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Abstract: Background: Chemokine genetic variations are involved in infectious diseases such as
hepatitis B virus (HBV). Several allelic variants might, in theory, affect the outcome of vaccination.
Objectives: This study was carried out to examine the associations of ∆32 CCR5 and 190G > A CCR2
polymorphisms with a response to a primary course of three HBV vaccinations. Methods: Between
December 2014 and December 2016, patients from three randomly selected primary care clinics
in the West Pomeranian region (Poland), 1 month after receiving the third dose of HBV vaccine,
were enrolled. Enzyme-linked immunosorbent assay (ELISA) system version 3.0 was used to
detect anti-HBs and anti-HBc totals. The identification of polymorphisms were performed by
a polymerase chain reaction technique using a single primer extension assay. Genotype distributions
of responders versus non-responders to HBV vaccination were compared on the basis of anti-HBs
level. Results: In 149 patients (mean age 60 years) the mean anti-HBs level was 652.2 ± 425.9 mIU/mL
(range: 0–1111.0 mIU/mL). There were 14.1% (n = 21) non-responders to the HBV vaccine
(anti-HBs < 10.0 mIU/mL). The wild type/∆32 genotype of CCR5 gene was found in 18.1%
participants, and 1.3% were ∆32/∆32 homozygotes. The frequency of allele A of the CCR2 gene was
11.1%. Lower anti-HBs levels in ∆32/∆32 homozygotes were observed (Me = 61 mIU/mL vs. Me
= 660.2 mIU/mL; p = 0.048). As age was found to be a correlate to the anti-HBs titer (r = −0.218,
p = 0.0075; 95% CI: −0.366–−0.059)—an analysis of a co-variance was performed which found
a statistically significant (p = 0.04) difference in anti-HBs titres between ∆32/∆32 homozygotes
and other CCR5 genotypes. The association between anti-HBs titres and CCR2 genotypes was not
statistically significant. Conclusions: Our study—which is a preliminary report that suggest this
topic deserves further observation with larger sample sizes, different ethnicities, and other single
nucleotide poly-morphisms (SNPs)—suggests the possible involvement of CCR5 polymorphism in
impairing the immunologic response to HBV vaccination, predominantly in relation to the passage
of time.
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1. Background

In humans, hepatitis B virus (HBV) is the most prevalent and the main infectious agent leading to
liver disease. Viral hepatitis B (HB) continues to be a cause of considerable morbidity and mortality.
The World Health Organization estimated that in 2012 around 240 million people were chronically
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infected with HBV worldwide, and approximately 780,000 die per year as a consequence of acute
disease and chronic complications, such as cirrhosis and hepatocellular carcinoma. Globally, two billion
people, more than a third of the world’s population, have been infected with HBV [1]. The prevalence
of HBV in the Polish population has been found to be around 0.5%–1.5% [2].

Since 1981 HB has become a vaccine-preventable disease, due to safe and effective vaccines,
typically given in a three-dose series [3]. In healthy individuals post-vaccine sero-conversion is as
high as 90%–100% [4]. A concentration of anti-HBs 1–2 months after a primary series ≥10 mIU/mL
is generally accepted as offering protection. Determinants that may decrease the immunogenicity
include vaccine, host, and genetic factors [3–5].

Among genetic factors involved in host immune response to viral infection, chemokines and
their receptors play a critical role; the most frequently studied being CCR2 and CCR5, and their
polymorphisms: ∆32 and 190G > A, respectively.

CCR5 is a CC chemokine receptor, which influences the migration of granulocytes, macrophages,
immature dendritic cells, CD8+ lymphocytes, Th1 lymphocytes and their activation. It is also
a co-receptor for HIV entry into host cells [6,7]. The CCR5 gene consists of a single coding exon,
with non-functional allele containing a 32 bp deletion. A heterozygous (wt/∆32) presents reduced
levels of CCR5 on the cell surface compared to a wild homozygous CCR5 (wt/wt), while a homozygous
mutant (∆32/∆32) presents higher levels of CCR5 [6]. C-C chemokine receptor 2, is involved in
modulating the immune response, as well as recruiting monocytes/macrophages to the sites of
inflammation [8].

The polymorphism of the CCR5 gene and DNA alterations might affect gene expression and then
protein function, while the polymorphism G-A transition at position 190 in CCR2 gene, introducing
a conservative change into the first transmembrane domain, is not associated with any clinical
abnormality [9].

The frequency of allele ∆32 of CCR5 gene varies from about 5% to 13% in different populations,
and of allele A of CCR2 gene from about 10% to 25% [10,11].

Chemokine genetic variations have been involved in infectious diseases such as HIV, HCV
(Hepatitis C), HPV (Human papillomavirus), West Nile Virus, as well as HBV [12–15]. Previous studies
suggested that the polymorphism 190G > A of the CCR2 gene is associated with enhanced protection
against HPV-16 infection [16]. Independent studies demonstrated the protective effect of CCR5 ∆32 in
recovery from a HBV infection, and provided genetic epidemiological evidence for the role of CCR5 in
the immune response to HBV [14,15]. However, the role of chemokines in HBV prevention has not
been fully clarified [17]. Several allelic variants might, in theory, affect the outcome of vaccination.
Nevertheless, data on the relationship of both ∆32 CCR5 and 190G > A CCR2 polymorphisms and the
HBV vaccine immunogenicity are sparse.

2. Objectives

The study objective was to examine ∆32 CCR5 and 190G > A CCR2 polymorphisms in the context
of HBV vaccination response.

3. Methods

3.1. Setting and Sampling

The study was conducted between December 2014 and December 2016 among 185 consecutive,
unrelated adult patients presenting one month after taking a third HBV vaccination dose, at three
randomly selected urban primary care clinics (PCCs) located in Szczecin, in the West Pomeranian
region of Poland. Patients with serological markers of HBV infection (anti-HBc total) were excluded
from the study (n = 24; 12.5%). Among those remaining (n = 161), the extraction of genome DNA failed
in 12 (7.5%), therefore 149 individuals were finally analysed.
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3.2. Study Instrument

After signing informed consent forms, participants filled out a questionnaire which anonymously
queried them on their demographics (age, gender, weight and height), smoking habit and medical
history of HB.

3.3. Sero-Testing and Genetic Testing

Blood samples were collected by venipuncture. Enzyme immunosorbent assay (ELISA) system
version 3.0 (Abbott Laboratories Inc., Abbott Park, IL, USA) was used to detect anti-HBs and
anti-HBc total.

Genomic DNA from leukocytes of peripheral blood, collected into sterile tubes containing ethylene
diamine tetraacetic acid (EDTA) solution was isolated with the use the QIAamp DNA extraction kit
(Qiagen, Hilden, Germany). The extraction followed manufacturer instructions; DNA samples were
stored at 4 ◦C. Subsequently, genotypes were determined by a polymerase chain reaction (PCR)
technique, according to a previously described protocol with the following temperature profile: the
initial denaturation for CCR2 was 94 ◦C for 5 min; 38 cycles of 20 s at 94 ◦C, 40 s at 57 ◦C and 40 s at
72 ◦C; for CCR5 the initial denaturation was 94 ◦C for 5 min; 38 cycles of 30 s at 94 ◦C, 30 s at 60 ◦C and
45 s at 72 ◦C; the final extension step was 72 ◦C for 7 min for each of the polymorphisms [18,19]. For the
analysis of CCR2 and ∆32 CCR5 mutations, a sequence specific PCR was run using the following
two primer pairs: forward 5′-TTG TGG GCA ACA TGA TGG-3′ and reverse 5′-GCA TTC CCA AAG
ACC CAC TC-3′ and forward 5′-GAT AGG TAC CTG GCT GTC CAT-3′ and reverse 5′-ACC AGC
CCC AAG ATG ACT ATC T-3′, respectively (TIB MOL BIOL, Poznań, Poland). After of the use of
a BsaBI restriction enzyme (Thermo Fisher Scientific, Waltham, MA, USA), a wild allele (G) CCR2 gene
was detected as a 163 bp fragment, while a mutant allele (A) 145 and 18 bp, and wild (wt) and mutant
(∆32) alleles of CCR5 gene were detected as 242 and 210 bp fragments, respectively. For quality control
purposes, results were verified by performing re-genotyping of randomly selected samples; all results
were reliable and replicable. To assess possible differences in the frequencies of ∆32 and 190G > A
polymorphisms, a control group from the HAPMAP database was used [20]. The study was approved
by the institutional ethics committee (KB-0012/180/13).

3.4. Statistical Analyses

Mann-Whitney/t-student tests were used for the comparisons of continuous variables, a χ2 test
to verify whether genotype and allele frequencies matched the Hardy-Weinberg equilibrium
and to assess whether there are differences in genotype and alleles distribution between
vaccine responders/non-responders. Genotype comparisons by means of anti-HBs values were
performed using an ANOVA test, and nonparametric counterparts (Kruskall-Wallis, Mann-Whitney),
as appropriate. The level of anti-HBs is influenced by gender, smoking and BMI (Body Mass Index) [3,5],
so analyses of variance were initially performed separately for each and then together to determine
any interactions between variables. To establish the OR and 95% CI logistic regression was used.
The significance level of the test was set to 0.05. Statistical analyses were performed using the StatView
version 5.0 software (BrainPower Inc., Calabasas, CA, USA).

4. Results

Patient demographic characteristics are shown in Table 1.
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Table 1. Study group characteristics * (n = 149).

Variable All (n = 149) Women (n = 85) Men (n = 64) p **

Age (years) 59.4 ± 13.6 61.0 ± 13.8 57.2 ± 13.0 0.08
Body mass (kg) 76.7 68.0 84.5 <0.0001

Height (cm) 167.4 ± 8.5 162.5 ± 6.4 173.9 ± 6.3 <0.0001
BMI (kg/m2) 26.7 26.1 27.9 0.06

* ex re variables that followed normal distribution data are shown as mean ± standard deviation; for variables
without normal distribution characteristics are expressed as median. ** women vs. men. BMI: Body Mass Index.

4.1. Genotyping

The following CCR5 ∆32 genotype frequencies were assessed: wild type/wild type (wt/wt):
80.6% (n = 120), wt/∆32: 18.1% (n = 27), ∆32/∆32: 1.3% (n = 2).

Regarding CCR2 polymorphism the following genotype frequencies were identified: GG: 117
(78.5%), GA: 31 (20.8%), AA: 1 (0.8%). The major allele frequency was 88.9%.

The distribution of the ∆32 CCR5 and gene CCR2 polymorphisms followed the Hardy-Weinberg
equilibrium (χ2 = 0.1605; p = 0.73 and χ2 = 0.4714; p = 0.49, respectively).

There were no differences in the frequencies of studied polymorphisms between the study group
and HAPMAP controls (CCR5: p = 0.34, CCR2: p = 0.81 respectively).

4.2. Anti-HBs Titres

The median anti-HBs titre for the study participants was 652 ± 4259 mIU/mL (range:
0–1111.0 mIU/mL). There were 21 (14.1%) non-responders to the HBV vaccine (anti-HBs < 10.0 mIU/mL)
for whom the median anti-HBs titre was 0.0 mIU/mL. For 128 (85.9%) responders (anti-HBs
≥ 10.0 mIU/mL) the median anti-HBs titre was 1001.0 mIU/mL. There was a statistically significant
difference in anti-HBs titres between the two groups (p < 0.0001). In women the median anti-HBs
titre was 1001 mIU/mL, in men 772.0 mIU/mL (p = 0.08). Anti-HBs titres were negatively correlated
with patient age (r = −0.218, p = 0.0075; 95% CI: −0.366–−0.059); Figure 1. No correlation was found
regarding BMI values and anti-HBs titre (r = −0.019; p = 0.82, 95% CI: −0.179–−0.142), or associations
regarding smoking status, gender and anti-HBs level (p = 0.12; p = 0.06, respectively).
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4.3. Associations between CCR2 and CCR5 Genotypes and Anti-HBs Titres

In 21 non-responders medians of anti-HBs titres were 0.0 mIU/mL despite the CCR5 genotype;
p = 0.95. In 128 responders medians of anti-HBs titres were 1001.0 mIU/mL for individuals presenting
wt/wt and ∆32/wt genotypes, and 122.0 mIU/mL for those presenting ∆32/∆32 genotype; p = 0.273.
The median of anti-HBs titres in CCR2 GG homozygotes was 1001 mIU/mL, in GA heterozygotes
1001 mIU/mL and in the single AA homozygote 1001 mIU/mL.

A one-way ANOVA revealed a statistically significant association between CCR5 genotype in
a co-dominant model of inheritance and anti-HBs titres (p = 0.04). Therefore, we adapted a recessive
model of inheritance for a ∆32 CCR5 polymorphism. The median anti-HBs titre in ∆32/∆32
homozygotes was 61 mIU/mL and in other genotypes: 660.2 mIU/mL (p = 0.0478).

Due to the lack of normal distribution in anti-HBs titre values, non-parametric tests were also
performed. The analysis did not show statistical significance regarding the association between
anti-HBs titres and the co-dominant model of ∆32 CCR5 model of inheritance (p = 0.16). However,
a statistical tendency towards lower anti-HBs titres in ∆32/∆32 homozygotes was confirmed in
a recessive model (p = 0.078).

Age, gender, BMI and smoking status were taken into consideration for further analyses when
appropriate. As age was found to be a correlate to the anti-HBs titre the corresponding analysis of
a co-variance was performed. A difference in anti-HBs titres between ∆32/∆32 homozygotes and
other CCR5 genotypes was found to be statistically significant (p = 0.04); Figure 2.
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Figure 2. Anti-HBs titres by CCR5 recessive genotype and age as a cofactor (* p = 0.04; bars indicate
standard deviations); n = 149.

Additionally, two-way ANOVA for CCR5 recessive genotype and smoking as independent
variables was performed; no significant results for the main effects of the analysis (CCR5: p = 0.07;
smoking: p = 0.97) and interactions (CCR5 * smoking: p = 0.66) were found. The OR of the ∆32 CCR5
gene polymorphism in recessive manner towards real anti-HBs titres/vaccine response was found to
not be statistically significant (p = 0.265, p = 0.197, respectively).

No association between CCR2 genotype and anti-HBs titres were found in one-way ANOVA
analyses in co-dominant, dominant, recessive and over-dominant models of inheritance (p > 0.05,
p = 0.33, p = 0.41, p = 0.42, respectively). Nonparametric analyses in CCR2 genotype towards ant-HBS
tires was confirmed to be nonsignificant in all models of inheritance (p = 0.45, p = 0.21, p = 0.69,
p = 0.24, respectively).

Finally, post hoc power analyses using G * Power [21] computer software was performed. This is
a flexible statistical power analysis program for social, behavioural, and biomedical sciences. Statistical
powers analyses observed were under the recommended 0.8 level [22], thus to obtain larger effects,
the sample size would have to be increased.
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5. Discussion

5.1. Results Overview

Of the 149 patients, presenting at PCCs one month after receiving the third dose of HBV vaccine,
12.5% were not protected against HBV infection. A wild type/∆32 genotype was found in 18.1%
participants, 1.3% were ∆32/∆32 homozygotes. The frequency of allele A of CCR2 gene was 11.1%.
Age was found to be a correlate to the anti-HBs titre. When adjusted to age, the difference in
anti-HBs titres between ∆32/∆32 homozygotes and other CCR5 genotypes was statistically significant.
No statistically significant association between anti-HBs titres and CCR2 genotypes was found.

5.2. Anti-HBs Titres

In patients who completed a 3-dose HBV vaccination schedule, anti-HBs titres were negatively
correlated with age. Decreasing responses to immunization with advanced age have been described
previously [5,23]. A model on sero-protection rates presented by Van Der Meeren et al. showed
a statistically significant decrease in anti-HBs sero-protection rate with age, and predicted that it
remains ≥80% up to 60 years of age [23]. This is in line with our results: 83% of patients from PCCs,
with the mean age of 60 years, gained sero-protection after HBV vaccination. Although some other
studies reported correlations between anti-HBs levels after HBV vaccination and host factors, such as
male gender, obesity, and smoking [3,5,23], similarly to Williams et al. [24] we did not find such
correlations, possibly due to the limited sample size.

5.3. Frequencies of ∆32 CCR5 and 190G > A CCR2 Allele

According to medical literature, the mean frequency of ∆32 CCR5 allele in Europe is approximately
10%, with the highest allele frequency (12%) observed among Nordic populations and the lowest (5%)
in the regions of Southeast Mediterranean [10]. In Poland ∆32 CCR5 allele frequency is comparable to
that found in Caucasian populations and follows the pattern of the north-southern gradient observed
in Europe. The lowest frequencies of ∆32 CCR5 were detected in provinces in central and north-western
regions of the country [11]. The frequency of the ∆32 allele among PCCs patients followed the pattern
of the north-southern gradient observed in Europe [10] and was similar to that reported in orthopaedic
trauma patients and staff [25], as well as newborns [26] from regional hospitals and data reported
among Polish blood donors [11]. Moreover, there were no differences in the frequencies of both studied
polymorphisms between the study group and HAPMAP controls [20].

5.4. The Association between Anti-HBs Titres and CCR5 and CCR2 Genotypes

Chemokines are responsible for innate and adaptive immune responses and surveillance [27].
The variation in chemokine release is individual and linked to polymorphisms of genes. Only a
small number of studies—involving animals and humans—have been carried out regarding the
involvement of chemokines in response to infectious agents [28–32]. As an example, Algood et al.
tested the consequences of ∆32/∆32 genotype in mice and found a more robust T-cell response to
several infectious agents [31]. The authors observed more dendritic cells in lymph nodes and increased
pulmonary inflammation, due to a greater T-cell response in Mycobacterium tuberculosis infection in
mutant (∆32/∆32) mice, when compared to wt/wt mice.

Given the importance of cell response in HBV infection, including a finding that the production of
a non-functional CCR5 (∆32 CCR5) increases the likelihood of recovery from HB in humans [11,12,33],
and given the increased T-cell response to various antigens observed in animal models [31],
we conducted the first study on the human population and hypothesized that both homozygous
∆32/∆32 of CCR5 gene and homozygous AA of CCR2 gene might be bio-markers for immunological
response in subjects after a HBV vaccination. This hypothesis was tested by genotyping CCR2 and
CCR5 genes for two SNPs (190G > A CCR2 and ∆32 CCR5) in a group of Polish patients in the context
of response to HBV vaccination.
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Age was found to be a negative correlate to the anti-HBs titre. The median anti-HBs titre in
∆32/∆32 homozygotes was more than ten times lower than observed in patients with other genotypes,
this was a statistically significant difference. Though, it might be hypothesized that CCR5 mutation can
influence the outcome of HBV immunization, i.e., be associated with impaired response to vaccination
with the passage of time.

However, vaccine response is a complex issue with multiple factors involved, including genetic
variations. Furthermore, genetic interactions are also complex, therefore it is unlikely that a single
allelic variants investigation would be enough to show their dominant role in impaired immunologic
response after HBV vaccination. If a singular SNP was considered as an independent risk factor toward
impaired vaccine response, it may an extended period to observe. This might explain why the impact
of a bi-allelic polymorphism is best observed in older age. Over the years, most environmental factors
(e.g., obesity, smoking status) begin to be set at a more constant level, the direct impact of a genetic
variation on the selected clinical parameter can be seen more clearly.

This preliminary evidence needs further study on the role genetic factors play in the immune
response to the vaccine, including a decrease in vaccine immunogenicity. Thorough medical literature
search was unsuccessful in finding previous studies related to this subject, therefore comparisons with
other surveys are not presented in this paper. Any consideration on the clinical utility of our findings
should include a question of CCR5 polymorphism as one of the possible targets for the screening of
HBV vaccination effectiveness.

6. Limitations

A clear advantage of the current study is its pioneering character—to our knowledge this is the
first study on the human population which examined ∆32 CCR5 and 190G > A CCR2 polymorphisms
in the context of a response to HBV vaccination. Moreover, the study was conducted among patients
from randomly selected PCCs, therefore the study population may be representative of the whole
region. In addition, the frequencies of both studied polymorphisms are comparable to those found in
Caucasian populations [7,8,16].

The main limitations of this study were the small sample size of subjects (including the number of
individuals in the group with ∆32/∆32), recruited from the one region, and involving one ethnic group.
However, due to the low prevalence of ∆32/∆32 CCR5 homozygotes in the Caucasian population
(less than 1% [11]), collecting samples from homozygotes vaccinated for HBV with 3 doses, who have
not been infected with HBV previously, was difficult. These limitations made our sample ever smaller.
Therefore, data are presented as a preliminary report, and the conclusions that can be drawn are
limited from such low numbers.

Due to these limitations, which may affect the results, we recommend further studies in patients
presenting one month after taking the third HBV vaccination dose, with a larger sample size and
different ethnicities, to validate our results. Also, due to the interference of other cytokines in
immunologic response after HBV vaccination, the effect of other allelic variants should also be
investigated. Therefore, we recommend further studies related to this issue.

7. Conclusions

Our study—which is a preliminary report that suggest the topic deserves further
observation—underscores the possible involvement of CCR5 polymorphism in impairing the
immunologic response to HBV vaccination, predominantly in relation to the passage of time.
Additional studies are necessary to validate our findings, as well as to clarify the clinical utility
of CCR5 polymorphism. This paper may contribute to further anthropological and epidemiological
surveys on the subject.
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