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Lung cancer is one of the most malignant tumors in the world. Early diagnosis and treatment of lung cancer are vitally important to
reduce the mortality of lung cancer patients. In the present study, we attempt to identify the candidate biomarkers for lung cancer
by weighted gene co-expression network analysis (WGCNA). Gene expression profile of GSE30219 was downloaded from the gene
expression omnibus (GEO) database. The differentially expressed genes (DEGs) were analyzed by the limma package, and the co-
expression modules of genes were built by WGCNA. UALCAN was used to analyze the relative expression of normal group and
tumor subgroups based on tumor individual cancer stages. Survival analysis for the hub genes was performed by Kaplan–Meier
plotter analysis with the TCGA database. A total of 2176 genes (745 upregulated and 1431 downregulated genes) were obtained
from the GSE30219 database. Seven gene co-expression modules were conducted by WGCNA and the blue module might be
inferred as the most crucial module in the pathogenesis of lung cancer. In the pathway enrichment analysis of KEGG, the
candidate genes were enriched in the “DNA replication,” “Cell cycle,” and “P53 signaling pathway” pathways. Among these, the
cell cycle pathway was the most significant pathway in the blue module with four hub genes CCNB1, CCNE2, MCM7, and
PCNA which were selected in our study. Kaplan–Meier plotter analysis indicated that the high expressions of four hub genes
were correlated with a worse overall survival (OS) and advanced tumors. qRT-PCR showed that mRNA expression levels of
MCM7 (p = 0:038) and CCNE2 (0.003) were significantly higher in patients with the TNM stage. In summary, the high
expression of the MCM7 and CCNE2 were significantly related with advanced tumors and worse OS in lung cancer. Thus, the
MCM7 and CCNE2 genes can be good indicators for cellular proliferation and prognosis in lung cancer.

1. Introduction

Lung cancer is one of the most commonmalignant tumors in
the world [1]. According to the data released by the World
Health Organization in 2019, the incidence and mortality of
lung cancer in all kinds of malignant tumors in the world
are the highest [2]. The number of deaths from lung cancer
exceeds the sum of the deaths of three malignant tumors of
breast cancer, prostate cancer, and colorectal cancer. Obvi-
ously, lung cancer has become a widespread and serious pub-
lic health problem worldwide.

Incidence of lung cancer is insidious, and the pathogene-
sis is complex; it is easy to be ignored by patients and miss the
best treatment opportunity. More than 85% of patients have
been in advanced stage when clinical diagnosis and lost the
opportunity of surgery; the survival rate of lung cancer is very
low which is reported to be closely related to the tumor stage.
After effective treatment, the 10-year survival rate of patients
with stage IA can reach 92%, while the five-year survival rate
of patients with stage IV is only 4.2%, which shows the
importance of early diagnosis and treatment to reduce the
mortality of patients with lung cancer [3].
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The development of tumor biomarkers is one of the
means of early diagnosis of lung cancer, but only from a local
focus on a single or a certain gene cannot meet the regulation
of this highly complex tumor. Based on the whole regulation
network, some genes in tumors are abnormally expressed
and closely related to many other genes. Their expression
may play an important role in the occurrence and develop-
ment of tumors. Such genes in the regulatory network hub
become hub genes. In recent years, with the rise of high-
throughput sequencing technologies such as gene chips and
RNA-seq, large-scale omics data has been generated. Further
data analysis and mining will facilitate a systematic study of
the association of multiple gene expressions. Weighted corre-
lation network analysis (WGCNA) is a systematic biological
method used to describe the pattern of gene association
between different samples [4]. It can be used to identify
highly synergistically altered gene sets based on the intrinsi-
cality of gene sets. Association with gene sets and phenotypes
identifies candidate biomarker genes or therapeutic targets.
Compared to genes that only focus on differential expression,
WGCNA uses thousands or nearly 10,000 of the most variable
genes or all of the genes to identify the set of genes of interest,
to make a significant association analysis with a given pheno-
type. Therefore, the results obtained by this method havemore
biological significance and higher reliability [5, 6].

In the present study, theWGCNAmethod was applied to
analyze the gene expression dataset to identify the candidate
biomarkers for lung cancer based on the TNM stage of lung
cancer patients.

2. Materials and Methods

2.1. Data Sources and Data Preprocessing. Gene expression
profile of GSE30219 [7] was downloaded from the gene
expression omnibus (GEO) database of the National Center
for Biotechnology Research (http://www.ncbi.nlm.nih.gov/
gds). The GSE30219 data contained 307 lung tissue samples
(including 14 normal tissues and 293 case tissues) analyzed
with the Affymetrix Human Genome U133 Plus 2.0 Array.
Clinical characteristics were downloaded at the same time.
All the data processing and analysis were carried out by the
R programming language (v3.6.1).

2.2. Differentially Expressed Genes (DEGs) Screening and
Enrichment Analysis.We used the limma package [8] to per-
form normalization and log2 conversion for GSE30219 data.
The threshold for identifying DEGs was set at a ∣log2 ðfold
changeÞ∣ > 1:2 and adjust p value <0.05. The functional
enrichment analysis for DEGs was including Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG: http://http://www.kegg.jp/kegg/) pathway enrich-
ment analysis, which was performed for genes by clusterPro-
filer package in R [9]. An adjusted p value smaller than 0.05 is
considered significant.

2.3. Clinically Significant Module and Hub Gene Identification.
Upregulated and downregulated DEGs were selected for
weighted gene co-expression network analysis (WGCNA)
according to standard WGCNA R package procedures [10,

11]. To obtain a high-scale independence and average con-
nectivity, the soft-thresholding power value was calculated
from a gradient test range from 1 to 20 and determined by
pickSoftThreshold function. Then, we calculated the topo-
logical overlap matrix (TOM) according to the correspond-
ing soft-thresholding power.

The module eigengene (ME) was calculated to evaluate
correlations between the modules and different clinical traits.
The biologically significant modules were evaluated in linear
regression between gene significance (GS) and clinical traits
by Pearson’s correlation test. The modules with the higher
correlation were identified in the further analysis. We
screened the hub genes by the association between gene
and module or clinical trait. All the genes met both of the fol-
lowing conditions of cor. modulemembership ðMMÞ > 0:8
and cor. gene significance > 0:5 which were regarded as can-
didate hub genes. Protein-protein network (PPI) of these
candidate hub genes were analyzed by STRING (https://
string-db.org). In our study, we set a combined score of 0.7
as the cutoff value. The KEGG pathway analysis was used
to carry out for the candidate hub genes. To identify the
key hub genes from the candidate ones, ANOVA was used
to estimate the relative expression of the normal sample
and subgroup lung cancer sample.

2.4. TCGA Data and Survival Analysis of Hub Genes. UAL-
CAN (http://ualcan.path.uab.edu) was an open-access inter-
active web resource for analyzing cancer OMICS data. It is
used to analyze the relative expression of normal group and
tumor subgroups based on tumor individual cancer stages.
Survival analysis for the hub genes was performed by
Kaplan–Meier plotter analysis (http://www.kmplot.com)
with the TCGA database. And GEPIA (http://gepia.cancer-
pku.cn/index.html) was used to evaluate the expression levels
of hub genes. It is an interactive network server for analyzing
the sequencing expression of RNA data from the GTEx pro-
jects and TCGA.

2.5. Subjects and Clinical Data. Fresh tissue specimens were
obtained from 59 patients who underwent surgical resection
of lung cancer at the Huzhou Central Hospital from 2015 to
2019. All the patients were received without any chemo-
therapy or radiation treatment prior to the surgery. The
tissue samples were immediately frozen in liquid nitrogen
and stored at -80°C before RNA isolation. Our study was
approved by the ethics committees of the Huzhou Central
Hospital. And written informed consent forms were acquired
from all of the participants.

2.6. RNA Extraction and Quantitative Real-Time PCR
(qRT-PCR). Total RNA was extracted from tissue specimens
by using TRIzol™ Reagent (Thermo Fisher Scientific). The
isolated RNA was converted to cDNA by the Prime-Script
RT reagent kit (TaKaRa, Dalian, China). Quantitative real-
time PCR analysis was conducted with the SYBR Premix Ex
Taq TM II kit (TaKaRa) on an ABI 7500 Real-Time PCR Sys-
tem (Applied Biosystems, USA) and normalized to the
expression of β-actin.
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Figure 1: Identification of DEGs and enrichment analysis in GSE30219 between lung cancer and normal tissues: (a) volcano plot of the DEGs;
(b, c) GO enrichment analysis of upregulated (b) and downregulated (c) DEGs; (d) KEGG pathway enrichment analysis of upregulated and
downregulated DEGs.
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2.7. Statistics. All the stoical analysis was conducted by the R
programming language (version 3.6.0). ROC curve analysis
was used to calculate the area under the ROC curve.

2.8. Statistical Analysis. Statistics 18.0 software (SPSS Inc.,
Somers, NY, USA) was used to perform the statistical analy-
ses in the study. χ2 test was used to determine statistical sig-
nificance. p < 0:05 was considered statistically significant.

3. Result

3.1. Identification of DEGs and Enrichment Analysis. All of
293 lung cancer samples and 14 normal samples were ana-
lyzed in our study. According to our cutoff criteria
(∣log2 ðfold changeÞ∣ > 1:2 and adjust p value <0.05), 745
upregulated and 1431 downregulated DEGs were identified
between the cancer group and the normal one (Figure 1(a)).

After DEGs being obtained, we performed GO and
KEGG pathway enrichment analysis to explore the biological
functions of these DEGs. The top GO terms in upregulated
DEGs were Mitotic cell cycle phase transition, Organelle fis-
sion, Nuclear division, Chromosome segregation, and
Mitotic nuclear division (Figure 1(b)). As for the downregu-

lated DEGs, the top 5 enriched GO terms were including
Angiogenesis, Granulocyte activation, neutrophil activation,
neutrophil-mediated immunity, and leukocyte migration
(Figure 1(c)). As shown in Figure 1, the upregulated DEGs
were enriched in KEGG pathway of cell cycle, DNA replica-
tion, and P53 signaling pathway, and downregulated DEGs
were mainly associated with Complement and coagulation
cascades, Staphylococcus aureus infection, Rheumatoid
arthritis, and cell adhesion molecules (Figure 1(d)).

3.2. Identification of Co-Expression Gene Modules. After
removing the normal samples, we included the 2176 identi-
fied DEGs and 293 lung cancer samples to construct co-
expression gene network in total. The scale-free fit index
and mean connectivity were used to calculate the power of
β for further analysis. When the power of β = 5, the scale-
free fit index was over 0.8 (Figure 2, R2 = 0:86).

Seven co-expression modules were identified via average
linkage clustering (Figure 3(a)). Our result indicated that the
black module had the highest association with the clinical
parameters (Figure 3(b), R2 = 0:46, p = 2e − 16). Notably,
the blue module had the second-highest association with N
stage (Figure 2(b), R2 = 0:41, p = 5e − 13) and also had
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Figure 2: (a) Effects of power values on the scale independence of DEGs co-expression modules; (b) effects of power values on the average
connectivity of DEGs co-expression modules; (c) histogram of connectivity distribution when power = 5; (d) check the scale-free topology
when power = 5.
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Figure 3: Identification of co-expression gene modules and the association with clinical traits. (a) Clustering dendrogram of DEGs; (b)
heatmap of correlation between ME and clinical traits of age, gender, T stage, N stage, M stage, alive status, survival time, and relapse
status; (c) distribution of GS in seven modules; (d) the TOM plot of 400 genes; (e, f) scatter plot of ME in the black (e) and blue (f) modules.
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stronger association with T stage (Figure 3(b), R2 = 0:39,
p = 4e − 12), alive statue (Figure 3(b), R2 = 0:41, p = 2e − 13),
survival time (Figure 3(b), R2 = −0:34, p = 3e − 09), and
relapse (Figure 2(b), R2 = 0:31, p = 8e − 08). Black and blue
modules were the two top modules with closer correlation of
the N stage based on the gene significance measure
(Figure 3(c)). In addition, it implied the statistically significant
correlation between module membership and GS in black
(Figure 3(e): cor = 0:61, p = 8:6e − 11) and blue (Figure 3(f):
cor = 0:62, p = 2:9e − 107) models in the current study.

3.3. PPI Network and Validation of Hub Genes. 14 genes in
the black model and 25 genes in the blue model were carried
out by the criteria of cor. MM> 0:8 and cor. GS > 0:5. We
mapped the 39 genes to the STRING database and analyzed
with a combined score > 0:7. As shown in Figure 4, we
found several candidate hub genes. Furthermore, KEGG
pathway analysis indicated seven genes, including MCM7,
PCNA, RNASEH2A, CCNB1, CCNE2, GTSE1, and FBXO5.
The seven genes were enriched in five KEGG pathways
(Table 1). We found that the four hub genes (CCNB1,
CCNE2, MCM7, and PCNA) enriched in the cell cycle path-
way were the most important genes, which played signifi-
cant roles in other pathways.

Our results found that tumor with larger size (T stage) or
with more lymph node metastasis (N stage) had higher
mRNA levels of four hub genes from GSE30219 (Figure 5,
p < 0:05). The further analysis of lung cancer data from the
TCGA database showed similar results with GSE30219
(Figure 5, p < 0:05). Nevertheless, the four hub gene expres-
sions had a significant relationship with other clinical charac-
teristics, such as relapse and several times. The positive
prognostic effect of four hub genes was also supported by
Kaplan–Meier plotter analysis. It indicated that higher
expressions of CCNE2 (Figure 6(a): HR = 1:28 (1.12−1.45),
p = 0:00017), CCNB1 (Figure 6(b): HR = 1:68 (1.42−1.99),
p = 1:2e − 09), MCM7 (Figure 6(c): HR = 1:66 (1.46−1.89),
p = 8:4e − 15), and PCNA (Figure 6(d): HR = 1:19 (1.05
−1.36), p = 0:0068) were correlated with a worse overall sur-
vival (OS). These hub genes were highly expressed in tumor
samples and had a close relationship with advanced tumors.
ROC curve analysis showed that the four hub genes had good
diagnostic performance in distinguishing cancer from the
normal by using the dataset of GSE30219, AUC was 0.966
for CCNB1, 0.949 for CCNE2, 0.916 for MCM7, and 0.944
for PCNA (Table 2). The results from GEPIA showed that
all the four hub genes were higher expression levels in the
cancer than the normal one (Supplementary Figure 1). The
expression of CCBN1 and MCM7 was showed the
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statistical significance between the different TNM stages
(Supplementary Figure 2). qRT-PCR showed that mRNA
expression levels of MCM7 (p = 0:038) and CCNE2 (0.003)
were significantly higher in patients with the TNM stage
(Table 3).

4. Discussion

Lung cancer is the most common cancer all around the
world, with high morbidity and mortality. Although early
screening by computed tomography (CT) reduces the associ-
ated mortality [12], tumor invasion and migration-mediated
disease progression represent the leading cause of cancer-
related death [13].

The identification of disease-associated modules via
WGCNA which focused on the relationship between gene
co-expression modules has emerged as a powerful and reli-

able method of obtaining novel insights into cancer biology
[10, 14]. WGCNA was widely used in various biological pro-
cesses analysis to process differently expressed genes and
interactions among genes [15–17]. These hub genes can be
identified as therapeutic targets or candidate biomarkers in
many diseases [5, 18–20]. Combined with the RNA-seq data
and WGCNA analysis, Wei et al. found that genes involved
in cell adhesion, ECM-receptor interaction, focal adhesion,
and PI3K-Akt signaling pathway play crucial roles in human
lung adenocarcinomas [15].

In the present study, the gene expression patterns
obtained from the GSE30219 database revealed a total of
2176 genes, including 745 upregulated and 1431 downregu-
lated genes, which were differently expressed in lung cancer
samples compared with controls. Furthermore, 7 gene co-
expression modules were conducted by WGCNA based on
2,176 DEGs from 293 lung cancer samples. Through

Table 1: The ROC curve for prediction of NSCLC based on the expression level of hub genes. KEGG pathway analysis of 39 candidate hub
genes mapped to STRING database.

ID KEGG pathway Count FDR Gene symbol

hsa03030 DNA replication 3 0.003 MCM7, PCNA, RNASEH2A

hsa04110 Cell cycle 4 0.003 CCNB1, CCNE2, MCM7, PCNA

hsa04115 p53 signaling pathway 3 0.0059 CCNB1, CCNE2, GTSE1

hsa03430 Mismatch repair 2 0.0132 EXO1, PCNA

hsa04114 Oocyte meiosis 3 0.016 CCNB1, CCNE2, FBXO5
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Figure 5: Aberrant expression of the four hub genes can be a candidate biomarker in lung cancer. (a, b) expression levels of four hub genes in
GSE30219 were positively correlated with T stage (a) and lymph node metastasis N stage (b); (c) validation of our hub genes was positively
correlated with stage by TCGA data.
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Figure 6: The survival analysis of four hub genes by the KM-plotter. (a) CCNE2; (b) CCNB1; (c) MCM7; (d) PCNA.

Table 2: Prediction performance of expression level of hub genes between normal and lung cancer.

Gene AUC (95% IC) Sensitivity (%) Specificity (%)

CCNB1 0.966 (0.93-1) 0.925 0.929

CCNE2 0.949 (0.90-0.99) 0.973 0.643

MCM7 0.916 (0.87-0.96) 0.785 1.000

PCNA 0.944 (0.89-0.99) 0.894 0.929
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analyses, the blue module might be inferred as the most
crucial module in the pathogenesis of lung cancer. A total
of 25 genes with high connectivity in the blue module were
distinguished as candidate hub genes. In further pathway
enrichment analysis of KEGG, these genes were enriched
in the “DNA replication,” “Cell cycle,” and “P53 signaling
pathway” pathways. The cell cycle was the most significant
pathway in the blue module with four hub genes CCNB1,
CCNE2, MCM7, and PCNA which were selected in our
study. And we confirmed that the mRNA expression levels
of MCM7 (p = 0:038) and CCNE2 (0.008) were signifi-
cantly higher in patients with the TNM stage (Table 3) in
patient trusses.

The cell cycle is a complex process that involves numer-
ous regulatory proteins that direct the cell through a specific
sequence of events which a cell duplicates its genome, grows,
and divides [21, 22]. Deregulation of the cell cycle is a com-
mon event in lung cancer. Usually, several defects of cell cycle
regulation are concomitant and have a cumulative adverse
effect on prognosis [23]. Cell cycle-related genes such as Ki-
67, P53, P16, and RB1 were reversed as proliferative and
prognosis markers in many diseases [24–27]. A study dem-
onstrated that the Ki-67 proliferation index is a clinically
meaningful biomarker in NSCLC that allows reliable estima-
tion of prognosis [28]. The combination of P53/P21 expres-
sion and smoking history may be a useful biomarker for
tumor progression and prognosis of NSCLC patients [29].

CCNE2 are important members of the cyclin family
which function as regulators of the cell cycle by activating
cyclin-dependent kinase (CDK) enzymes [30, 31]. They
are crucial cell-cycle regulators in the G2/M phase and
in G1/S transition separately in cell proliferation and dif-

ferentiation [32, 33]. A study has demonstrated that
CCNE2 may be useful as diagnostic biomarker for early
detection of gastric carcinoma for its overexpression in
early stages of gastric carcinoma which significantly corre-
lated with differentiation, invasion, and metastasis [34]. In
addition, CCNE2 was the target of miR-3607-3p and miR-
30d-5p in NSCLC to inhibit tumor cell proliferation and
metastasis [35, 36]. MCM proteins including MCM7 have
been utilized as diagnostic and prognostic tumor markers
for their higher specificity and sensitivity than the conven-
tional proliferative markers, such as Ki-67 and PCNA [37,
38]. A study [39] found that MCM7 expression elevated
with gastric tumor grade increasing and had a positive
correlation with Ki-67 significantly. The combination of
MCM7 and Ki67 may serve as more sensitive proliferation
markers for the evaluation of gastric carcinoma [39]. Fur-
thermore, the higher expression of MCM7 was associated
with poorer prognosis of the hepatocellular carcinoma
patients and NSCLC patients than controls [38, 40].

There were several limitations in our work. Firstly, the
normal sample size of GSE30219 was rather small, which
might lead to a mistake in finding markers with small effects.
More subjects especially normal samples were needed to
enhance the statistical power. Secondly, more patients’ tissue
samples with the diagnosis of TNM were needed to further
verify the relationship between the hub genes and TNM
stage.

In our research, the higher expression of the four hub-
genes was significantly related with advanced tumors and
worse OS in lung cancer. Thus, CCNE2 and MCM7 can be
good indicators for cellular proliferation and prognosis in
lung cancer.
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Table 3: The association between TNM stage and four hub genes by
qPCR.

CCNE2
p value

TNM stage Low expression High expression

I 11 16 0.003

II 15 3

III/IV 4 10

CCNB1
p value

TNM stage Low expression High expression

I 15 12 0.067

II 9 8

III/IV 3 12

MCM7
p value

TNM stage Low expression High expression

I 15 12 0.038

II 10 7

III/IV 3 12

PCNA
p value

TNM stage Low expression High expression

I 13 14 0.134

II 11 6

III/IV 5 10
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