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Abstract: The evaluation of physiological and psychological states using thermal infrared images is
based on the skin temperature of specific regions of interest, such as the nose, mouth, and cheeks.
To extract the skin temperature of the region of interest, face alignment in thermal infrared images
is necessary. To date, the Active Appearance Model (AAM) has been used for face alignment in
thermal infrared images. However, computation using this method is costly, and it has a low real-time
performance. Conversely, face alignment of visible images using Cascaded Shape Regression (CSR)
has been reported to have high real-time performance. However, no studies have been reported on
face alignment in thermal infrared images using CSR. Therefore, the objective of this study was to
verify the speed and robustness of face alignment in thermal infrared images using CSR. The results
suggest that face alignment using CSR is more robust and computationally faster than AAM.

Keywords: face alignment; thermal infrared image; facial thermal image; cascaded shape regression;
real-time measurement; remote measurement

1. Introduction

A method for remotely evaluating physiological and psychological states based on
facial skin temperature measured by infrared thermography has attracted considerable
interest. Biological information is used in various fields, such as medicine, welfare, and
industry. In general, the measurement of biological signals often requires physical restraint,
and the measurement itself may cause mental or physical stress to the subject [1]. Con-
versely, infrared thermography can conduct contactless, non-invasive skin temperature
measurements with high sensitivity, accuracy, and reproducibility [2–5]. In a thermal
environment that is windless and non-sweat inducing, the main cause of variation in skin
temperature is skin blood flow [6]. Since the autonomic nervous system controls skin
blood flow as a part of the circulatory system’s function to regulate body temperature, skin
temperature has been used to assess the activity of the autonomic nervous system [7]. For
this assessment, facial thermal infrared images are particularly suitable for application
because the face is often exposed and unobstructed by clothing. Many previous studies
have been conducted on the estimation of physiological and psychological states based
on facial skin temperature distribution [8,9]. For example, studies have been conducted
that estimate vital data such as respiratory rate [10] and heart rate [11], sleepiness [12–14],
emotions [15–17], mental stress [18,19], and anomaly detection in facial skin temperature
distribution [20]. These previous studies used the temperature distribution of the entire
face or the temperature of specific Regions of Interest (ROI), such as the nose, mouth,
and cheeks for evaluation. Therefore, it is important to automatically detect faces and
facial landmarks from thermal infrared images with high accuracy and stability. In recent
years, infrared thermography has lowered in price but has bettered in performance. The
resolution of thermal infrared images has increased, and it is possible to measure multiple
people with a single thermal infrared image. Therefore, in face detection and detection
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of facial landmarks in real environments, it is desirable to increase the speed to analyze
multiple people at once.

The Active Appearance Model (AAM) [21] is one of the most popular methods for
automatically detecting facial landmarks in thermal infrared images. AAM statistically
models the changes in face shape and overall facial appearance and aligns the face shape
with the model through nonlinear optimization. Kopaczka et al. conducted face alignment
in thermal infrared images using AAM based on intensity, Histogram of Oriented Gradients
(HOG), and Dense Scale Invariant Feature Transform (DSIFT) features [17,22]. However,
in general, AAM is expensive because it solves an exact optimization problem. It also
suffers from low robustness to poses, illumination, facial expression changes, and unknown
subjects that are not included in the training set [23].

To solve these problems, Cascaded Shape Regression (CSR) has been proposed for
face alignment in visible images [24–27]. In the CSR approach, facial landmark detection
is estimated by regression, and the solution is updated multiple times by a multi-stage
estimator to detect the facial landmarks. Face alignment using CSR is highly real-time. Ren
et al. [26] reported face alignment at more than 3000 FPS speed. Hence, it is expected that
CSR can be used for faster face alignment in thermal infrared images. However, no studies
have been reported on face alignment in thermal infrared images using CSR. Therefore, the
objective of this study was to verify the speed and robustness of face alignment in infrared
images using CSR. First, a CSR model was created. Next, we trained and evaluated the
CSR on the thermal infrared images acquired in our experiments. The results suggest that
face alignment using CSR is more robust and computationally faster than AAMs proposed
in the previous study, which is reported in this paper.

2. Cascaded Shape Regression

If xi, yi are the x, y coordinates of the ith facial landmark, then the face shape vector
represented by the M facial landmarks is S = [x1, y1, . . . , xM, yM]T. The cascaded shape
regression model is a model with a multi-stage structure estimator with T number of stages,
which predicts the face shape S(t) in a cascaded manner. Given the initial face shape S0 and
the input image I, the CSR model is updated by the estimator to find the shape difference
fraction ∆S(t) and update the solution. At stage t, S(t) and ∆S(t) are regressed as follows:

S(t) = S(t−1) + ∆S(t), (1)

∆S(t) = r(t)(I, S(t−1)) (2)

where t ∈ 1, . . . , T is the number of estimators corresponding to each stage of the CSR, and
r(t) is the estimator. The loss function is represented as follows:

arg min
r(t)

N

∑
i=1
|Ŝi − (S(t−1)

i + r(t)(Ii, S(t−1)
i ))|2 (3)

where Ŝ(t) is the ground’s true face shape, and N is the number of images for training.
In the CSR, training is performed in such a way that this loss function is minimized. In
this study, we estimated facial landmarks using the ensemble of regression tree learning
methods used by Vahid et al. [27]. Gradient boosting was used as the training estimator.
At each split node of the regression tree, the intensity difference sentence feature of two
pixels [25,28] is determined based on the threshold. To train each split node, 400 randomly
sampled features were computed.

3. Experiments

3.1. Experimental Methods

Experiments were conducted to acquire thermal infrared images of a face for training
a facial landmark detector. Seven subjects (five males and two females) aged 22–24 years
participated in the experiment. They were fully informed about the experiment and the
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purpose of the study before their participation. All participants signed a consent form.
The experimental system is shown in Figure 1. Thermal infrared images were captured
using infrared thermography (FLIR A615-model: A615, 45◦ field of view, FLIR Systems,
Oregon). The infrared camera had a resolution of 640 × 480 pixels and a temperature
resolution of less than 0.05 K. Infrared emissivity is the ratio of the thermal radiation from
the surface of an object to the radiation from a black body at the same temperature, given
by Stefan–Boltzmann’s law. In order to obtain accurate temperature measurements, it is
necessary to set the correct infrared emissivity of the surface of an object. In this study, the
infrared emissivity of the skin was set to ε = 0.98 [29]. The experimental protocol is shown
in Figure 2. Three distances between the subject and infrared thermography were 60 cm,
90 cm, and 120 cm (Figure 3). Each distance consisted of three recording intervals (Small,
Large, and Random). As shown in Figure 4, the subjects were asked to turn their heads
in nine directions (center, top center, top right, center right, bottom right, bottom center,
bottom left, center left, top left) for the Small and Large sections. To evaluate the effect of the
angle of face orientation on face alignment, subjects were asked to move their head angles
to 20 degrees and 45 degrees in the Small and Large conditions, respectively. To increase
the robustness of the face alignment, in the Random section, subjects were asked to move
their head in any direction and make any facial expression they wanted. Nothing other
than the subject’s body was recorded. The experiment was conducted in the experimental
room without convection. Thermal infrared images were taken 15 min after the subjects
entered the experimental room for thermal acclimation to the environmental temperature,
and the time to take thermal infrared images for each subject was less than 5 min. A total
of 609 thermal infrared images were obtained in this experiment. We manually annotated
68 landmarks for the obtained data according to the literature [30] and bounding boxes in
the face region.

60 cm, 90 cm, or 120 cm
Infrared camera

Subject

Figure 1. Experimental system. The distance between the subject and infrared camera was set at
three different distances: 60 cm, 90 cm, or 120 cm.

Small Large Random Small Large Random Small Large Random

(1) 60 cm (2) 90 cm (3) 120 cm

Figure 2. Experimental protocol.
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Figure 3. Examples of thermal infrared images acquired under three different distance conditions.
From left to right: 60 cm, 90 cm, and 120 cm.

Figure 4. Examples of thermal infrared images oriented in nine different directions.

3.2. Analysis Methods

The acquired images were flipped to the left and right for data augmentation. As a
result, 1218 images were created. To perform k-fold cross-validation (k = 7) using CSR,
we split the data of six subjects into training data and the data of the remaining subjects
into test data. All subjects’ data were used as test data. Unless otherwise specified, all
experiments were run with the following fixed parameter settings: the number of stages in
the cascade T = 10, tree depth F = 4, number of weak regressors K = 500, and a random
pair of pixels P = 400 used as the difference feature between two points. The average
coordinates of the facial landmarks in the training data were used as the initial shape.
The Normalized Point to Point Error (NPPE) introduced by Zhu et al. [31] was used as a
method to evaluate the estimation accuracy of the face alignment. The NPPEi of each ith
image is the following equation:

NPPEi = Ni

√
∑N

n=1[(xn,r − xn,g)2 + (yn,r − yn,g)2]

2N
, (4)

Ni =
1

1
2 (wi + hi)

(5)

where xn,r and yn,r are the coordinates of the estimated facial landmarks, xn,g and yn,g are
the coordinates of the correct facial landmarks, N is the number of facial landmarks, wi
is the width of the face, hi is the height of the face, and Ni is the reciprocal of the mean of
wi and hi. To compare the estimation accuracy of CSR models, we performed Intensity,
DSIFT, and HOG-based AAM methods that were effective in aligning faces in thermal
infrared images in previous studies [17,22]. Marciniak et al. [32] reported that the accuracy
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of face recognition in visible images is lower when the number of pixels in the face region
is small. To evaluate the effect of the number of pixels in the face region on face alignment,
the number of pixels per face width was calculated. To evaluate the computation time,
we measured the frames per second (FPS) of the face alignment of the test data for each
method. The specifications of the evaluation PC in this experiment were Intel Core i7-8700
CPU and 16GB RAM. Only one CPU core was used. The program was implemented in
C++ and Python.

4. Results

Table 1 shows the minimum, maximum, and mean values of the facial skin temper-
ature and the ambient temperature. The ambient temperature was almost the same for
all subjects in the experiment. Figure 5 shows the percentage of test images satisfying
a given NPPE evaluated with CSR and Intensity, DSIFT, and HOG-based AAM. It is
probably due to the problem that AAM is less robust to unknown subjects that are not
part of the training set [23]. The CSR method has the highest number of images below
0.05, which is an acceptable accuracy value for NPPE [33]. Figure 6 shows examples
of NPPE for face alignment. From Figure 6, it can be confirmed that the accuracy of
face alignment becomes worse when the NPPE is greater than 0.5. The CSR method
reached a higher total accuracy value. Figure 7 shows the mean value of NPPI of
the test images for each method. Figure 8 shows examples of face alignment using
each method. The mean NPPEs by CSR and conventional AAM were almost equal.
Conversely, the variation of NPPEs was the smallest for CSR. From Figure 8, it can
be confirmed that the accuracy of the face alignment of AAM becomes worse when
the face is not looking the front. This suggests that face alignment by CSR is more
robust than the AAM method and can be applied to face alignment for more varieties
of images.

Table 2 shows the FPS of each method: the FPS of the CSR model is over 80, which is
more than ten times larger than the AAM methods. The FPS of CSR was the largest, and
the FPS of Intensity, DSIFT, and HOG-based AAM were smaller in that order. DSIFT and
HOG-based AAMs are considered to have taken more time than Intensity-based AAM
because of the calculation of DSIFT and HOG features. It is suggested that face alignment
in thermal infrared images using CSR is highly real-time.

Table 1. Mean values ± SD of the minimum, maximum, and mean facial skin temperature. The
number of thermal infrared images for each subject was 87.

Subject Facial Skin Temperature/°C Ambient Temperature/°C
Minimum Maximum Mean

A 30.64 ± 0.22 34.27 ± 0.15 32.50 ± 0.13 24.42 ± 0.07
B 29.23 ± 0.28 33.76 ± 0.12 31.89 ± 0.22 24.38 ± 0.37
C 29.99 ± 0.20 33.67 ± 0.17 31.85 ± 0.17 24.46 ± 0.14
D 30.81 ± 0.17 34.13 ± 0.17 32.64 ± 0.19 24.02 ± 0.06
E 31.42 ± 0.16 34.18 ± 0.09 32.98 ± 0.09 24.33 ± 0.06
F 30.32 ± 0.33 34.05 ± 0.27 32.27 ± 0.25 24.44 ± 0.29
G 31.20 ± 0.32 34.15 ± 0.17 32.80 ± 0.22 24.11 ± 0.10
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Figure 5. The percentage of test images satisfying a given Normalized Point to Point Error (NPPE)
for each method.
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Figure 6. Examples of NPPE for each face alignment.
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Figure 7. The mean value of NPPE of the test images for each method. Error bars represent
standard deviations.
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Ground truth CSR AAM + Intensity AAM + HOG AAM + DSIFT

Figure 8. Examples of face alignment using Cascaded Shape Regression (CSR) and Intensity, Dense
Scale Invariant Feature Transform (DSIFT), and Histogram of Oriented Gradients (HOG)-based
Active Appearance Model (AAM).

Table 2. The frames per second (FPS) of each method.

Method FPS

CSR 83.3
AAM + Intensity 5.56

AAM + HOG 0.35
AAM + DSIFT 0.64

Figure 9 shows the results for each cascade stage for tree depth = 3, 4, 5, and 10
and Figure 10 shows examples of facial alignment using for tree depth = 3, 4, 5, and 10.
When the tree depth was 4, the accuracy of face alignment was the highest. When the
tree depth was 5 or 10, the model features were large, and overfitting to the training data
occurred, resulting in small accuracy. When the tree depth was 3, the model features were
small and under-fitted to the training data, resulting in small accuracy.
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Cascade stage
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Tree depth 3
Tree depth 4
Tree depth 5
Tree depth 10

Figure 9. The mean NPPE using CSR for each cascade stage for tree depth = 3, 4, 5, and 10.

Table 3 shows the mean number of pixels and mean NPPE of the face’s width for each
distance between the infrared thermography and the subject and Figure 11 shows examples
of face alignment for each distance. From Table 3 and Figure 11, the accuracy of the fitting
did not decrease with distance. In this experimental condition, differences in distance to
infrared thermography and the number of pixels of the face in the image did not affect
the face alignment estimates’ accuracy. In thermal measurements, one meter is known
to be an excellent standard to assure stable consistency [34]. It is suggested that the face
alignment can be done with high accuracy when the distance between the thermography



Int. J. Environ. Res. Public Health 2021, 18, 1776 8 of 10

and the person is between 60 and 120 cm. This satisfies the length of 1 m, which is the right
standard length for thermal measurements.

Ground truth Tree depth 3 Tree depth 4 Tree depth 5 Tree depth 10

Figure 10. Examples of facial alignment using CSR for each cascade stage for tree depth = 3, 4, 5,
and 10.

Figure 11. Examples of face alignment for each distance. The distances from the top are 60 cm, 90 cm,
and 120 cm.

Table 3. NPPE using CSR for each distance.

Distance/cm Pixels Per Face Width NPPE/%

60 184 ± 20 3.25 ± 1.99
90 126 ± 13 3.02 ± 1.71

120 97 ± 10 3.23 ± 1.47
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5. Conclusions

As mentioned in the introduction, the objective of this study was to conduct face
alignment in thermal infrared images using CSR. CSR is more robust than AAM in face
alignment in facial thermal images and can be applied to various types of images. The
FPS of face alignment using CSR is more than 80, and it can detect facial landmarks at
a high speed. Therefore, facial landmark detection by CSR may be useful for real-world
applications. However, the limitation of this study is the small sample size of 609 thermal
infrared images, and we have not dealt with thermal infrared images in the wild. In the
future, we plan to conduct studies using thermal infrared images of many more varieties
and conditions.

Author Contributions: Conceptualization, K.N., T.K., K.O. and A.N.; methodology, K.N., T.K., K.O.
and A.N.; software, K.N. and T.K.; validation, K.N. and T.K.; writing—original draft preparation,
K.N.; writing—review and editing, K.N. All authors have read and agreed to the published version
of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study was conducted according to the guidelines of the
Declaration of Helsinki, and approved by the ethics review board.

Informed Consent Statement: Informed consent was obtained from all subjects involved in the
study.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

AAM Active Appearance Model
CSR Cascaded Shape Regression
ROI Regions of Interest
HOG Histogram of Oriented Gradients
DSIFT Dense Scale Invariant Feature Transform
NPPE Normalized Point to Point Error
FPS Frames Per Second

References
1. Hall, T.; Lie, D.Y.; Nguyen, T.Q.; Mayeda, J.C.; Lie, P.E.; Lopez, J.; Banister, R.E. Non-contact sensor for long-term continuous vital

signs monitoring: A review on intelligent phased-array Doppler sensor design. Sensors 2017, 17, 2632. [CrossRef]
2. van den Heuvel, C.J.; Ferguson, S.A.; Dawson, D.; Gilbert, S.S. Comparison of digital infrared thermal imaging (DITI) with

contact thermometry: Pilot data from a sleep research laboratory. Physiol. Meas. 2003, 24, 717. [CrossRef] [PubMed]
3. Ahmadi, N.; McQuilkin, G.L.; Akhtar, M.W.; Hajsadeghi, F.; Kleis, S.J.; Hecht, H.; Naghvi, M.; Budoff, M. Reproducibility

and variability of digital thermal monitoring of vascular reactivity. Clin. Physiol. Funct. Imaging 2011, 31, 422–428. [CrossRef]
[PubMed]

4. Zaproudina, N.; Varmavuo, V.; Airaksinen, O.; Närhi, M. Reproducibility of infrared thermography measurements in healthy
individuals. Physiol. Meas. 2008, 29, 515. [CrossRef]

5. McCoy, M.; Campbell, I.; Stone, P.; Fedorchuk, C.; Wijayawardana, S.; Easley, K. Intra-examiner and inter-examiner reproducibility
of paraspinal thermography. PLoS ONE 2011, 6, e16535. [CrossRef]

6. Nilsson, A.L. Blood flow, temperature, and heat loss of skin exposed to local radiative and convective cooling. J. Investig. Dermatol.
1987, 88, 586–593. [CrossRef]

7. Ioannou, S.; Ebisch, S.; Aureli, T.; Bafunno, D.; Ioannides, H.A.; Cardone, D.; Manini, B.; Romani, G.L.; Galese, V.; Merla, A. The
autonomic signature of guilt in children: A thermal infrared imaging study. PLoS ONE 2013, 8, e79440. [CrossRef]

8. Ioannou, S.; Gallese, V.; Merla, A. Thermal infrared imaging in psychophysiology: Potentialities and limits. Psychophysiology 2014,
51, 951–963. [CrossRef]

9. Fernández-Cuevas, I.; Marins, J.C.B.; Lastras, J.A.; Carmona, P.M.G.; Cano, S.P.; García-Concepción, M.Á.; Sillero-Quintana,
M. Classification of factors influencing the use of infrared thermography in humans: A review. Phys. Technol. 2015, 71, 28–55.
[CrossRef]

http://dx.doi.org/10.3390/s17112632
http://dx.doi.org/10.1088/0967-3334/24/3/308
http://www.ncbi.nlm.nih.gov/pubmed/14509309
http://dx.doi.org/10.1111/j.1475-097X.2011.01037.x
http://www.ncbi.nlm.nih.gov/pubmed/21981452
http://dx.doi.org/10.1088/0967-3334/29/4/007
http://dx.doi.org/10.1371/journal.pone.0016535
http://dx.doi.org/10.1111/1523-1747.ep12470202
http://dx.doi.org/10.1371/journal.pone.0079440
http://dx.doi.org/10.1111/psyp.12243
http://dx.doi.org/10.1016/j.infrared.2015.02.007


Int. J. Environ. Res. Public Health 2021, 18, 1776 10 of 10

10. Lewis, G.F.; Gatto, R.G.; Porges, S.W. A novel method for extracting respiration rate and relative tidal volume from infrared
thermography. Psychophysiology 2011, 48, 877–887. [CrossRef] [PubMed]

11. Gault, T.; Farag, A. A fully automatic method to extract the heart rate from thermal video. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW), Portland, OR, USA, 23–28 June 2013; pp. 336–341.

12. Asano, H.; Sakamoto, N.; Nozawa, A.; Ide, H. Presumption oftransient awakening of driver by facial skin temperature. IEEJ
Trans. Electron. Inf. Syst. 2010, 130, 428–432. (In Japanese)

13. Bando, S.; Oiwa, K.; Nozawa, A. Evaluation of dynamics of forehead skin temperature under induced drowsiness. IEEJ Trans.
Electr. Electron. Eng. 2017, 12, S104–S109. [CrossRef]

14. Adachi, H.; Oiwa, K.; Nozawa, A. Drowsiness level modeling based on facial skin temperature distribution using a convolutional
neural network. IEEJ Trans. Electr. Electron. Eng. 2019, 14, 870–876.

15. Nakanishi, R.; Imai-Matsumura, K. Facial skin temperature decreases in infants with joyful expression. Infant Behav. Dev. 2008,
31, 137–144. [CrossRef] [PubMed]

16. Ebisch, S.J.; Aureli, T.; Bafunno, D.; Cardone, D.; Romani, G.L.; Merla, A. Mother and child in synchrony: Thermal facial imprints
of autonomic contagion. Biol. Psychol. 2012, 89, 123–129. [CrossRef]

17. Kopaczka, M.; Kolk, R.; Schock, J.; Burkhard, F.; Merhof, D. A thermal infrared face database with facial landmarks and emotion
labels. IEEE Trans. Instrum. Meas. 2019, 68, 1389–1401. [CrossRef]

18. Engert, V.; Merla, A.; Grant, J.A.; Cardone, D.; Tusche, A.; Singer, T. Exploring the use of thermal infrared imaging in human
stress research. PLoS ONE 2014, 9, e90782. [CrossRef] [PubMed]

19. Sonkusare, S.; Ahmedt-Aristizabal, D.; Aburn, M.J.; Nguyen, V.T.; Pang, T.; Frydman, S.; Denman, S.; Fookes, C.; Breakspear, M.;
Guo, C.C. Detecting changes in facial temperature induced by a sudden auditory stimulus based on deep learning-assisted face
tracking. Sci. Rep. 2019, 9, 1–11. [CrossRef] [PubMed]

20. Masaki, A.; Nagumo, K.; Bikash, L.; Oiwa, K.; Nozawa, A. Anomaly detection in facial skin temperature using variational
autoencoder. Artif. Life Robot. 2020, 26, 122–128. [CrossRef]

21. Cootes, T.F.; Edwards, G.J.; Taylor, C.J. Active appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 2001, 23, 681–685.
[CrossRef]

22. Kopaczka, M.; Acar, K.; Merhof, D. Robust Facial Landmark Detection and Face Tracking in Thermal Infrared Images using Active
Appearance Models. In Proceedings of the 11th International Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications (VISIGRAPP 2016), Rome, Italy, 27–29 February 2016; pp. 150–158.

23. Gross, R.; Matthews, I.; Baker, S. Generic vs. person specific active appearance models. Image Vis. Comput. 2005, 23, 1080–1093.
[CrossRef]

24. Dollár, P.; Welinder, P.; Perona, P. Cascaded pose regression. In Proceedings of the IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR 2010), San Francisco, CA, USA, 13–18 June 2010; pp. 1078–1085.

25. Cao, X.; Wei, Y.; Wen, F.; Sun, J. Face alignment by explicit shape regression. Int. J. Comput. Vis. 2014, 107, 177–190. [CrossRef]
26. Ren, S.; Cao, X.; Wei, Y.; Sun, J. Face alignment at 3000 fps via regressing local binary features. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR 2014), Columbus, OH, USA, 24–27 June 2014; pp. 1685–1692.
27. Kazemi, V.; Sullivan, J. One millisecond face alignment with an ensemble of regression trees. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition (CVPR 2014), Columbus, OH, USA, 24–27 June 2014; pp. 1867–1874.
28. Burgos-Artizzu, X.P.; Perona, P.; Dollár, P. Robust face landmark estimation under occlusion. In Proceedings of the IEEE

International Conference on Computer Vision (ICCV 2013), Sydney, Australia, 1–8 December 2013; pp. 1513–1520.
29. Steketee, J. Spectral emissivity of skin and pericardium. Phys. Med. Biol. 1973, 18, 686. [CrossRef] [PubMed]
30. Sagonas, C.; Tzimiropoulos, G.; Zafeiriou, S.; Pantic, M. 300 faces in-the-wild challenge: The first facial landmark localization

challenge. In Proceedings of the IEEE International Conference on Computer Vision Workshop (ICCVW), Sydney, Australia,
2–8 December 2013.

31. Zhu, X.; Ramanan, D. Face detection, pose estimation, and landmark localization in the wild. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition (CVPR 2012), Providence, Rhode Island, 16–21 June 2012; pp. 2879–2886.

32. Marciniak, T.; Chmielewska, A.; Weychan, R.; Parzych, M.; Dabrowski, A. Influence of low resolution of images on reliability of
face detection and recognition. Multimed. Tools Appl. 2015, 74, 4329–4349. [CrossRef]

33. Zafeiriou, S.; Trigeorgis, G.; Chrysos, G.; Deng, J.; Shen, J. The menpo facial landmark localisation challenge: A step towards the
solution. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Honolulu,
HI, USA, 21–27 July 2017; pp. 170–179.

34. Ivanitsky, G.R.; Khizhnyak, E.P.; Deev, A.A.; Khizhnyak, L.N. Thermal imaging in medicine: A comparative study of infrared
systems operating in wavelength ranges of 3–5 and 8–12 um as applied to diagnosis. Dokl. Biochem. Biophys. 2006, 407, 59–63.
[CrossRef]

http://dx.doi.org/10.1111/j.1469-8986.2010.01167.x
http://www.ncbi.nlm.nih.gov/pubmed/21214587
http://dx.doi.org/10.1002/tee.22423
http://dx.doi.org/10.1016/j.infbeh.2007.09.001
http://www.ncbi.nlm.nih.gov/pubmed/17983661
http://dx.doi.org/10.1016/j.biopsycho.2011.09.018
http://dx.doi.org/10.1109/TIM.2018.2884364
http://dx.doi.org/10.1371/journal.pone.0090782
http://www.ncbi.nlm.nih.gov/pubmed/24675709
http://dx.doi.org/10.1038/s41598-019-41172-7
http://www.ncbi.nlm.nih.gov/pubmed/30894584
http://dx.doi.org/10.1007/s10015-020-00634-2
http://dx.doi.org/10.1109/34.927467
http://dx.doi.org/10.1016/j.imavis.2005.07.009
http://dx.doi.org/10.1007/s11263-013-0667-3
http://dx.doi.org/10.1088/0031-9155/18/5/307
http://www.ncbi.nlm.nih.gov/pubmed/4758213
http://dx.doi.org/10.1007/s11042-013-1568-8
http://dx.doi.org/10.1134/S1607672906020049

	Introduction
	Cascaded Shape Regression
	Experiments
	Experimental Methods
	Analysis Methods

	Results
	Conclusions
	References

