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Astrocytes actively regulate numerous cell types both within and outside of the central
nervous system in health and disease. Indeed, astrocyte morphology, gene expression
and function, alongside the content of astrocyte-derived extracellular vesicles (ADEVs),
is significantly altered by ageing, inflammatory processes and in neurodegenerative
diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral
sclerosis. Here, we review the relevant emerging literature focussed on perturbation
in expression of microRNA (miRNA), small non-coding RNAs that potently regulate
gene expression. Synthesis of this literature shows that ageing-related processes,
neurodegenerative disease-associated mutations or peptides and cytokines induce
dysregulated expression of miRNA in astrocytes and in some cases can lead to selective
incorporation of miRNA into ADEVs. Analysis of the miRNA targets shows that the
resulting downstream consequences of alterations to levels of miRNA include release
of cytokines, chronic activation of the immune response, increased apoptosis, and
compromised cellular functioning of both astrocytes and ADEV-ingesting cells. We
conclude that perturbation of these functions likely exacerbates mechanisms leading
to neuropathology and ultimately contributes to the cognitive or motor symptoms
of neurodegenerative diseases. This field requires comprehensive miRNA expression
profiling of both astrocytes and ADEVs to fully understand the effect of perturbed
astrocytic miRNA expression in ageing and neurodegenerative disease.

Keywords: astrocytes, microRNA, Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis,
ageing, inflammation, neurodegeneration

INTRODUCTION

Astrocytes are highly ramified glial cells found throughout the central nervous system (CNS).
Originally thought to provide little more than structural support for neurons, it is now evident
that astrocytes actively regulate numerous functions and cell types in both the healthy and
diseased brain. Astrocytes are a fundamental component of both the tripartite synapse and
blood-brain barrier (BBB). The intimate proximity of astrocytes to neurons and capillary wall-
forming endothelial cells allows astrocytes to modulate and optimise the synaptic and wider CNS
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environment for current and future activity. Astrocytes regulate
blood flow, distribute nutrients to nearby neurons, take up
and recycle excess neurotransmitters and spent metabolites and
release gliotransmitters, synaptogenic and neurotrophic factors
and neurotransmitter precursors (Sofroniew and Vinters, 2010;
Baldwin and Eroglu, 2017). Furthermore, significant crosstalk
between astrocytes, microglia, other CNS cell types and CNS-
non-resident cells is mediated by a variety of signalling molecules
including growth factors and cytokines. This enables astrocytes,
especially in response to CNS injury, to actively regulate the
cellular responses and transcriptional profiles of other cell
types while being regulated themselves in a similar manner
(Linnerbauer et al., 2020; Matejuk and Ransohoff, 2020).

Intercellular communication is also facilitated by the release
of astrocyte-derived extracellular vesicles (ADEVs). ADEVs,
including exosomes and microvesicles, are vesicles of 30–
1,000 nm containing proteins and functional genetic material
(Valadi et al., 2007) encased by a lipid bilayer (Zhao et al.,
2021). ADEVs can be internalised by neurons (Ibáñez et al.,
2019; Xu et al., 2019), microglia (Neckles et al., 2019; Liao et al.,
2020), oligodendrocytes (Willis et al., 2020), endothelial cells
(Kriaučiūnaitė et al., 2021), and other astrocytes (Ipas et al.,
2015), while ADEV transfer across the BBB enables astrocytes
to influence cells beyond the CNS (Cai et al., 2017; Dickens
et al., 2017). Differences between the cargo of ADEVs and the
originating astrocytes (Ipas et al., 2015; Jovičić and Gitler, 2017)
point to the existence of preferential packaging mechanisms
(Groot and Lee, 2020), suggesting that curation of ADEV content
is an important mechanism by which astrocytes communicate
with other cells.

Following acute and chronic CNS injury, astrocytes undergo
morphological, molecular and functional changes that are
collectively termed reactive astrogliosis (Escartin et al., 2021).
Whether these changes, such as the formation of a glial scar,
are beneficial or detrimental depends on the severity and
nature of the insult (Sofroniew and Vinters, 2010). Loss of
normal astrocyte functions alongside gain of toxic functions can
further exacerbate pathological processes (Sofroniew and Vinters,
2010). Neurodegenerative diseases, including Alzheimer’s disease
(AD), Parkinson’s disease (PD) and amyotrophic lateral sclerosis
(ALS), are characterised by CNS inflammation and deteriorating
cognitive and/or motor function. These symptoms arise from
the steady and irreversible degeneration of neurons in the
brain or spinal cord, but the astrocytic contribution to the
pathological processes underlying these chronic conditions
is becoming increasingly recognised (Pekny et al., 2016).
Dysregulated gene expression is a well-established feature of
neurodegenerative disorders and normal ageing (Cooper-Knock
et al., 2012). Recent work has highlighted the contribution
of microRNA (miRNA), short non-coding RNAs that fine-
tune gene expression by inhibiting protein translation, to
neurodegenerative and ageing processes (Danka Mohammed
et al., 2017; Shaik et al., 2018; Gagliardi et al., 2019; Goh et al.,
2019). This includes a nascent literature evaluating the role of
astrocyte-derived miRNA.

Here, we review accumulating evidence implicating
disrupted miRNA expression in astrocytes and ADEVs in

the pathophysiology of neurodegenerative diseases, highlighting
downstream targets of the perturbed miRNA and the biological
pathways affected. We build on recent reviews (Neal and
Richardson, 2018; Bai et al., 2021) by considering alterations to
astrocytic miRNA expression in ADEVs and that arising from
ageing and inflammatory processes. It is important to note that
studies utilising astrocytoma or glioblastoma cells to represent
astrocytes were not included due to the well-documented
differences in miRNA expression between primary astrocytes
and cultures derived from astrocytoma cell lines (Lee et al., 2013;
Zhou et al., 2017).

MicroRNA FUNCTION AND REGULATION

Gene silencing is initiated following the interaction of a seed
sequence (nucleotides 2–8) at the 5′ end of a mature miRNA
with a perfectly complementary sequence in the 3′-untranslated
region of a target mRNA (Chipman and Pasquinelli, 2019).
The subsequent displacement of translation initiation complexes
from the mRNA or recruitment of mRNA-degrading protein
complexes ultimately results in reduced expression of the target
protein (Iwakawa and Tomari, 2015). As most mammalian
miRNAs are only partially complementary to their targets
beyond the seed sequence, one miRNA can regulate numerous
compatible mRNAs. Furthermore, one mRNA can be targeted
by multiple miRNAs. Fascinatingly, both mature miRNA and
precursor miRNA have been identified within EVs (Chen et al.,
2010). Thus, perturbed miRNA expression is likely to have
numerous downstream consequences.

Complex biogenesis paired with numerous transcriptional
and post-transcriptional regulatory mechanisms provides
multiple opportunities to regulate miRNA expression. Access
of RNA polymerase II or transcriptional regulators to the
genes encoding miRNA can be facilitated or restricted by
epigenetic modifications, such as DNA methylation or chromatin
remodelling and the binding of transcription factors (TFs) to
miRNA promotor regions (Morales et al., 2017), leading to
altered amounts of miRNA transcripts within cells. Notably,
all of these mechanisms have been associated with various
neurodegenerative conditions (Kwon et al., 2016; Berson et al.,
2018). Furthermore, miRNA can regulate their own expression
via positive and negative feedback loops (Zuo et al., 2016; Inukai
et al., 2018; Ferro et al., 2019).

DYSREGULATION OF MicroRNA AND
THEIR TARGET mRNA IN ASTROCYTES
AND ASTROCYTE-DERIVED
EXTRACELLULAR VESICLES IN
NEURODEGENERATIVE DISEASES

Increasing evidence suggests that dysregulation of astrocytic
and ADEV-associated miRNA is a common feature of
neurodegenerative disease. Table 1 summarises studies showing
a direct link between ageing, inflammation, neurodegenerative
diseases or disease-relevant stimuli and altered expression of
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TABLE 1 | Differentially expressed microRNA in astrocytes and astrocyte-derived extracellular vesicles in ageing, inflammation, and neurodegenerative disease.

Disease/
condition

miRNA Direction of change in treated or
diseased astrocytes or ADEVs (cf.

control)

Type of study Target genes Treatment/model Study

Astrocytes ADEVs

AD miR-146a-(5p) ↑ Targeted: Northern blot IRAK1b,d 5 µM Aβ42 + 10 ng/mL IL-1β-treated HAG
cells

Cui et al., 2010

AD miR-155 ↑ Targeted: RT-qPCR Socs1b Aβ42 fibril (30 µM, 24 h) treated primary
murine astrocytes

Guedes et al., 2014

AD miR-146a ↑ Targeted: Northern blot and
RT-qPCR

CFHb,d, IRAK1b,d,
TSPAN12b,d

5 µM Aβ42 + 10 nM TNFα (1 week) treated
HAG cells

Li et al., 2011

Ageing miR-16-(5p), miR-17-(5p),
miR-140-(3p)

↑ Exploratory: MMChIP assay with
RT-qPCR validation

Mapk3b, Ngfrb

(miR-206-3p), Tnf-αb

(miR-181a-5p), Sirt1b,
Slc17a7b (miR-138-5p)

HO-1 overexpression in primary rodent
astrocytes

Lin et al., 2015

miR-29c-(3p), miR-138-(5p),
miR-181a-(5p), miR-187-(3p),

miR-206-(3p), miR-297

↓

Ageing miR-335-3p ↑ Targeted: RT-qPCR Hmgcs1a,d, Sfrs2a,d Young (7 DIV) cf. aged (35 DIV) primary
murine astrocytes

Raihan et al., 2018

ALS miR-21-(5p), miR-146a-(5p) ↓ Targeted: RT-qPCR Irak1b, Traf6b

(miR-146a-5p)
Primary cortical astrocytes from mSOD1

mice
Gomes et al., 2019

ALS miR-21-5p, miR-146a-5p,
miR-155-5p

↓ ↓ Targeted: RT-qPCR No targets investigated Primary cortical astrocytes from mSOD1
mice and secreted ADEVs

Gomes et al., 2020

↑ ↓ Primary spinal cord astrocytes from mSOD1
mice and secreted ADEVs

ALS TaqManTM Array Rodent microRNA
A + B Cards v3.0

Not assessed No change
observed in any of

the 752 miRNA
investigated

Exploratory: TLDA RT-qPCR No targets investigated ADEVs from primary mSOD1 murine
astrocytes

Jovičić and Gitler,
2017

ALS miR-494-3p Not assessed ↓ Exploratory: GeneChip array with
RT-qPCR validation

SEMA3Ab ADEVs from patient-derived iAstrocytes
(C9orf72 mutation)

Varcianna et al., 2019

Inflammation let-7f-(5p), miR-16-5p,
miR-100-(5p), miR-125a-5p,

miR-125b-5p

No change ↑ Exploratory: nCounter with
RT-qPCR validation

Ntrk3a,d, Bcl2a,d

(miR-125a-5p and
miR-16-5p)

IL-1β (200 ng/mL, 2 h) treated primary
rodent astrocytes and secreted ADEVs

Chaudhuri et al., 2018

Inflammation miR-16-5p, miR-107,
miR-125a-5p, miR-125b-5p,

miR-145-(5p)

No change ↑ Exploratory: nCounter with
RT-qPCR validation

Ntrk3a,d, Bcl2a,d

(miR-125a-5p and
miR-16-5p)

TNFα (200 ng/mL, 2 h) treated primary
rodent astrocytes and secreted ADEVs

Chaudhuri et al., 2018

Inflammation miR-30d-(5p), miR-141-3p ↑ ↑ Exploratory: TLDA RT-qPCR with
ddPCR validation

No targets investigated IL-1β (10 ng/mL, 24 h) treated primary
human astrocytes and secreted ADEVs

Gayen et al., 2020

Inflammation miR-146a ↑ Targeted: RT-qPCR IRAK1b,d, TRAF6b IL-1β (10 ng/mL, 24 h) treated primary
human astrocytes

Iyer et al., 2012

Inflammation miR-23a, miR-146a, miR-155 ↑ Exploratory: TLDA RT-qPCR with
RT-qPCR validation

CD47a (miR-155) IL-1β (0.05 µg/mL, 24 h) or TNFα

(0.01 µg/mL, 24 h) treated primary human
astrocytes

Junker et al., 2009

Inflammation miR-155-5p ↑ Targeted: RT-qPCR No targets investigated IL-1β (10 ng/mL, 24 h) treated primary
human astrocytes

Korotkov et al., 2018

Inflammation miR-146a-5p ↑ Targeted: RT-qPCR Traf6a,d IL-1β or TNFα (both 10 ng/mL, 6–24 h)
treated primary murine astrocytes

Lu et al., 2015

Inflammation miR-125b-(5p) ↑ Exploratory: Fluorescent miRNA
array panels with Northern blot

validation

CDKN2Ad IL-6 (10 µM, 18 and 36 h) treated normal
human astrocytes

Pogue et al., 2010

Inflammation miR-155-(5p), miR-155*
(miR-155-3p)

↑ Exploratory: Illumina microarray with
RT-qPCR validation

SOCS1b,d (miR-155-5p) IL-1β or TNFα (both 10 ng/mL, 24 h) treated
primary human astrocytes

Tarassishin et al.,
2011
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miRNA within astrocytes or ADEVs. Target genes are noted
where investigated.

Dysregulation of MicroRNA in Astrocytes
in Normal Ageing
Increasing age is an established risk factor for the development of
most neurodegenerative conditions. Even normal ageing is often
accompanied by reductions in cognitive function, underpinned
by impaired synaptic communication, altered metabolism and
mitochondrial dysfunction in ageing neurons (Hou et al.,
2019; Temido-Ferreira et al., 2019). Furthermore, the mild
inflammatory state of the ageing brain (Palmer and Ousman,
2018) is likely driven by non-neuronal cells. Notably, ageing is
associated with morphological, molecular and functional changes
in astrocytes (Palmer and Ousman, 2018; Willis et al., 2020).
Furthermore, RNA-sequencing of astrocytes from aged wildtype
mice reveals that ageing induces significant changes in gene
expression (Boisvert et al., 2018; Habib et al., 2020). However,
little is known about ageing-induced alterations to miRNA
expression in astrocytes. Nevertheless, two in vitro studies have
reported dysregulated astrocytic miRNA expression in response
to models of non-pathological ageing.

One study modelling normal ageing by extended culture
(35 days) of primary murine astrocytes observed significant
elevation of miR-335-3p compared to younger (7 days) astrocytes
(Raihan et al., 2018). A concomitant decrease in the expression of
direct targets HMGCS1 and SFRS2 was also observed, alongside
reduced astrocytic cholesterol levels. Delivery of astrocyte-
derived cholesterol to neurons via lipoproteins is essential
for synaptic formation and function (Pfrieger, 2003), and
HMGCS1 and SFRS2 are critical components of the cholesterol
production pathway. Notably, impaired cholesterol synthesis in
astrocytes arising from overexpression of miR-335-3p led to
a downregulation of the essential synaptic protein PSD95 in
neurons, while reducing miR-335-3p levels in the hippocampus
of aged mice raised PSD95 protein levels and cholesterol
production and was associated with improved performance on
learning and memory tasks (Raihan et al., 2018; Figure 1A).

Heme oxygenase-1 (HO-1) is an inducible enzyme involved
in the heme catabolism pathway. HO-1 expression is positively
correlated with increasing age in post mortem brain with no
observable neuropathology (Hirose et al., 2003). Astrocytes
overexpressing HO-1 had significantly higher levels of three
miRNA, while six miRNA were downregulated (Lin et al.,
2015; Table 1). Tumour necrosis factor-alpha (Tnf-α), nerve
growth factor receptor (Ngfr), mitogen-activated protein kinase
3 (Mapk3), Sirtuin 1 (Sirt1), and Slc17a7, which encodes
the glutamate transporter VGLUT1, are known targets of
the downregulated miRNA and were significantly upregulated
in HO-1-overexpressing astrocytes (Lin et al., 2015). This
suggests that multiple processes related to both astrocytic
and neuronal physiology may be dysregulated as a result of
age-related increases in HO-1 expression and accompanying
miRNA dysregulation. Interestingly, upregulation of HO-
1 expression, predominantly in astrocytes, has also been
observed in neurodegenerative conditions, such as AD and PD
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FIGURE 1 | Altered expression of miRNA in astrocytes (A) and astrocyte-derived extracellular vesicles (ADEVs) (B), arising from neurodegenerative, inflammatory,
and ageing processes, contributes to sustained central nervous system (CNS) inflammation, neuronal injury, dysregulated autophagy, and mitochondrial dysfunction
in astrocytes and neurons, and increased apoptosis. Uptake of ADEVs by neurons and other cell types is suggested to have numerous downstream effects.
Together, these insults can exacerbate CNS pathology and contribute to the cognitive and motor symptoms observed in neurodegenerative conditions, indicating
that dysregulated expression of astrocytic miRNA plays a central role in neurodegenerative disease. Alternatively, anti-inflammatory effects are observed in response
to certain stimuli. Red font and dashed red arrows denote postulated links.

after accounting for age and post mortem delay (Schipper,
2000). Thus, HO-1-induced alterations to astrocytic miRNA
expression may contribute to the increased risk of developing a
neurodegenerative disease in older age.

Dysregulation of MicroRNA in Astrocytes
in Response to Inflammation
Considerable evidence demonstrates that miRNA expression is
altered in astrocytes and/or ADEVs following exposure to the
pro-inflammatory cytokines interleukin-1-beta (IL-1β), tumour
necrosis factor-alpha (TNFα) and interleukin-6 (IL-6) (Junker
et al., 2009; Pogue et al., 2010; Tarassishin et al., 2011; Iyer
et al., 2012; Lu et al., 2015; van Scheppingen et al., 2016, 2018;
Chaudhuri et al., 2018; Korotkov et al., 2018; Gayen et al., 2020;
Table 1). Release of IL-1β, TNFα and IL-6 by activated microglia
has been observed in AD and PD, while reactive microglia and
elevated levels of these and other cytokines have been observed
in ALS (Smith et al., 2012). Furthermore, activated astrocytes also
release these cytokines (Choi et al., 2014; van Scheppingen et al.,
2018), contributing to the chronic inflammatory state observed
in neurodegenerative diseases.

Exposure of astrocytes to IL-1β and TNFα upregulates the
expression of numerous miRNA (Table 1), including miR-146a-
5p and miR-155-5p. Interestingly, co-upregulation of miR-146a-
5p and miR-155-5p has been observed for both IL-1β- and
TNFα-treated astrocytes (Junker et al., 2009; van Scheppingen
et al., 2016; Table 1), in line with observations that these miRNA
can act in concert to refine cellular responses to inflammation
(Mahesh and Biswas, 2019). Nuclear factor kappa-light-chain-
enhancer of activated B cells (NFκB) is an inflammation-
associated TF that stimulates transcription of pro-inflammatory
cytokines, including IL-6, IL-8, IL-1β, and TNFα (Saba et al.,
2014; Shi and Sun, 2018; Figure 1A). Induction of miR-146a-5p is
dependent upon NFκB signalling (Taganov et al., 2006), however,
a negative feedback loop allows miR-146a-5p to temper the
immune response by directly targeting interleukin-1 receptor-
associated kinase 1 (IRAK1) and tumour necrosis factor receptor-
associated factor 6 (TRAF6) which upregulate NFκB activity
(Figure 1A). In contrast, miR-155-5p augments inflammation by
reducing the expression of suppressor of cytokine signalling 1
(SOCS1), a protein that inhibits inflammatory signalling and the
production of pro-inflammatory mediators (Cardoso et al., 2012;
Figure 1A).
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IL-1β also upregulates miR-147b and miR-21-5p expression
in astrocytes (van Scheppingen et al., 2018; Table 1). Increased
expression of miR-147b downregulates production of IL-6 and
other pro-inflammatory cytokines in astrocytes and macrophages
(Liu et al., 2009; van Scheppingen et al., 2018) suggesting that
miR-147b is a negative regulator of inflammation. On the other
hand, while miR-21-5p can both silence and promote NFκB
signalling (Ma et al., 2011), it is generally reported to have anti-
inflammatory properties in the CNS (Gaudet et al., 2018), and has
been shown to reduce the hypertrophic response of astrocytes to
spinal cord injury (Bhalala et al., 2012; Figure 1A).

IL-1β or TNFα also alter the miRNA cargo of ADEVs and
stimulate ADEV production (Dickens et al., 2017; Chaudhuri
et al., 2018; Gayen et al., 2020). Significant upregulation of
27 miRNA was observed in ADEVs following treatment of
astrocytes with IL-1β, with bioinformatics analysis of miRNA
targets highlighting cell death and survival as a key pathway
likely affected by these changes (Gayen et al., 2020). Further
investigation confirmed the IL-1β-induced upregulation of miR-
30d-5p and miR-141-3p in both ADEVs and astrocytes (Gayen
et al., 2020; Table 1 and Figures 1A,B). Augmented miR-30d-
5p has been shown to upregulate apoptosis and downregulate
autophagy by respectively targeting SMAD2 (Yu and Liu,
2020) and the autophagosome-associated protein Beclin 1 (Zhao
et al., 2017), while increased miR-141-3p, which downregulates
the neuroprotective protein Sirtuin 1, was associated with
increased apoptosis and mitochondrial dysfunction (Zheng et al.,
2020). Thus, similar effects could occur in both astrocytes
and ADEV-ingesting cells (Figures 1A,B). In another study,
ADEVs enriched in miR-16-5p, miR-125a-5p, and miR-125b-
5p secreted by IL-1β- and TNFα-treated astrocytes reduced
neurite length and dendritic complexity in primary neurons
(Chaudhuri et al., 2018). Both miR-16-5p and miR-125a-5p target
two key components of the neurotrophin signalling pathway—
Ntrk3, which encodes the neurotrophin TrkC receptor, and
anti-apoptotic protein Bcl-2 (Figure 1B). Inhibiting miR-16-
5p and miR-125a-5p in ADEVs abolished synaptic injury and
restored neuronal activity. In contrast to Gayen et al. (2020), no
changes to cellular miRNA expression in IL-1β- or TNFα-treated
astrocytes were observed in this study (Chaudhuri et al., 2018).
This, alongside discrepancies in the specific miRNA altered by
IL-1β treatment between these studies, may reflect differences
between species or in the duration and concentration of IL-1β

used (Table 1).
Finally, IL-6 exposure was found to induce both astrogliosis

and a significant increase in astrocytic miR-125b-5p (Pogue et al.,
2010; Table 1), a miRNA that has been associated with apoptosis,
inflammation and oxidative stress that is upregulated in the AD
brain (Jin et al., 2018; Figure 1A).

Dysregulation of MicroRNA in Astrocytes
in Alzheimer’s Disease
Amyloid-beta (Aβ) accumulates in the AD brain due to impaired
clearance mechanisms (Mawuenyega et al., 2010; Wildsmith
et al., 2013), with monomers aggregating to form synaptotoxic
oligomers and protofibrils (Klyubin et al., 2012) and ultimately

forming the extracellular deposits of aggregated Aβ that are
a characteristic hallmark of AD. Astrocytes have been shown
to surround these plaques (Olabarria et al., 2010; Perez-Nievas
and Serrano-Pozo, 2018) and ingest Aβ molecules (Jones et al.,
2013; Söllvander et al., 2016). Exposure to aggregated Aβ

induces reactive astrogliosis and increases astrocytic production
of inflammatory mediators (Singh et al., 2020), while ingestion of
aggregated Aβ can impair lysosome function, hinder astrocytic
degradation of Aβ protofibrils and alter the cargo of ADEVs
(Söllvander et al., 2016).

Accumulating evidence shows that in vitro exposure of
astrocytes to Aβ alters miRNA expression. For example, miR-
155 was significantly elevated in astrocytes treated with Aβ fibrils
(Guedes et al., 2014; presumably miR-155-5p). Aβ can activate
c-Jun N-terminal kinase (JNK), which subsequently activates the
TF c-Jun (Yarza et al., 2016). Indeed, the Aβ-mediated increase in
miR-155-5p in astrocytes was reduced when c-Jun was silenced
(Guedes et al., 2014). Furthermore, expression of both c-Jun and
miR-155-5p was upregulated in the brains of 3xTg transgenic
AD mice. Notably, Aβ pathology was associated with decreased
expression of the miR-155-5p target Socs1 (Figure 1A), likely
contributing to an increase in inflammatory processes in the AD
brain alongside increased expression of IL-6 (Guedes et al., 2014)
and other pro-inflammatory molecules.

Additionally, significant elevation of miR-146a-5p was
observed following exposure of human astrocytes to Aβ,
either alone or in conjunction with IL-1β (Cui et al., 2010;
Table 1) or TNFα (Li et al., 2011). This occurred alongside
increased activation of NFκB (Cui et al., 2010). Increased
miR-146a-5p was associated with decreased expression of
miR-146a-5p targets complement factor H (CFH), TSPAN12
and IRAK1 (Li et al., 2011), while increased IRAK1 levels
were observed following inhibition of miR-146a-5p (Cui et al.,
2010). Interestingly, a compensatory increase in IRAK2, which
also upregulates NFκB signalling (Saba et al., 2014; Shi and
Sun, 2018), was observed in both AD brain and Aβ-treated
astrocytes (Cui et al., 2010) and is likely to counter any protective
effects of IRAK1 downregulation. Furthermore, as CFH acts
as an inhibitor of the complement cascade, the miR-146a-
5p-mediated downregulation of CFH combined with IRAK2
upregulation following astrocytic exposure to Aβ is likely to
result in sustained activation of the immune response, with
the enhanced astrocytic production and secretion of NFκB-
regulated pro-inflammatory cytokines contributing to continued
activation of both microglia and astrocytes (Li et al., 2011;
Figure 1A).

Increased expression of the cytokine-responsive TF CCAAT-
enhancer binding protein-delta (CEBPD) has been observed
in the brains of AD patients (Li et al., 2004), the APP/PS1
AD mouse model (Ko et al., 2012) and, notably, in astrocytes
treated with pro-inflammatory cytokines (Chu et al., 2016)
or surrounding Aβ plaques (Li et al., 2004). CEBPD induces
transcription of miR-135a-5p, a miRNA that negatively regulates
thrombospondin 1 (THBS1), a neurotrophic factor secreted by
astrocytes to enhance neurite outgrowth and synaptogenesis
(Sofroniew and Vinters, 2010; Chu et al., 2016; Figure 1A).
Increased miR-135a-5p expression has been reported in the
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brains of APP/PS1 mice (Chu et al., 2016). Reducing CEBPD
levels or inhibiting miR-135a-5p in APP/PS1 mice improved
performance on learning and memory tasks.

Dysregulation of MicroRNA in Astrocytes
in Parkinson’s Disease
Though PD is characterised by the progressive loss of
dopaminergic neurons in the substantia nigra resulting in
movement dysfunction, astrocytes are also affected by PD
pathophysiology (Booth et al., 2017), including the ingestion
of neurotoxic aggregates of alpha-synuclein (α-syn) protein
(Wakabayashi et al., 2000; Rostami et al., 2017), a key component
of the neuronal Lewy bodies present in PD.

Mutations in the α-syn-encoding gene SNCA are associated
with increased risk of developing PD (Campêlo and Silva,
2017), while DJ-1 mutations give rise to a rare inherited
form of PD, likely due to loss of numerous protective
functions of the DJ-1 protein (Kahle et al., 2009; Giaime
et al., 2010; Ariga et al., 2013). Investigation into the effects
of α-syn dysfunction, aggregation and SNCA mutations on
astrocytic miRNA expression is surprisingly lacking. However,
interferon gamma (IFN-γ)-treated astrocytes from DJ-1
knock out mice demonstrate a robust increase in miR-155-
5p and concomitant downregulation of Socs1 (Figure 1A),
suggesting that DJ-1 mutations in familial PD may alter
astrocytic regulation of miR-155-5p levels in response to
inflammation (Kim et al., 2014; Table 1). As mentioned,
elevated miR-155-5p and reduced Socs1 expression was
observed following exposure of astrocytes to Aβ (Guedes et al.,
2014), suggesting that miRNA-mediated disruption of normal
astrocyte responses to CNS inflammation may be a key feature
of both diseases.

The neurotoxin 1-methyl-4-phenyl-1,2,3,6-
tetrahydropyridine (MPTP) and metabolite MPP+ are taken
up into neurons via dopamine transporters, resulting in
selective degeneration of dopaminergic neurons accompanied
by parkinsonian symptoms (Kitayama et al., 1998) and
increased expression of α-syn protein in differentiated PC12
cells (Zheng et al., 2020). Interestingly, exposure of astrocytes
to MPP+ induces astrogliosis and the production of pro-
inflammatory cytokines (Yu et al., 2016) and alters the miRNA
cargo of ADEVs (Shakespear et al., 2020; Table 1). One notable
change in ADEVs is the downregulation of miR-200a-3p,
which targets the apoptosis-associated kinase Map2k4. Reduced
transfer of miR-200a-3p to neurons via ADEVs rendered
neurons more vulnerable to neurotoxic stimuli (Shakespear
et al., 2020; Figure 1B). Similarly, exposing dopaminergic
neurons to ADEVs enriched in miR-34a-5p increased neuronal
susceptibility to neurotoxins due to the negative regulation of
Bcl-2 by miR-34a (Mao et al., 2015; presumably miR-34a-5p).
As miR-34a-5p expression was induced by exposing astrocytes
to the inflammatory stimulus lipopolysaccharide, the presence
of other ADEV components that may have contributed to
neuronal loss cannot be ruled out. However, co-administration
of miR-34a-5p inhibitors alongside miR-34a-5p-enriched ADEVs
reduced neuronal vulnerability to neurotoxins (Mao et al., 2015).
Interestingly, elevated expression of miR-34a-5p has also been

observed in the brains of sporadic AD patients (Zhao et al., 2019)
and in APP/PS1 mice (Wang et al., 2009).

Dysregulation of MicroRNA in Astrocytes
in Amyotrophic Lateral Sclerosis
ALS is characterised by progressive paralysis and muscle atrophy
arising from the degeneration of motor neurons in the brain
and spinal cord (Joilin et al., 2019). While the mechanisms
underlying this degeneration are not completely elucidated, both
astrocytes and ADEVs are known to play a significant role (Pehar
et al., 2017; Chen et al., 2019). Although more than 20 genes
are associated with ALS, mutations in the SOD1 and C9orf72
genes are among the most common and play a causative role
in the development of both familial and sporadic forms of ALS
(Tripolszki et al., 2017). Alongside this, cytosolic accumulation
and aggregation of TAR DNA-binding protein 43 (TDP-43) is
present in the majority of patients with familial or sporadic ALS.
While TDP-43 is known to sequester miRNA in neurons (Zuo
et al., 2021), there is no current literature exploring its role in the
regulation of miRNA in astrocytes.

Altered expression of several miRNA has been observed,
however, in both primary astrocytes and ADEVs from the SOD1-
G93A (mSOD1) mouse model of ALS (Gomes et al., 2019,
2020), though, curiously, others found no differences in ADEV
cargo between mSOD1 and wildtype mice (Jovičić and Gitler,
2017). Interestingly, Gomes et al. (2019, 2020) reported that the
direction of change was dependent on the CNS region from
which the astrocytes were derived. Cortical mSOD1 astrocytes
had reduced levels of miR-21-5p and miR-146a-5p (Gomes
et al., 2019) (Table 1), whereas increased expression of both
these miRNA and miR-155-5p were identified in spinal cord
mSOD1 astrocytes (Gomes et al., 2020). Markedly, all three
miRNA were downregulated in mSOD1 ADEVs regardless of
the region of origin (Gomes et al., 2020). Reduced expression
of anti-inflammatory miRNAs miR-146a-5p and miR-21-5p
in cortical mSOD1 astrocytes was proposed to contribute to
the neuronal damage and mitochondrial dysfunction observed
following co-culture of reactive astrocytes and motor neurons
(Gomes et al., 2019).

Another study identified alterations to the miRNA cargo of
ADEVs secreted by directly reprogrammed human astrocytes
(iAstrocytes) derived from ALS patient fibroblasts with the
C9orf72 mutation compared to ADEVs from control iAstrocytes
(Varcianna et al., 2019). One significantly downregulated miRNA
was miR-494-3p, which targets SEMA3A mRNA (Figure 1B).
Though SEMA3A acts as a guidance signal for developing axons
(Carulli et al., 2021), aberrant SEMA3A expression has been
observed in ALS (Körner et al., 2016) and is suggested to
contribute to neuronal apoptosis (Carulli et al., 2021). Notably,
uptake of ALS patient-derived ADEVs by motor neurons induced
neuronal death (Varcianna et al., 2019), likely due to a reduction
in miR-494-3p levels in neurons following ADEV internalisation.
Accordingly, restoring neuronal levels of miR-494-3p with a
mimic reduced SEMA3A expression and increased neurite length
and motor neuron viability (Varcianna et al., 2019).

Interestingly, there were no miRNA alterations in common
between astrocytes from the mSOD1 and C9orf72 models,
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suggesting that the genetic basis of ALS leads to differential
effects on ADEV miRNA cargo. Mutation-associated differences
in ADEV secretion have also been observed. Fewer ADEVs
were released by C9orf72 iAstrocytes (Varcianna et al., 2019),
whereas primary murine mSOD1 astrocytes had enhanced ADEV
secretion (Basso et al., 2013).

DISCUSSION

As summarised in Figure 1, significant alterations to astrocytic
miRNA expression arise from the pathological processes
underlying or contributing to neurodegenerative disease,
including genetic mutations, accumulation of aggregated
peptides, pro-inflammatory cytokine release by activated
microglia, and ageing. Altered activity of key TFs in astrocytes
appears to result in aberrant transcription of miRNA which
ultimately affects the health and function of surrounding
cells, particularly neurons. Furthermore, the curated nature
of alterations to ADEV-associated miRNA indicates that
ADEV-mediated intercellular communication is an important
component of the astrocyte response to neurodegeneration
with the potential for widespread, cell non-autonomous effects
and propagation of pathology throughout the brain because of
ADEV uptake. Many of the genes targeted by dysregulation of
astrocytic and ADEV-associated miRNA converge upon common
pathways including apoptosis, inflammation, TF signalling, and
the loss of normal or neuroprotective astrocytic functions or
proteins. This may underpin chronic CNS inflammation and
increase neuronal susceptibility to neurodegenerative processes
which may hasten disease onset and exacerbate symptoms.
Furthermore, significant crosstalk between astrocytes and
other cell types, as well as perturbed regulation of miRNA
transcription, may amplify the effects of disrupted astrocytic
miRNA expression.

Our understanding of perturbed astrocytic miRNA expression
in neurodegenerative disease remains limited, especially in
regard to ageing. Discrepancies regarding which miRNA
are significantly altered in astrocytes in neurodegenerative
disorders will hopefully be resolved with further investigation.
Furthermore, while various alterations to the protein cargo of
plasma ADEVs from AD patients have been reported (Goetzl
et al., 2016, 2018; Winston et al., 2019), no studies have
investigated miRNA changes in ADEVs in AD. There is also a
profound lack of investigation into altered miRNA expression

in astrocytes and ADEVs in relation to Huntington’s disease
and non-Alzheimer’s type dementias, such as frontotemporal
dementia and vascular dementia.

Research has largely focussed on small groups of differentially
expressed miRNA and their mRNA targets, often selected
based on known relationships to specific cellular processes
or relevant target genes. Comprehensive miRNA expression
profiling with methods such as RNA-sequencing in conjunction
with bioinformatics tools would ensure that important changes
in miRNA expression do not go undetected, while the use of up-
to-date miRNA nomenclature will reduce ambiguity regarding
which miRNA strand mediates the effects described. Researchers
investigating disease-driven miRNA alterations in astrocytes
should ensure the experimental model used is as relevant to
the disease process as possible, ideally utilising human rather
than rodent models and focussing on alterations caused by
genetic mutations or causative agents pertinent to the disease of
interest. Observations of ageing-induced alterations to miRNA
expression highlight the critical importance of having age-
matched healthy controls. Finally, while in vitro experiments
assist in uncovering the mechanistic links between altered
miRNA expression and downstream outcomes, the short time
courses of such experiments should be married with longer term,
in vivo observations from post mortem human brain or aged
animal models to ensure the effects of dysregulated astrocytic
miRNA expression are placed within the wider context of chronic
neurodegenerative diseases.
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