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1  | INTRODUC TION

Migratory fish populations have shown dramatic declines over the last 
decades. In the North Atlantic, historical records of 24 migratory fish 
species reveal that they all decreased in abundance by more than 90% 
(Limburg & Waldman, 2009). Conservation of these populations is of 
particular concern because of their economic and cultural importance: 

although anadromous fish comprise on average <1% of the world fish 
species, their share in global fisheries trade currently exceeds 17% and 
continues to increase (FAO, 2016). Anadromous fish are exposed to a 
wide range of environmental influences in both freshwater and marine 
habitats, which make them particularly vulnerable to environmental 
change. Multiple stressors have contributed to the decline of anadro-
mous populations (Limburg & Waldman, 2009), including infrastructure 
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Abstract
1.	 Migratory fish populations, like salmon, have dramatically declined for decades. 

Because of their extensive and energetically costly breeding migration, ana-
dromous fish are sensitive to a variety of environmental stressors, in particular 
infrastructure building in freshwater streams that increases the energetic require-
ments of the breeding migration and food declines in the ocean.

2.	 While the effects of these stressors separately are well documented, the cumula-
tive and interactive impacts of them are poorly understood.

3.	 Here, we use a bioenergetics model recently developed for fish life history to investi-
gate the individual life history and population responses to these stressors combined.

4.	 We find that food decline in the ocean can mitigate rather than exacerbate the 
negative effect of elevated migration costs imposed by infrastructure building in 
streams. This counterintuitive effect results from the highly nonlinear manner in 
which these stressors interact and affect the individual energetics. In particular, 
this effect arises from the fact that individuals growing in the ocean under higher 
food conditions reach larger sizes with concomitant larger migration costs but are 
leaner. As a consequence of their lower energy densities, they spend most of their 
energy reserves to transport their body upstream when migration costs are high, 
and little is left for reproduction, resulting in lower individual fitness.

5.	 Our results highlight the need of a mechanistic understanding integrating individ-
ual energetics, life history and population dynamics to accurately assess biological 
consequences of environmental change.
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building in freshwater streams and food declines in the ocean. In fact, 
collapse of Atlantic salmon Salmo salar populations throughout North-
Western Europe in pre-modern times coincided with the spread of wa-
termills in river basins (Lenders et al., 2016). Likewise, a multidecadal 
decline of food abundance in the ocean occurs concurrently with the 
reduction of Atlantic salmon abundance (Friedland et al., 2009).

On their own, food reductions in the ocean and infrastructure 
building in freshwater streams have negative impacts on fish life his-
tory by affecting individual energetics. Low food abundance in the 
ocean limits body growth rate during the oceanic stage resulting on av-
erage in individuals with smaller body sizes (Friedland et al., 2009) and 
concomitant lower fecundity (Thorpe et al., 1984). On the other hand, 
dams and other anthropogenic structures increase the energetic costs 
of the breeding migration (Caudill et al., 2007; Mesa & Magie, 2006). 
Significant numbers of adult salmonids passing dams can fall back over 
the dam or travel some distance in a fishway, but eventually fall out 
(Bjornn et al., 1999; Dauble & Mueller, 2000). In both instances, ad-
ditional energy is required to re-ascend the dam. Individuals may also 
incur additional energetic costs due to prolonged migration at dams, 
which can be caused, for instance, by the need to find fishway en-
trances (Dauble & Mueller, 2000). Because individuals cease feeding 
when leaving the ocean and use only their stored energy reserves to 
meet the energetically costly upriver travel (Jonsson et al., 1997), this 
results in a depletion of energy reserves available for reproduction 
(Crossin et al., 2004). While the effects of food reduction in the ocean 
and increased migration costs separately are well documented, the cu-
mulative and interactive impacts of them are poorly understood.

In this study, we assess the cumulative and interactive impact of high 
costs of the breeding migration and a decline in ocean food availability 
on the ecology of anadromous fish species. Specifically, we investigate 
how these stressors interact and affect individual energetics and thus 
the individual life history using a bioenergetic model for ontogenetic 
development based on energy allocation between growth, energy re-
serves and reproduction in fishes (Martin et al., 2017). We furthermore 
explore the population consequences of our individual-level findings.

2  | MATERIAL S AND METHODS

We study the effects of high costs of the breeding migration and a 
decline in ocean food availability on the ecology of anadromous fish 
species. Using a bioenergetic model, we first investigate the effects 
of these stressors on the individual life history. Subsequently, we 
extend our analysis to explore how these life-history effects impact 
the population dynamics.

2.1 | Individual life history

2.1.1 | Bioenergetic model

The description of the individual energetic dynamics and its link with life 
history follows the bioenergetics approach introduced by Kooijman and 

Metz (1984) in which the energy allocation to somatic and reproduc-
tive metabolism is proportional to a fraction � and a 1 − � of the total 
energy assimilation rate respectively. Specifically, we adopt the model 
developed and described in detail by Martin et al. (2017) for fish, be-
cause it provides an explicit dynamics of energy reserves (in our model 
referred to as reversible mass) that are necessary to model individual life 
history with starvation periods like those happening during the breed-
ing migration. Here we provide only a concise synopsis of the model.

Individuals are characterized by three state variables: individual 
age A, structural mass W and reversible mass S. Age is a monotonically 
increasing function of time, dA∕dt = 1. Structural mass we consider 
to include bones and organs which cannot be starved away to cover 
energetic demands, whereas reversible mass comprises stored en-
ergy reserves such as fat and gonads. The body mass of an individual 
is therefore the sum of its structural and reversible mass. Body length 
l  and structural mass W are related to each other following:

where v is the density of structural mass and � is a shape coefficient 
factor.

The rate of energy assimilation is given by:

where f  is the feeding level in either the breeding (fr) or the non-
breeding habitat (fs), ja is the maximum area-specific assimilation rate 
and the surface area for assimilation scales with the structural mass to 
the power of 2/3.

Metabolic maintenance costs are the product of the structural 
mass-specific maintenance costs jm and the structural mass:

The linear scaling between metabolic maintenance costs and struc-
tural mass is broadly used in diverse formulations of energy allocation 
throughout growth and development for diverse organisms in general 
(e.g. Kooijman, 2010; Kooijman & Metz, 1984; Nisbet et al., 2000; West 
et  al.,  2001), and for salmonids in particular (Pecquerie et  al.,  2011). 
Notice that this assumption implies that increases in reversible mass 
during life history can lead to a sublinear scaling of maintenance costs 
with total body mass, which is the sum of structural and reversible mass.

Assimilates are assumed to split into a somatic and a reversible 
mass flux: the � flux and the 1 − � flux. The somatic, � flux is used to 
meet metabolic maintenance requirements first, while the remaining 
flux JW is used to synthesize structural mass. In turn, the 1 − � flux JS 
is allocated to reversible mass. Thus,

If the metabolic maintenance costs are larger than the � flux, the indi-
vidual starves and stops growing. If the metabolic maintenance costs 

(1)W = v (�l ) 3,

JF = f ja W
2

3 ,

JM = jmW.

JW =
(
� JF − JM

)
,

JS = (1 − � ) JF.
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are larger than the flux of assimilates, the individual depletes its revers-
ible mass to cover the deficit in maintenance requirements:

Therefore, the individual state dynamics are described by the following 
system of differential equations (Martin et al., 2017):

The parameter �W in Equation (2) represents the efficiency with which 
assimilates are converted into structural mass.

Individuals mature when they reach a fixed structural mass Wp. 
Based on observations on a wide range of species that the average 
year to year energy density of mature fish does not systematically 
increase or decrease with body size in iteroparous species, Martin 
et al. (2017) adopted the reversible:structural mass ratio at maturity 
Sp∕Wp as the threshold for reproductive investment. The surplus of 
reversible mass in excess of the amount that equals the Sp∕Wp re-
versible:structural mass ratio is used for reproduction. Reproduction 
occurs at a discrete time tr. The number of offspring � produced by an 
adult individual with structural mass W and reversible mass S, hence, 
equals:

if S∕W > Sp∕Wp, and equals 0 otherwise. Notice that the above expres-
sion implies that fecundity is 0 for just maturing fish (for which W = Wp 
and S = Sp) and increases with size afterward if food is abundant. If 
reproduction occurs, the reversible mass of reproducing individuals is 
simultaneously reduced to S =

(
Sp∕Wp

)
W. The number of offspring 

produced is dependent on the yield for the conversion of reversible 
mass into eggs � e and the egg mass We. During the egg stage individ-
uals do not feed, therefore we assumed newly hatched individuals to 
be born at th with a structural mass equal to �Wb and a reversible mass 
(1 − � )Wb.

During the breeding migration the individuals cease feeding, 
stop growing and use their reversible mass to meet their metabolic 
maintenance costs and the costs of the travel, which is assumed to 
be an allometric function of the metabolic maintenance costs:

In Equation 5, the first term of the sum at the right-hand side cor-
responds to the basal metabolic costs, and the second term relates 

to the travelling costs of the breeding migration. C represents the 
relative costs of the breeding migration, j ′

m
 is the structural mass-

specific metabolic costs of the breeding migration and � is the size-
scaling exponent for the costs of the breeding migration. When 
� = 1, structural mass-specific energetic costs of the breeding mi-
gration are the same for every individual regardless of their body 
size. However, when � is smaller (larger) than 1, large individuals 
have lower (higher) structural mass-specific migration costs than 
small individuals.

Individuals may die from either starvation or background mor-
tality. Individuals with an S∕W ratio smaller than qS experience in-
creased mortality due to starvation, described by:

where � is a positive proportionality constant (Persson et al., 1998).
Once they have depleted their reversible mass entirely (S = 0), 

starving individuals die instantaneously.
In addition to starvation mortality, individuals die at a rate �e 

during the egg stage, at a rate �r if they are presmolts and �s if they 
are postsmolts. The total per capita death rate is the sum of the dif-
ferent sources of mortality.

2.1.2 | Yearly cycle and life-history events

Life-history parameters used in the model are based on the biology 
of Atlantic salmon Salmo salar. In this species, like in other anadro-
mous species, the first life stages occur in the freshwater habitat 
where the parents breed. Female salmon spawn in autumn at time tr, 
the eggs develop throughout winter and hatch at age ah (in spring; 
Hendry & Cragg-Hine, 2003). After hatching, individuals remain in 
the stream until age as, when they smolt and migrate to the ocean 
(Hendry & Cragg-Hine, 2003; hereafter, individuals younger than as 
are referred to as presmolts, in contrast to older individuals that are 
referred to as postsmolts). Every autumn, all sexually mature indi-
viduals in the ocean return to the freshwater habitat and start mi-
grating upstream at time tum to spawn somewhat later at time tr. After 
spawning, postsmolts finish downstream migration and return to the 
sea at time tdm of the year.

2.1.3 | Habitats

During their early life stages in freshwater, anadromous individuals 
often experience strong density dependence and intense competi-
tion for food, while density dependence in the ocean is more relaxed 
and food is more abundant (Jonsson et al., 1998). As a consequence, 
individuals experience an increase in food availability during the 
switch from freshwater to seawater (MacFarlane,  2010). We thus 

JW = 0,

JS = JF − JM.

(2)dW

dA
=

⎧
⎪⎨⎪⎩

𝜁W

�
𝜅 f ja W

2

3 − jmW
�
if𝜅 f ja W

2

3 > jmW

0 otherwise

⎫
⎪⎬⎪⎭
,

(3)dS

dA
=

⎧
⎪⎨⎪⎩

(1 − 𝜅) f ja W
2

3 if𝜅 f ja W
2

3 > jm W

f ja W
2

3 − jmW otherwise

⎫
⎪⎬⎪⎭
.

(4)� =

(
S −

Sp

Wp

W

)
� e

We

,

(5)dS

dA
= −

(
jmW + C j �

m
W�

)

(6)𝜇starving =

⎧
⎪⎪⎨⎪⎪⎩

0
S

W
> qS

𝜑

�
qS
W

S
− 1

�
ifS > 0and

S

W
≤ qS,

∞ otherwise
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consider an increase in the feeding level during the habitat switch 
when analysing the individual dynamics, fs > fr.

We also explicitly account for density dependence in the breed-
ing habitat when analysing the population dynamics. Because strong 
density dependence in early life stages directly affects growth in 
body size in salmonids (Walters et al., 2013), we incorporate density-
dependent effects on the growth rate of presmolts via competition 
for food. In the absence of consumers, the food resource density in 
the breeding habitat, indicated with Rr, is assumed to follow a semi-
chemostat growth dynamics with maximum density Rmax and growth 
rate � (for an explanation and justification of this type of growth dy-
namics, see Persson et al., 1998):

Assuming that food consumption of presmolts follows a Holling type II 
functional response yields the following expression for the feeding 
level:

where K is the half saturation food density.
In contrast, in the marine habitat, we assume a constant feeding 

level fs as density dependence is negligible (Jonsson et al., 1998).

2.2 | Population dynamics

We use the model formulated by Chaparro-Pedraza and de Roos 
(2019) to describe the dynamics of anadromous populations based 
on individual energetic dynamics. Here we provide a synopsis of the 
model. In the model, individuals use two different habitats in differ-
ent life stages and exploit a different resource in each habitat. The 
anadromous population is structured by age, structural and revers-
ible mass and follows semi-discrete dynamics: continuous dynamics 
describe the resource consumption, growth in both structural and 
reversible mass and survival and a discrete map describes the pulse-
wise reproduction. Since reproduction occurs as a discrete event at 
a specific time in the year, all individuals that are born in the same 
reproductive event are lumped into a single cohort. Individuals in 
the same cohort are assumed to grow at the same rate. Hence, at the 
population level, we can describe the dynamics of every cohort by 
using a system of ordinary differential equations, which keeps track 
of the number of individuals, their age, structural and reversible 
mass (see Appendix S1). Therefore, the dynamics of the entire pop-
ulation can be followed by numerically integrating the ordinary dif-
ferential equations for each cohort separately. When a reproductive 
event occurs, a new cohort is added to the population, which implies 
additional differential equations describing the population dynam-
ics. In addition, changes in food density in the freshwater habitat 
can be followed by numerical integration of the ordinary differential 
equation that accounts for resource food growth and consumption. 

The numerical integration is carried out using the Escalator Boxcar 
Train (de Roos, 1988), a numerical integration method specifically 
designed to handle the system of differential equations that de-
scribe a physiologically structured population model.

2.3 | Model parameterization

Parameter values are based on the biology of Atlantic salmon 
(Table 1). Values for the parameters in the functions describing in-
dividual feeding, growth and reproduction are derived from the un-
derlying parameters of the dynamic energy budget model (Martin 
et  al.,  2017). Values for the parameters representing life-history 
traits, such as body size at birth and age at smolting, were derived 
from reported data in the literature. Atlantic salmon are considered 
mature when they return to the streams to spawn (around a body 
length of 50 cm; Hutchings & Jones, 1998), however, at this point, in-
dividuals have already accumulated large amounts of energy for re-
production. It is unknown, however, when they start to allocate this 
energy to reproduction. In our model, individuals start to allocate 
energy to reproduction at the maturation threshold. We assume this 
threshold to be lower than the body length at which Atlantic salmon 
has been documented to return (20 cm). We assess the robustness 
of our results also for other values of the maturation threshold (see 
Section 2.4).

The energetic costs of the breeding migration depend on the pa-
rameters C, j ′

m
 and �. In this study we investigate the effects of, and 

hence vary, the relative costs of the breeding migration C. Therefore, 
in this section, we focus on the estimation of the values of j ′

m
, and �. 

We assume the structural mass-specific metabolic costs of the breed-
ing travel, j ′

m
, to be the same as the structural mass-specific meta-

bolic maintenance costs, jm. Concerning the value of �, Alexander 
(1998) estimates that metabolic costs of swimming in still water scale 
sublinearly with respect to body mass, specifically with an exponent 
of 0.79. However, swimming upstream against a current entail dif-
ferent energetic costs because the optimal speed is higher in the 
latter than in the former (Alexander, 1998). In addition, during the 
breeding migration, large fish travel upstream using portions of the 
river further from the bank than small ones (Hughes, 2004), where 
the current is faster and therefore they spend more energy travelling 
against a faster current (Hinch & Rand, 2000). In support of these ar-
guments, data of energy expenditure during the breeding migration 
of Chinook salmon Oncorhynchus tshawytscha show that larger indi-
viduals spent more energy per unit of structural mass than smaller 
ones and the energetic costs of the breeding migration scale super-
linearly with structural mass (i.e. 𝛾 > 1; see Figure S1; Bowerman 
et  al.,  2017). Likewise, the percentage of energy spent during the 
migratory travel is higher in large than in small individuals of Atlantic 
salmon (Jonsson et al., 1997) and American Shad Alosa sapidissima 
(Glebe & Leggett, 1981). Taken together, this evidence suggests the 
energetic costs of the breeding migration to scale superlinearly with 
mass and thus 𝛾 > 1. We take a conservative approach by adopt-
ing a linear scaling of energetic costs of the breeding migration with 

(7)
dRr
dt

= � (Rmax − Rr ) .

(8)fr =
Rr

K + Rr
,



     |  731Functional EcologyCHAPARRO-PEDRAZA and de ROOS

structural mass, that is, � = 1. It is important to bear in mind that 
when adopting � = 1, the structural mass-specific energetic costs of 
the breeding migration are the same for every individual regardless 

of their body size. In the Supporting Information (Figures S3 and S4), 
however, we assess the robustness of our results when such costs 
scale sublinearly and superlinearly (see Section 2.4).

TA B L E  1   Parameter values

Description Symbol Value Unit References

Environment

Year ty 365 day

Events within the season

Day of the beginning of breeding travel tum 205 day Doucett et al. (1999)

Day of reproduction (spawning) tr 215 day Thorpe et al. (1998)

Day of the end of breeding travel tdm 225 day Doucett et al. (1999)

Age-dependent events during life cycle

Age at hatching ah 150 day Hendry and Cragg-Hine (2003) and Thorpe 
et al. (1998)

Age at smolting as 545 day Mccormick et al. (1998)

Food resource in the breeding habitat

Feeding level fr 0.4a  —

Resource growth rate � 0.01b  day−1

Resource maximum density Rmax 5b  g/m3

Half saturation resource density K 1b  g/m3

Migratory population

Feeding level of postsmolts fs varied —

Fraction of assimilation flux to structural mass growth 
and maintenance

� 0.8 Pecquerie et al. (2011) and Jager et al. (2013)

Maximum area-specific assimilation rate ja 0.0572c  g/g2/3 day−1 Calculated with method of Jager et al. (2013) 
from regressions of Koskela et al. (1997)

Mass-specific metabolic maintenance costs jm 0.0019c  g/g day−1 Calculated with method of Jager (Jager 
et al., 2013) from regressions of Koskela 
et al. (1997)

Mass-specific metabolic costs of the breeding travel j ′
m

0.0019c  g g−γ day−1

Yield of structural mass on assimilates �W 0.8 g/g Jager et al. (2013)

Yield of egg buffer on reversible mass � e 0.95 g/g Jager et al. (2013)

Mass of a single egg We 0.1 g Potts and Rudy (1969)

Mass of a new born (after hatching) Wb 0.06 g Shearer et al. (1994)

Structural mass at maturity Wp 74 g Pecquerie et al. (2011)

Reversible mass at maturity Sp — g

Shape coefficient factor � 0.21 — Pecquerie et al. (2011)

Density of structural mass v 1 g/cm3

Constant for the costs of the breeding migration C varied —

Structural mass-scaling exponent of the costs of the 
breeding migration

� 1 —

Mortality rate of eggs �e 0.0125 day−1 Bley and Moring (1988)

Mortality rate of presmolts �r 0.0025 day−1 Leggett and Power (1969)

Mortality rate of postsmolts �s 0.0063 day−1 Hutchings and Jones (1998)

Minimum reversible/structural mass ratio that 
individuals stand without starvation mortality

qS 0.1 — Persson et al. (1998)

Scaling coefficient for starvation mortality � 0.2 — Persson et al. (1998)

aUsed when investigating the individual life-history dynamics. 
bUsed when investigating the population effects of the individual life-history dynamics. 
cThe rate constant ( ja, jm , j

′
m

) values include a temperature correction following the Arrhenius relationship for a temperature of 10°C. 
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2.4 | Model analysis

We first investigate the fitness consequences of the cumulative and in-
teractive impact of costs of the breeding migration and changes in ocean 
food availability. We compare the life-history trajectories of individuals 
growing under conditions of high and low food availability as well as high 
and low costs of the breeding migration (Figure 1). Specifically, we fol-
low during the life history the structural mass, reversible mass, cumula-
tive fecundity and expected reproductive output. We also evaluate how 
reversible mass changes during the breeding migration (Figure 2). We 
furthermore assess the cumulative and interactive impact of costs of 
the breeding migration and feeding level in the ocean on the individual 
fitness (i.e. lifetime reproductive output; Figure 3).

Subsequently, we investigate the population effects of the in-
dividual fitness consequences found in the previous step. We thus 

simulate a reduction in feeding level in the ocean in a population 
experiencing high and low costs of breeding migration. To do so, 
we compute the dynamics of the population biomass for 100 years 
exposed to low, C = 1.5, and high costs of the breeding migration, 
C = 2.5. During the first 20 years the feeding level in the ocean fs 
was assumed high (0.8 times the amount of food ad libitum) whereas 
it was low during the following 80 years (0.5 times the amount of 
food ad libitum; Figure 4). We also evaluate the effects of costs of 
the breeding migration and feeding level in the ocean (between 0.5 
times the amount of food ad libitum and food ad libitum) on the pop-
ulation biomass (Figure 5).

We evaluate the robustness of our results regarding changes in 
the maturation threshold. Specifically, we calculate the structural 
mass, reversible mass, cumulative fecundity and expected reproduc-
tive output under conditions of high and low food availability when 

F I G U R E  1   Fitness components as 
a function of age when costs of the 
breeding migration are (a) low and (b) 
high, and under conditions of high (red 
lines) and low (blue lines) food abundance 
in the ocean. Structural (solid line) and 
reversible mass (dashed lines) are shown 
in the top panels, cumulative fecundity 
in the middle panels and expected 
reproductive output in the bottom 
panels (notice that the vertical axes 
differ by one order of magnitude in a 
and b). Individuals start their life in the 
freshwater habitat (background yellow 
region), later they smolt and migrate 
to the ocean (background blue region). 
After reaching maturity, individuals 
migrate yearly back to the freshwater 
habitat to breed (background grey lines). 
Costs of migration C are 1 in (a) and 3 
in (b). Feeding level in the ocean fs = 0.6 
when low and fs = 0.8 when high. Other 
parameter values as in Table 1
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the costs of the breeding migration are high for individuals with a 
maturation threshold of 25 and 30 cm (Figure S2).

Additionally, we assess the robustness of the results regarding 
both, the individual fitness (Figure S3) and the population effects 
(Figure  S4), of the interacting stressors under scenarios in which 
the energetic costs of the breeding migration scale sublinearly and 
superlinearly with respect to structural mass. Based on the esti-
mation of the scaling of metabolic costs when swimming in still 
water made by Alexander (1998), we adopt � = 0.8 for the sublin-
ear scaling, and � = 1.2 for the superlinear scaling. Because the 
energetic effects of the breeding migration depend on both the 
relative costs of the migration C (that scales linearly the parameter 
j ′
m

) and the size-scaling exponent of the costs of breeding migration 

�, the range of values explored in the parameter space of C var-
ies with �. Therefore, when investigating the population effects 
of a reduction in feeding level in the ocean (Figure S4), we adopt 
C = 10 and C = 15 for low and high costs of the breeding migration 
when � = 0.8 and C = 0.1 and C = 0.5, when � = 1.2. As in Figure 4, 
for this analysis we simulate a reduction in food abundance in the 
ocean in the year 20 (fs drops from 0.8 to 0.5 times the amount of 
food ad libitum).

3  | RESULTS

3.1 | Individual life-history effects of costs of 
the breeding migration and changes in ocean food 
availability

As expected, high food abundance in the ocean results in high fitness 
(i.e. lifetime reproductive output) when an individual experiences 
low costs of the breeding migration (Figure 1a). But surprisingly, high 
food abundance in the ocean results in lower fitness when an indi-
vidual experiences high costs of the breeding migration (Figure 1b). 
This result is robust to variation in the maturation threshold (see 
Figure S2). Under both scenarios of high and low costs of the breed-
ing migration, the structural and reversible mass accumulate faster 
when feeding level in the ocean is high. Although the structural and 
reversible mass trajectories follow the same trajectories regardless 
of the costs of the breeding migration, the cumulative fecundity and 
expected reproductive output trajectories differ for different lev-
els of costs of the breeding migration. When an individual experi-
ences low costs of the breeding migration, its fecundity is higher 
at any age if food abundance in the ocean is high than if it is low. In 
contrast, when an individual experiences high costs of the breed-
ing migration, its fecundity is lower in the first breeding migration if 

F I G U R E  3   Lifetime reproductive output (colour scale) as a 
function of the costs of the breeding migration and the feeding 
level in the ocean. Other parameter values as in Table 1
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food abundance in the ocean is high than if it is low. Nonetheless, in 
later breeding migrations the fecundity of such individual exposed to 
high food abundance in the ocean is higher than if food abundance is 
low. As a result, the total cumulative fecundity is higher when food 
abundance in the ocean is higher (see cumulative fecundity at age 
10 years). Because survival decreases with age, the contribution of 
late reproductive events to the lifetime reproductive output is, how-
ever, low compared to early reproductive events. Therefore, when 
facing high costs of the breeding migration, an individual has higher 
fitness if it encounters low food abundance in the ocean because its 
fecundity is higher in the early reproductive events than a compa-
rable individual that encounters high food abundance in the ocean.

The cause of the fecundity reduction in the early reproductive 
events with increasing food abundance in the ocean when costs of the 
migration are high lies in the depletion of reversible mass during the 
breeding migration. A large individual requires more energy to mobi-
lize its body during the upstream migration. Since an individual in a 
rich feeding ocean grows faster but leaner than an individual in a poor 
feeding ocean, the depletion of reversible mass during the breeding 
migration is steeper in the large fast-growing individuals (Figure 2). 
When the costs of the migration are low, the energy consumption to 
fuel the breeding migration does not represent an important propor-
tion of the energy available as reversible mass. However, when the 
breeding migration is energetically costly the depletion of reversible 
mass is dramatic and leads to a significant reduction of energy avail-
able for reproduction. The steeper depletion occurring in large (fast 
growing) individuals causes their energy reserves to be lower at their 
arrival in the spawning grounds (red line in Figure 2b) than in small 
(slow growing) individuals (blue line in Figure 2b). As a result, large 
individuals have lower fecundity than small ones.

The lifetime reproductive output reaches a maximum when an 
individual experiences both low costs of the breeding migration and 
high food abundance in the ocean (right-top corner in Figure 3). In 
contrast, the lifetime reproductive output is at a minimum when 
it experiences high costs of the breeding migration and high food 
abundance in the ocean (right-bottom corner in Figure 3). As a con-
sequence, when the migration costs are low, a decline in food abun-
dance in the ocean leads to a decrease in the lifetime reproductive 
output, as expected. However, when the migration costs are high, a 
decline in food abundance in the ocean leads to an increase in the 
lifetime reproductive output. This result also holds when the costs of 
the breeding migration scale superlinearly with the structural mass 
(see Figure  S3). However, when they scale sublinearly with struc-
tural mass, a decline in food abundance in the ocean from high to in-
termediate levels causes a decrease in lifetime reproductive output 
but an increase IF this decline is from intermediate to low levels; as 
a result the minimum lifetime reproductive output occurs at around 
0.7 times the amount at ad libitum food (see Figure S3).

Up to this point we have shown that the interaction of two 
stressors has a nonlinear effect on the individual fitness. Specifically, 
our analysis based on the individual energetics demonstrates that 
the cumulative effect of the interacting stressors is not the addition 
of the independent negative effects. In the following section, we 

explore the consequences of this nonlinear effect on the viability of 
an anadromous population.

3.2 | Population effects of costs of the breeding 
migration and changes in ocean food availability

A decline in food availability in the ocean that results in a reduction 
in feeding level in this habitat from 0.8 to 0.5 times the amount of 
ad libitum food can cause both a decrease and an increase in the 
population biomass. Following the decline in food abundance in 
the ocean, the population biomass decreases when the costs of the 
breeding migration are low, whereas it increases when the costs of 
the breeding migration are high (Figure 4). This unexpected popu-
lation effect is the consequence of higher energy spent during the 
breeding migration by larger (better-fed) individuals, and it is robust 
to sublinear and superlinear scaling factors of the migration costs 
(see Figure S4).

An analysis of the combined effect of costs of the breeding mi-
gration and feeding level in the ocean reveals that, as expected, the 
highest population biomass occurs when the feeding level in the 
ocean is high and the costs of the breeding migration are low. High 
costs of the breeding migration result in extinction when the feeding 
level in the ocean is high. But surprisingly, a low feeding level in the 
ocean enables persistence when migration costs are high (Figure 5). 
Although there are quantitative differences between the individual 
lifetime reproductive output and the population biomass effects 
due to density dependence—considered only when investigating 
the population effects—, they follow a similar qualitative pattern 
(Figures 3 vs. 5). Hence, the individual nonlinear effects described 
in the previous section determine to a large extent the effects of the 
two stressors on the population dynamics.

4  | DISCUSSION

Rapid environmental change has exposed migratory fish to a wide 
range of stressors, including increased costs of the breeding migra-
tion (Caudill et  al.,  2007; Mesa & Magie,  2006) and reduced food 
abundance in the ocean (Friedland et al., 2009). We present here an 
analysis of the life-history and population effects of these stressors 
and demonstrate that their cumulative effect is not the result of a 
simple addition of the independent negative effects, but that their 
interaction is highly nonlinear. We show that low marine food abun-
dances can mitigate the negative effects of high energetic costs of 
the breeding migration. The mechanism underlying this counterintu-
itive result arises from the fact that large individuals spend more en-
ergy than small ones transporting their body upstream (Bowerman 
et al., 2017; Glebe & Leggett, 1981; Jonsson et al., 1997) and that 
a low food level in the ocean influences the individual energetics 
in two ways: 1) it entails a lower growth potential and therefore a 
smaller body size and, 2) it causes a small increase in food availability 
during the habitat switch.
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The increase in food availability during the switch from freshwa-
ter to seawater leads to an increase in growth rates but a decrease 
in energy density in wild salmon (MacFarlane, 2010) with individuals 
after the habitat switch apparently allocating more energy to somatic 
growth (structural mass) and less to energy storage (reversible mass; 
Johansen et  al.,  2001; see Figure  S5). Such bias towards increased 
growth at the expense of energy storage following an increase in food 
also occurs in various other vertebrate (Auer et  al.,  2010; Sinervo 
& Doughty,  1996; Tab  orsky,  2006) and invertebrate (Kleinteich 
et al., 2015; Zeller & Koella, 2016) species. Individuals of these spe-
cies compensate their growth after an experimental period of food ra-
tioning and reach similar sizes as when experiencing continuously high 
food levels, at the expense of lower fecundity (see Table S1; Figure S6).

Most model formulations for energy allocation of ectotherms in 
the literature fall into one of two families: the net production and 
net assimilation models (also known as κ-rule models; Noonburg 
et al., 1998). Only the latter family of models successfully predicts 
the increase in somatic growth at the expense of energy density 
after a transition from low to high food levels observed in diverse 
taxa (see Appendix S2). The model developed by Martin et al. (2017) 
for energy allocation of fish, that we use in this study, belongs to this 
family of models. These models furthermore predict that the bias 
towards increased growth in structural mass compared to revers-
ible mass is larger in individuals experiencing a large step-up change 
in food than in those experiencing a small one. Consequently, indi-
viduals that experience a large increase in food during the habitat 
switch do not only grow larger (are bigger), but have a lower energy 
density (are leaner). Therefore, if food is abundant in the marine 
habitat, this increases the vulnerability of populations exposed to 
elevated migration costs because individuals experience a larger 
step-up change in food levels, resulting in larger sizes but lower en-
ergy densities.

The analysis of individual energetic dynamics predicts that high 
costs of the breeding migration should favour small individuals 
over large, and conversely, low costs should favour large over small. 
Therefore, wild populations that naturally differ in their energetic 
costs of migration, for instance due to distance and elevation dif-
ferences in the breeding travel, may have diverged in their adapta-
tions to opposing selective pressures. Accordingly, wild populations 
of sockeye salmon Oncorhynchus nerka experiencing naturally high 
costs of the breeding migration are composed of smaller individuals 
with more fusiform body shape than populations facing lower costs 
of the breeding migration (Crossin et al., 2004). Although both body 
size and body shape are important for adaptation to a costly migra-
tion in wild populations, in the face of rapid environmental change 
it is reasonable to expect that plastic reductions in body size have a 
higher contribution to adaptation than a less plastic trait such as body 
shape. In fact, a meta-analysis of wild animal populations suggests 
that the contribution of phenotypic plasticity to adaptation is greater 
than that of genetic evolution in response to environmental change 
(Hendry et al., 2008). Therefore, factors causing a plastic reduction in 
growth potential, such as a decline in food availability, may have an 
important contribution to the persistence of these populations.

Motivated by this, we searched for empirical observations to ex-
plore the prediction that a decline in food availability and thus in 
growth potential in the ocean increases the biomass of a popula-
tion when costs of the breeding migration are high. Since, in wild 
populations, energetic costs of the breeding migration increase 
with distance travelled in freshwater (Crossin et al., 2004; Glebe & 
Leggett, 1981; Jonsson & Jonsson, 2003), we use migration distance 
as a proxy of energetic costs of the breeding migration in two Atlantic 
salmon populations. In accordance with our model prediction, the 
salmon populations from the Imsa (Jonsson & Jonsson, 2016) and the 
North Esk river (ASFB, 2010) have shown a decrease and an increase 
in abundance respectively. While in the same period, growth in the 
ocean has decreased in both populations (Friedland et  al.,  2009; 
Jonsson & Jonsson, 2004; Figure 6). Salmon in the Imsa river (river 
length ~1 km, in Norway) migrate short distances in freshwater while 
in the North Esk river (river length > 100 km, in Scotland) they mi-
grate long distances and hence face higher energetic costs of the 
breeding migration. Additional analysis comparing other anadro-
mous populations is needed for more compelling evidence that sup-
port our model predictions. Ideally, future analysis should take into 
account other abiotic factors that affect the migration costs in addi-
tion to migration distance, such as elevation travelled, river flow and 
temperature (Crossin et al., 2004; Martin et al., 2015). However, the 
comparison of these two wild populations shed light on the potential 
for contrasting responses to the same stressor in populations expe-
riencing different natural conditions. Remarkably, our model offers 
a mechanistic explanation for these divergent responses in popula-
tions facing a declining trend in marine food availability.

Various consequences for the conservation and fisheries indus-
try of anadromous species arise from the prediction that populations 
facing high energetic costs of the breeding migration have increased 
extinction risk when food availability in the ocean, and therefore the 
growth potential, is high. In particular, increased costs of migration 
by infrastructure construction in the freshwater habitat are more 
likely to result in extinction of anadromous populations migrating 
to a highly productive marine habitat, especially if these negative 
impacts occur in a time frame that is too short for an evolutionary 
response towards, for example, slow body growth rate and other 
physiological and morphological adaptations for an energetically 
costly upriver travel (Eliason et al., 2011). Although the rate at which 
dams were completed declined from around 1,000 a year in the 
1970s to around 260 a year in the 1990s, during the first decades of 
the 20th century the number of large dams increased with on aver-
age more than 500 new dams annually from 45,000 (WCD, 2000) to 
55,000 (ICOLD, 2017). This trend implies that an increasing number 
of anadromous populations are facing higher costs of the breed-
ing migration, possibly resulting in local extinction or selection for 
smaller body sizes with negative effects for fisheries in either case. 
Paradoxically, the decline of food levels in the Northeast Atlantic 
during the last decades may have mitigated the collapse of Atlantic 
salmon populations due to increased infrastructure building in fresh-
water streams. In the upcoming decades marine productivity is pre-
dicted to continue dropping due to climate change (Hoegh-Guldberg 
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& Bruno, 2010; Moore et al., 2018), with a potential negative effect 
in food levels for Atlantic salmon, which although bad for fisheries, 
may benefit anadromous population persistence.

Other factors may affect the persistence of anadromous popu-
lations facing concurrently high costs of the breeding migration and 
declining food availability in ocean. After the habitat switch, size-
dependent predation mortality risk increases and therefore high food 
availability in the ocean that enables high body growth rate increases 
survival in the first marine stage (Friedland et  al.,  2009) favouring 
the persistence of threatened populations. Reduced size-dependent 
predation mortality risk could be the result either of a high growth 
rate during the first marine stage or of reaching a large body size 
before the habitat switch. In fact, a long-term study of Atlantic 
salmon in the Simojoki river shows that survival during the marine 
phase is positively correlated with body size at the habitat switch 
(Jutila et al., 2006). Moreover, the body size at the habitat switch in 
this population is negatively correlated with the individual density 
in the freshwater habitat (Jutila et  al., 2006); therefore large body 
sizes at the habitat switch are reached when population abundance 
is low in this habitat. This is the consequence of relaxed density de-
pendence enabling a high body growth rate (Chaparro-Pedraza & de 
Roos, 2019; Walters et al., 2013). Since threatened anadromous pop-
ulations have relatively low population abundance, this suggests that 
its individuals are more likely to reach a larger body size at the habitat 
switch and therefore to experience lower predation mortality once 
in the ocean. Further research is necessary to understand how size-
dependent predation mortality interacts with reduced food availabil-
ity in the ocean and high costs of the breeding migration accounting 
for density-dependence effects in the freshwater habitat.

Current environmental changes increase the variety and inten-
sity of stressors affecting ecological communities in cumulative and 

interactive ways (Crain et al., 2008), making the need to understand 
the mechanisms generating interactive effects an urgent matter (Orr 
et al., 2020). We have demonstrated how such mechanisms can be 
investigated linking individual energy budgets and individual life 
history, and have shown that two stressors with independent nega-
tive effects interact in a highly nonlinear manner and mitigate each 
other. Given that environmental change comes with other stress-
ors such as warming trends in the spawning streams that also af-
fect individual energetics and thus life history (Eliason et al., 2011; 
Jonsson & Jonsson, 2009) and that are currently co-occurring with 
the stressors investigated in this study, the consequences of these 
multiple interacting stressors on anadromous populations need fur-
ther research. For this purpose, as we show in the present study, 
the description of the life history based on individual energetics is 
essential for a mechanistic understanding of their effects at the pop-
ulation and community levels. Our results show that in the face of 
multiple environmental threats the outcome of conservation efforts 
aimed at population persistence (e.g. increasing growth rate during 
oceanic life stage of Atlantic salmon) may in fact promote extinction 
and highlight the need for accurately predicting ecological conse-
quences of environmental change. If we are to predict ecological 
consequences of environmental change a mechanistic understand-
ing linking individual energy budgets, life history and population dy-
namics will be almost certainly required.
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