expressional changes could correl-
ate with and possibly affect the clinical course of our
patients, we performed subgroup comparison in survi-
vors at 30 days after CPR and nonsurvivors.

Comparison of TLR and inflammasome signaling mRNA
expression levels in survivors and nonsurvivors after
cardiac arrest

Interestingly, a time-dependent decrease in monocyte
TLR2, TLR4, IRAK3, IRAK4, NLRP1, NLRP3, PYCARD,
and IL1B mRNA expression levels was solely observed
in those who did not survive for 30 days after CPR,
whereas survivors had stable expression of these tran-
scripts during the observation period. In contrast, both
30-day survivors and nonsurvivors had a time-dependent
increase in monocyte AIM2 mRNA expression levels
(Additional files 4 and 5).

To further evaluate the prognostic implications of the in-
vestigated gene transcripts in patients who had undergone
CPR, monocyte mRNA transcript levels were quantitatively
compared between 30-day survivors and nonsurvivors:
nonsurvivors had a trend towards higher monocyte mRNA
expression levels of TLR signaling pathways in the first
12 h after ROSC, which was not statistically significant. We
did not observe differences in change in monocyte TLR
and inflammasome mRNA expression in CPR survivors
and nonsurvivors 24 h after ROSC. Notably, we observed
that 30-day nonsurvivors had significantly lower mRNA
expression levels of TLR2 (p=0.003), IRAK3 (p = 0.027),

IRAK4 (p=0.027), NLRP3 (p=0.006), and CASP1 (p=
0.019) 48 h after ROSC (Table 2; Fig. 2).

Association of TLR signaling transcript levels and clinical
markers of ischemic injury

As host-derived DAMPs from injured cells have been
shown to propagate inflammation via PRRs, we hypothe-
sized that the extent of transcriptional activation of the in-
vestigated genes of TLR and inflammasome signaling
would be related to clinical markers of ischemic injury
such as time from collapse to initiation of CPR, time to
ROSC, serum lactate levels, and necessity of a vasopressor
therapy. Correlation analyses are listed in a supplementary
table (Additional file 6).

Serum lactate levels at the time of blood sampling
were significantly positively correlated with TLR2 (75 0.570;
p=0.001), TLR4 (r; 0.369; p =0.045), IRAK3 (rs 0.569;
p=0.001), and IRAK4 (r, 0.413; p=0.029) monocyte
mRNA levels in the early phase after cardiac arrest
(Fig. 3a). Monocyte NLRP1 mRNA expression was sig-
nificantly negatively correlated with serum lactate levels
at 24 h post CPR (r, —0.378; p = 0.047). Time to ROSC
was significantly positively correlated with both TLR4
(rs 0.516; p=0.003) and IRAK4 (r, 0.407; p=0.032)
monocyte mRNA expression levels within the first hours
after ROSC (Fig. 3b). Monocyte TLR mRNA expression
was not related to estimated no-flow time from collapse
to initiation of CPR or to the serum lactate directly mea-
sured after ROSC.

We observed significant positive correlation between
both TLR2 and IRAK4 mRNA transcript levels and dosage
of norepinephrine to maintain a mean arterial blood pres-
sure 280 mmHg in the early phase after cardiac arrest.

Following the hypothesis that the observed changes in
TLR and inflammasome expression are of functional
relevance for the innate immune response after CPR, we
investigated the functional capacity of PRR signaling in
the time course following cardiac arrest by stimulating
whole blood and monocytes cultures with TLR2 and
TLR4 agonists.

Proinflammatory cytokine production of cultured whole
blood and monocytes in response to PRR activation
Whole blood samples taken from patients after cardiac ar-
rest had markedly impaired synthesis of IL-1p in response
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Table 2 Monocyte mRNA expression in 30-day survivors and nonsurvivors after sudden cardiac arrest
MRNA RCN+SD  CPRtl Pvalue  CPRt2 Pvalue CPRt3 P value
Survivors Nonsurvivors Survivors Nonsurvivors Survivors Nonsurvivors
(n=11) (n=18) (n=11) (n=18) (n=12) (n=11)
TLR2 1.69+1.00 2.16+£0.84 0.061 132+092 1.15+040 0.947 1.09+041 068 +0.17 0.003
TLR4 040+0.15 051+0.15 0.055 0.32+0.06 035+0.12 0.740 0.35+0.09 0.33+0.08 0.525
IRAK3 0.70 £0.80 0.67+0.23 0.055 044 +0.17 047+£0.18 0611 061037 0.35+0.08 0.027
IRAK4 0.29+0.32 0.26+0.07 0.089 0.26+0.12 0.24 +£0.09 0.521 030+0.21 0.17+0.03 0.027
NLRP1 048+ 1.14 0.13+0.06 0.774 0.20+0.12 0.14+0.06 0.134 0.26+0.32 0.10+0.03 0.059
NLRP3 0.53£0.59 051030 0412 042 +044 041 £0.52 0.877 042 +040 0.16 £0.06 0.006
AlM2 0.015+0.02  0.006+0.003 0.220 0.006 = 0.003 0.006 £ 0.003 0.774 0.012+0006  0.013+0.010 0.880
PYCARD 0.11 £0.07 0.13+£0.05 0.112 0.16 £ 0.05 0.17+£0.10 0.550 0.14+0.10 0.09+0.03 0.059
CASP1 0.81 £0.40 0.78+£0.24 0912 082+0.17 0.80£041 0.363 0.88+0.39 0.58£0.11 0.019
IL1B 1.03+267 050+ 1.03 0877 125+3.12 0.79£2.13 0465 1.01+249 0.04 £0.07 0.118

Shown are monocyte mRNA expression levels, expressed as mean relative copy numbers (RCN) + standard deviation (SD), in 30-day survivors and nonsurvivors in
the first 12 h (cardiopulmonary resuscitation (CPR) t1; n = 29), after 24 h (CPR t2; n=29), and 48 h (CPR t3; n = 23) after CPR. There was one patient in group CPR
t1 who was lost to follow-up after study enrollment. Statistical hypothesis testing was performed using the Mann-Whitney U test. TLR toll-like receptor, IRAK
interleukin-1 receptor-associated kinase, NLRP NLR family pyrin domain containing, AIM absent in melanoma, PYCARD PYD and CARD domain containing, CASP caspase

to stimulation with the TLR4 agonist LPS (CAD 327.0 £

291.3; CPR t1 31.3£49.7; CPR t2 28.0 + 35.6; CPR t3
33.5+60.6 ((pg/ml)/white blood cell (WBC) count)).
Similarly, there was less TNF-a production induced in
Pam3CSK,-activated whole blood samples taken from pa-
tients after cardiac arrest. This effect was more pronounced
in the early phase following ROSC (CAD 19.6 + 16.4; CPR
tl 3.3+4.1; CPR 2 114+ 14.2; CPR t3 7.3+ 7.0 ((pg/ml)/
WBC count)) (Fig. 4). Interestingly, cultured monocytes
also had impaired IL-1f production in response to stimula-
tion with LPS in the first 24 h after CPR (CAD 6514.7 +

4178.8; CPR tl1 4764.4+7550.5; CPR t2 2662.8 + 5064.8;
CPR t3 3243.5 + 3224.5 ((pg/ml)) (Fig. 5). To investigate if
these observed differences in cytokine production are medi-
ated by humoral factors in the serum of the resuscitated pa-
tients, we performed in vitro serum exchange experiments.

Proinflammatory cytokine production of cultured PBMCs
after serum exchange in vitro

Stimulation of cultured PBMCs from a healthy volunteer
with patient serum at a concentration of 20 % did not
induce a detectable amount of IL-1f in most culture su-
pernatants, with very low and comparable concentrations
in the samples where detection was possible (Additional
file 7). Interestingly, cultured PBMCs from a healthy indi-
vidual had an attenuated inflammatory response to LPS
after co-stimulation with serum from resuscitated patients
compared to co-stimulation with serum from the control
group (CAD 1298.57 +370.15; CPR t1 698.57 + 645.09;
CPR 3 650 + 338.08 ((pg/ml)) (Additional file 8).

Discussion
In this study, we provide evidence for the activation of
TLR2 and TLR4 in immediate survivors of cardiac arrest

and describe the involvement of the NLRP3 inflamma-
some in the modulation of the subsequent systemic
inflammatory response to global IRI caused by tempor-
ary circulatory arrest. Our findings suggest the innate
immune system as a possible pathophysiological factor
in PCAS and as a potential therapeutic target for the
treatment of this condition.

PCAS is characterized by a global IRI that results in
significant inflammation in multiple organs, which leads
to both mortality due to organ failure and morbidity due
to neurological impairment in eventual survivors. Our
own group has recently shown that different populations
of proinflammatory microparticles [34] and a perturb-
ation of the endothelial glycocalyx [11] likely contribute
to initiating the early phases of PCAS. Others have
reported a significant increase in inflammatory cytokines
and their receptors during the course of the PCAS,
including IL-1ra, IL-6, IL-8, IL-10 and sTNFRII [8].
However, the molecular events that govern this systemic
reaction to circulatory arrest and finally result in activa-
tion of inflammatory cells remain little understood.

TLR expression

Upregulation of TLR2 and TLR4 in response to the
presence of PAMPs has extensively been studied in non-
sterile inflammatory conditions like sepsis and septic
shock [27, 35-37]. However, there is a growing body of
evidence that TLR2 and TLR4 also play a pivotal role in
sterile inflammatory conditions such as acute and chronic
cardiovascular diseases [20, 38—40]. We detected tempor-
ary upregulation of monocyte TLR2, TLR4, and IRAK4,
the main kinase to further propagate TLR signaling,
immediately after ROSC, which possibly resembles the
strong inflammatory activation induced by the global IRIL.
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Fig. 2 Monocyte toll-like receptor (TLR)2, interleukin-1 receptor-associated kinase (IRAK)3, IRAK4, NLR family pyrin domain containing (NLRP)3, and
caspase (CASP)T mRNA expression of survivors and nonsurvivors after cardiac arrest. Monocyte mRNA expression levels of TLR2 (a), IRAK3 (b),
IRAK4 (c), NLRP3 (d), and CASP1 (e) in 30-day survivors (n=12) and nonsurvivors (n = 11) after 48 h after return of spontaneous circulation (ROSC).
The 30-day nonsurvivors had significantly lower monocyte TLR2 (p =0.003), IRAK3 (p = 0.027), IRAK4 (p = 0.027), NLRP3 (p = 0.006), and CASP1
(p=0.019) mRNA levels after 48 h after ROSC (p = 0.003). Statistical hypothesis testing was performed using the Mann-Whitney U test. RCN
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Accordingly, there was a significant positive correlation of
these markers with the degree of ischemic injury as
assessed by serum lactate levels, the duration of CPR, and
the dosage of norepinephrine to sustain adequate blood
pressure. However, there was no correlation between TLR
signaling mRNA expression levels and the initial serum lac-
tate measured directly after ROSC, indicating that failure of

lactate clearance and persisting tissue hypoxia might be
relevant for the regulation of TLR signaling in whole body
IRI. This interpretation is further supported by recent find-
ings from Selejan and coworkers who demonstrated upreg-
ulation of TLR2 in patients with cardiogenic shock and
correlation of TLR2 expression with the “symptom to re-
perfusion time” [40]. Interestingly, the initial upregulation
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Fig. 4 Cytokine production in whole blood in response to stimulation with toll-like receptor (TLR)2 and TLR4 agonists. Impaired IL-1(3 production
after lipopolysaccharide stimulation of whole blood samples taken from patients in the first 12 h (cardiopulmonary resuscitation (CPR) t1: n=19),
after 24 h (CPR t2: n=19), and after 48 h (CPR t3: n = 14) following ROSC, compared to whole blood samples from patients with coronary artery
disease (CAD: n=19) (a). Impaired TNF-a production after stimulation with PamsCSK, of whole blood samples taken from patients in the first 12 h
(CPR t1: n=21), after 24 h (CPR t2: n=22), and after 48 h (CPR t3: n=15) after CPR, compared to whole blood samples from patients with CAD
(n=19) (b). The resulting cytokine concentrations were standardized to the patient’s white blood cell count. Statistical hypothesis testing was
performed using the Kruskal-Wallis test and post-hoc analysis with all-pairwise comparison using the Dunn-Bonferroni approach (*p value <0.05;
***p value <0.001)
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Fig. 5 Cytokine production of cultured monocytes in response to
stimulation with lipopolysaccharide (LPS). IL-13 production of LPS-
stimulated monocyte cultures from resuscitated patients in the first
12 h (cardiopulmonary resuscitation (CPR) t1: n=25), after 24 h
(CPR t2: n=28), and after 48 h (CPR t3: n = 19) following return of
spontaneous circulation, and from patients with coronary artery
disease (CAD: n=19). Statistical hypothesis testing was performed
using the Kruskal-Wallis test and post-hoc analysis with all-pairwise
comparison using the Dunn-Bonferroni approach (*p value <0.05;
***p value <0.001)

was followed by relative downregulation of both TLR2 and
TLR4 at later time points, which was more evident in 30-
day nonsurvivors. This finding is in good correspondence
with similar observations during the time course of sepsis
[41], coronary artery bypass grafting [42], and percutaneous
coronary intervention [31], and possibly contributes to the
development of a compensatory anti-inflammatory re-
sponse syndrome (CARS), an adapted response to dampen
the overzealous inflammatory response [43].

A key mechanism for the development of CARS is
thought to be a phenomenon called endotoxin tolerance
(ET), a transient state in which monocytes and macro-
phages are unable to respond to endotoxin [44], which
has been extensively studied in sepsis [45, 46]. This
mechanism is thought to be partly mediated by down-
regulation of surface TLR4 expression [47]. However,
TLR expression and ex vivo cytokine release were not
correlated in our study, indicating the involvement of
regulatory adaptor molecules in the functional TLR re-
sponse. IRAK3 has been shown to negatively regulate
downstream TLR signaling [48] and to mediate LPS tol-
erance in human models of endotoxemia [49]. Indeed,
we detected early upregulation of the negative regulator
of TLR signaling IRAK3 in our patient population at a
time point when TLR expression was still high, but TLR
response was already attenuated.
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Inflammasome expression

Processing and release of IL-1f is regulated on multiple
levels. Activation of surface PRRs, such as TLR4, lead to
generation of inactive pro IL-1p; activation and assembly
of the inflammasome, a cytoplasmatic multiprotein com-
plex that consists of a sensor protein (e.g., NLRP1, NLRP3,
or AIM?2), the adaptor protein PYCARD, and the protease
caspase-1, then leads to proteolytic cleavage of pro-IL-1p
into its biologically active form IL-1p. A large variety of ex-
ogenous and endogenous danger signals, including extra-
cellular ATP, uric acid crystals, and potassium influx, have
been shown to activate the inflammasome [22, 50, 51]. In
our patient population, we now detected a distinct regula-
tion of the different inflammasomes in isolated circulating
monocytes, with significant upregulation of the NLRP3
inflammasome in the first 24 h after CPR and downregula-
tion of the NLRP1 and the AIM2 inflammasome. The
latter finding is in good correspondence with a recent
investigation in patients with septic shock [27], where a
similar downregulation was observed compared to critic-
ally ill patients and healthy controls. One possible explan-
ation of this differential expression of the inflammasome
subsets could be their ligand specificity: while NLRP3 is
activated by a large number of pathogens and intrinsic
stimuli, NLRP1 is predominantly described in the innate
immune response to microbial pathogens [52], which rep-
resents a secondary process in PCAS following the initial
sterile inflammation. Similar to our findings on TLR ex-
pression, the upregulation of NLRP3 was restricted to the
early phase after cardiac arrest. Both NLRP3 and CASP1
mRNA expression levels were significantly lower in pa-
tients who died compared to eventual survivors. Further-
more, we observed a trend towards downregulation of
NLRP1 and PYCARD in nonsurvivors. This is in line with
findings determining NLRP1 as an independent predictor
of mortality in patients with septic shock [27]. How this
phenomenon represents a normal physiological effect to
limit excessive inflammation, or a maladaptive response
that predisposes the organism to secondary infections, re-
mains unclear.

Monocyte inflammatory response

On a functional level, we observed a pronounced and
sustained decrease in inflammatory cytokine release
after TLR2 and TLR4 activation in patients after car-
diac arrest ex vivo. Interestingly, sera from resuscitated
patients attenuated the inflammatory response of PBMCs
from a healthy volunteer after stimulation with LPS. This
phenomenon known as endotoxin tolerance or TLR hypo-
responsiveness is well-documented and can be observed
in both endotoxin-dependent settings, such as sepsis [45,
46], and endotoxin-independent settings, such as major
trauma [53] and vascular surgery [42]. Our findings are
in good correspondence with a study by Adrie and
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coworkers who were the first to investigate the immuno-
inflammatory profile of patients after successful CPR and
who demonstrated the development of ET in these pa-
tients [8]. Our findings are further supported by a recent
study from Beurskens and coworkers, who compared
plasma cytokine levels and the TLR response to LPS and
lipoteichoic acid in patients after cardiac arrest [54].

Mechanistic analyses of ET in genetically modified mice
have suggested the differential regulation of TLR-adaptor
proteins as a causal factor for this phenomenon [55]. In
our study we observed upregulation of the pseudokinase
IRAK3. IRAK3 belongs to the IL-1 receptor-associated
kinase family and serves as a negative regulator down-
stream of TLR4. Induction of IRAK3 is associated with
LPS-induced ET in humans [49]. Furthermore, mice defi-
cient in IRAK3 are known not to display ET in vivo [48].
Similar regulation of IRAK3, as demonstrated in this
study, was previously described in sepsis [56] and myocar-
dial infarction [57], suggesting that upregulation of IRAK3
could be a common mechanism of ET across these differ-
ent pathological conditions.

Our experimental findings fit the hypothesis that pa-
tients undergo a whole body IRI after cardiac arrest [58],
with a release of DAMPs, which finally leads to PRR
activation and ET after subsequent stimulation. Our
group has previously reported the presence of DAMPs in
patients after cardiac arrest, which are known to be
endogenous TLR and inflammasome ligands [11, 34].
Accordingly, a recent study from Timmermans and
coworkers demonstrated significant associations between
the presence of DAMPs in survivors of cardiac arrest and
the intensity of ET in the first days after CPR [59]. However
non-sterile activation of PRRs , also has to be taken in
account because endotoxemia [16] and bacteremia [60]
have been reported in resuscitated patients and gastric
aspiration is a common event after CPR [16]. Our current
study corroborates the hypothesis that ET is mediated by
both soluble serum factors and intrinsic leucocyte repro-
gramming [8] and expands these findings to a larger patient
population. In addition, it identifies an important cell popu-
lation for this phenotypic response and contributes to the
mechanistic explanation of ET by demonstrating the differ-
ential regulation of the involved receptors and cytosolic
modulators of the monocyte response to PRR activation.

Study limitations

As with all clinical studies in the field of cardiac arrest
research, the definition of an appropriate control popu-
lation is difficult. We decided on patients with coronary
artery disease, as most patients in our CPR group had
circulatory arrest of cardiac origin and received similar
pharmacological and interventional treatment to the
control group. However, the control population was not
subjected to therapeutic hypothermia, which could result
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in a significant confounder, as cooling can potentially at-
tenuate the IRI [61]. As all resuscitated patients were
treated with mild therapeutic hypothermia (expect one
patient who died before the target temperature was
reached), no analysis of the effects of cooling within this
group was possible. However, our serial measurements
in the individual patients are not affected by this bias
and from a pathophysiological point of view the cooling
should result in underestimation of the observed inflam-
mation in the CPR group. Furthermore, in the study by
Beurskens et al., leucocyte cytokine release was not af-
fected by body temperature [54].

As we focused on monocytes as a specific circulating
cell population, potential divergent effects in other rest-
ing or circulating cell types therefore remain beyond the
scope of this study. As the amount of blood that could
be sampled from the critically ill patients was limited,
our analysis of the isolated monocytes was limited to
RNA expression levels and measurements of individual
cytokines at the protein level. As inflammasome activa-
tion is controlled by both fast-acting post-translational
mechanisms and slower-acting transcriptional regula-
tion, our PCR-based analysis can only describe changes
due to the latter mechanism [62].

Finally, due to inherent limitations of an observational
study, the causal relationship between our findings and
the development of the PCAS cannot be deducted from
our study. Also, our sample size was limited to 51 pa-
tients who had undergone CPR at a single institution.

Conclusions

With the lack of effective treatment options after cardiac
arrest, the clarification of the underlying pathophysiology of
the PCAS is a prerequisite for future therapy. Theoretically,
intrinsic DAMPs and the interaction with their receptor
could represent attractive therapeutic targets in this setting,
as these molecules are only released during injury. Several
inhibitors of different components of innate immune
signaling are currently under development and a human-
ized anti-TLR2 antibody was recently shown to decrease
myocardial IRI in pigs [63], whereas a specific TLR-4
inhibitor exhibited similar effects in IRI of the brain [64].
The notion that TLR2 might exhibit an important role in
PCAS is further supported by a recent study where the
administration of a TLR2 inhibiting antibody or genetic
TLR2 deficiency improved survival and neurological func-
tion in mice after circulatory arrest [65]. However, potential
unwanted attenuation of the host defense against infection
has to be taken into account with these strategies.

Our findings directly demonstrate the differential regula-
tion of monocyte TLR expression and function in immedi-
ate survivors of cardiac arrest and implicate the NLRP3
inflammasome as a potential downstream mediator of the
inflammatory response during PCAS. The time course of
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monocyte inflammatory marker expression and function
suggests a proinflammatory phenotype in the early phase
after ROSC and compensating suppression of monocyte-
mediated inflammation during the progress of the syn-
drome. How far these findings functionally determine the
progression of PCAS remains to be determined in future
interventional studies, but modulation of the innate im-
mune response by targeted therapies has the theoretical
potential to attenuate global IRI in the early phase of PCAS
and septic inflammatory complications in the later phase.

Key messages

e Monocyte TLR2, TLR4 and NLRP3 inflammasome
signaling is differentially regulated in the time course
of PCAS.

e Patients who do not survive after cardiac arrest have
decreased expression of monocyte TLR2, IRAK3,
IRAK4, NLRP3 and CASP1 in the later time course
of PCAS.

e DPatients who undergo CPR exhibit profound
endotoxin tolerance ex vivo, which is possibly
mediated in an IRAK3-dependent manner.

Additional files

Additional file 1: Primer list. Accession number = Refseq accession
number, web page access date 3 July 2014 (http//www.ncbinlm.nih.gov/
refseq/). TA annealing temperature, Conc. concentration of each primer pair,
Amplicon length of replicated DNA sequence in base pairs (bp). (DOCX 16 kb)

Additional file 2: Laboratory tests. Shown are patients’ inflammatory

laboratory tests at admission, 24 and 48 h after ROSC. *Laboratory tests
from patients after cardiopulmonary resuscitation (CPR) versus coronary
artery disease (CAD) at admission. TLaboratory tests from patients after

CPR versus CPR at admission. (DOCX 15 kb)

Additional file 3: Monocyte mMRNA expression in patients who had suffered
cardiac arrest and the control group. Shown are kinetics of monocyte mRNA
expression levels, expressed as mean relative copy numbers + standard
deviation (SD), in patients who had suffered cardiac arrest in the first 12 h
(CPR t1; n=30), after 24 h (CPR t2; n=29) and after 48 h (CPR t3; n=23)
following CPR, and in the control group with coronary artery disease (CAD;
n=19). Statistical hypothesis testing was performed using the Kruskal-Wallis
test and post-hoc analysis with all-pairwise comparison using the Dunn-
Bonferroni approach indicated as the p values listed above. (DOCX 15 kb)

Additional file 4: Time-dependent monocyte mRNA expression in 30-day
nonsurvivors following cardiac arrest. Shown are monocyte mRNA expression
levels of TLR2, TLR4, IRAK3, IRAK4. NLRP1, NLRP3, AIM2, PYCARD, CASP1, and
IL-13 in 30-day nonsurvivors in the first 12 h (CPR t1: n=18), after 24 h (CPR
t2: n=18), and after 48 h (CPR t3: n=11) following ROSC. Statistical hypothesis
testing was performed using the Kruskal-Wallis test and post-hoc analysis with
all-pairwise comparison using the Dunn-Bonferroni approach (*p value <0.05;
**p value <0.01; **p value <0.001). (DOCX 42 kb)

Additional file 5: Time-dependent monocyte mMRNA expression in 30-day
survivors following cardiac arrest. Shown are monocyte mRNA expression
levels of TLR2, TLR4, IRAK3, IRAK4. NLRP1, NLRP3, AIM2, PYCARD, CASP1, and
IL-1B in 30-day survivors in the first 12 h (CPR t1: n=11), after 24 h (CPR t2:
n=11),and after 48 h (CPR t3: n = 12) following ROSC. Statistical hypothesis
testing was performed using the Kruskal-Wallis test and post-hoc analysis
with all-pairwise comparison using the Dunn-Bonferroni approach

(*p value <0.05). (DOCX 36 kb)
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Additional file 6: Correlation analyses of monocyte mRNA expression
levels and clinical characteristics. Shown are correlation analyses of monocyte
mMRNA expression levels from patients in the first 12 h (CPR t1; n = 30), after
24 h (CPR t2; n = 29), and after 48 h (CPR t3; n = 23) following CPR, and the
corresponding clinical characteristics. There was one patient lost to follow up
after study enrollment. Statistical hypothesis testing was performed using
Spearman'’s rank correlation indicated as Spearman'’s rho (r,) and the p values
listed above. CPR cardiopulmonary resuscitation, ROSC return of spontaneous
circulation, lactate serum lactate; t0 at admission, NE dosage of
norepinephrine to maintain mean arterial blood pressure >80 mmHg.
(DOCX 16 kb)

Additional file 7: Cytokine production of cultured PBMCs in response to
stimulation with patients’ sera. Shown is interleukin-1( (IL-13) production
of cultured PBMCs from a healthy volunteer in response to stimulation
with 20 % serum either from patients with coronary artery disease (CAD:
n=8) or from resuscitated patients in the first 12 h (CPR t1: n=14) and
after 48 h following cardiac arrest (CPR t3: n=9). Production of IL-1( did
not statistically differ between the three groups. Statistical hypothesis
testing was performed using the Kruskal-Wallis test. (DOCX 32 kb)

Additional file 8: Cytokine production of cultured PBMCs in response to
co-stimulation with patients’ sera and LPS. Shown is interleukin-13 (IL-1()
production of cultured PBMCs from a healthy volunteer in response to
co-stimulation with 10 ng/ml LPS and 20 % serum either from patients
with coronary artery disease (CAD: n=7) or from resuscitated patients in
the first 12 h (CPR t1: n=14) and after 48 h following cardiac arrest (CPR
t3: n=9). Statistical hypothesis testing was performed using one-way
ANOVA and post-hoc analysis with all-pairwise comparison using the
Games-Howell approach (*p value <0.05; **p value <0.01). (DOCX 41 kb)
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ANOVA, analysis of variance; AIM, absent in melanoma; 2M, beta-2
microglobulin; CAD, coronary artery disease; CARS, compensatory anti-
inflammatory response syndrome; CASP, caspase; CPR, cardiopulmonary
resuscitation; DAMP, danger-associated molecular pattern; DPSB, Dulbecco’s
phosphate buffered saline; ET, endotoxin tolerance; IHCA, in-hospital cardiac
arrest; IL-1p3, interleukin-1 beta (protein); IL1B, interleukin-1 beta (gene); IRI,
ischemia-reperfusion injury; LPS, lipopolysaccharide; OHCA, out-of-hospital
cardiac arrest; IRAK, interleukin-1 receptor-associated kinase; NLRP, NLR family
pyrin domain containing; PAD, peripheral artery disease; PAMP, pathogen-
associated molecular pattern; PBMC, peripheral blood mononuclear cell; PCAS,
post-cardiac-arrest syndrome; PCl, percutaneous coronary intervention; PEA,
pulseless electrical activity; POL2RA, RNA polymerase 2; PRR, pattern
recognition receptor; PYCARD, PYD and CARD domain containing; gPCR,
quantitative real-time polymerase chain reaction; RCN, relative copy
number; ROSC, return of spontaneous circulation; RPMI, Roswell Park
Memorial Institute; SD, standard deviation; SOFA, sequential organ failure
assessment; TLR, toll-like receptor; TNFa, tumor necrosis factor alpha; VF,
ventricular fibrillation; VT, ventricular tachycardia; WBC, white blood cell
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