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Abstract

Autophagy is a catabolic mechanism to degrade cellular components to maintain cellular

energy levels during starvation, a condition where PPARα may be activated. Here we report

a reduced autophagic capacity in the liver following chronic activation of PPARα with fenofi-

brate (FB) in mice. Chronic administration of the PPARα agonist FB substantially reduced

the levels of multiple autophagy proteins in the liver (Atg3, Agt4B, Atg5, Atg7 and beclin 1)

which were associated with a decrease in the light chain LC3II/LC3I ratio and the accumula-

tion of p62. This was concomitant with an increase in the expression of lipogenic proteins

mSREBP1c, ACC, FAS and SCD1. These effects of FB were completely abolished in

PPARα-/- mice but remained intact in mice with global deletion of FGF21, a key downstream

mediator for PPARα-induced effects. Further studies showed that decreased the content of

autophagy proteins by FB was associated with a significant reduction in the level of FoxO1,

a transcriptional regulator of autophagic proteins, which occurred independently of both

mTOR and Akt. These findings suggest that chronic stimulation of PPARα may suppress

the autophagy capacity in the liver as a result of reduced content of a number of autophagy-

associated proteins independent of FGF21.

Introduction

Autophagy is a process to degrade and recycle dysfunctional cellular components via the lyso-

some in order to maintain cellular homeostasis [1]. It is also important in maintaining energy

during periods of starvation. Autophagy is regulated by the nutrient status of the cell via a

number of nutrient-sensitive signalling pathways such as mammalian target of rapamycin

(mTOR) and AMP-activated protein kinase (AMPK) pathways [2–4]. Forkhead box O (FoxO)

family proteins also play an important role by controlling the expression of a number of autop-

hagy related genes [3, 5, 6]. Another transcription factor that is critical for adaptive metabolism

to starvation is peroxisome proliferator-activated receptor α (PPARα). Under physiological
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conditions, PPARα is activated by mobilised fatty acids (FAs) but can also be activated

pharmacologically by fibrates, a class of lipid-lowering drugs [7].

PPARα is highly expressed the liver and when activated it up-regulates genes for FA oxida-

tion and gluconeogenesis to provide fuels for the body [7]. As expected from its role in pro-

moting catabolism, recent studies have shown that hepatic autophagy is activated via PPARα
during fasting or after short-term treatment with PPARα agonists both in vivo and in vitro in

hepatocytes [8, 9]. Interestingly, it has been suggested that an increased autophagy activity

may be gradually subsided or even reduced over time under certain conditions [10]. Therefore,

the first aim of the present study was to examine the expression of autophagic proteins in the

liver of both wild-type (PPARα+/+) and PPARα-/- mice after chronic administration of the

PPARα activator fenofibrate (FB). As lipogenic proteins are up-regulated during PPARα acti-

vation [11] or by inhibition of autophagy [12], our second aim was to investigate the relation-

ship of changes in autophagic proteins with the expression of lipogenic proteins.

It has been suggested that fibroblast growth factor 21 (FGF21) is an important mediator for

the physiological effects initiated by PPARα activation [13–16] and this cytokine is up-regu-

lated along with autophagy-related gene 5 (Atg5) [17]. Thus, our third aim was to determine

whether FGF21 is required for PPARα to exert its effects on the expression of autophagic pro-

teins using FGF21-/- mice. Finally, we examined the key signalling pathways that have been

suggested to regulate autophagy during the chronic activation of PPARα.

In this report we show that chronic activation of PPARα by FB reduces the expression of

autophagic proteins in the liver in a manner that is entirely independent of FGF21. PPARα-

induced suppression of autophagic proteins is possibly mediated by a decrease in FoxO1

expression rather than through changes in the activity of mTOR or Akt. These findings suggest

a need to further investigate the dynamic changes of hepatic autophagy during PPARα activa-

tion and associated implications for lipid metabolism.

Materials and methods

Animals

The studies were conducted in male mice starting at an age of 10–12 weeks, including wild-

type (PPARα+/+) and PPARα-/- on the background of C57BL/6N, and wild-type (FGF21+/+)

and FGF21-/- mice on the background of C57BL/6J originally obtained from Jackson Laborato-

ries (Sacramento, CA, US). The mice were housed at 23±1˚C in a 12-h light/dark cycle with

free access to water and standard rodent diet consisting of 70% calories as starch, 10% calories

as fat and 20% calories from proteins (Specialty Feeds, Australia). After 1–2 weeks of acclimati-

zation, mice were fed the standard diet in the absence or presence of the PPARα agonist FB for

3 weeks. FB (Sigma-Aldrich, Australia) was administered as an additive to diet at a lower dose

(50 mg/kg/day) relative to our previous studies to minimize the possible influence of body

weight reduction. Body weight and food intake were monitored daily. Blood samples were

taken from the tail veil in week 3 after 5–7 hours of fasting and the mice were culled by cervical

dislocation. Liver was removed quickly (<5 seconds), weighed on a balance and immediately

freeze-clamped for storage at -80˚C for subsequent analysis. All animal experiments were

approved by the Animal Ethics Committee of the RMIT University or the University of Hong

Kong, where animal studies were performed.

Determination of circulating levels of glucose and FGF21

Plasma glucose levels of PPARα-/- mice were determined by glucose assay according to the

manufacturer’s protocol (Sigma-Aldrich, Australia). The concentrations of plasma FGF21 in

both FGF21+/+ and FGF21-/- were measured by an ELISA kit (University of Hong Kong, Hong

Chronic stimulation of PPARα on autophagic proteins in liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0173676 April 19, 2017 2 / 14

https://doi.org/10.1371/journal.pone.0173676


Kong) during FB induced 24 hours of fasting according to the manufacturer’s introductions

[15].

Extraction of hepatic triglycerides contents

Liver triglycerides (TG) were extracted by the method of Folch and determined by a TG

GPO-PAP kit (Roche Diagnostic, Australia) as previously described [18]. Briefly, 30–40mg of

each liver sample was homogenized in 4 ml of chloroform/methanol (2:1) using a glass pestle

tissue grinder. After the homogenization, the samples were rotated at room temperature over-

night to ensure the complete solubilisation of the liver TG. The next day, 2 ml of 0.6% NaCl

was added to each sample and followed by centrifugation to separate the aqueous from the

organic phases. The lower chloroform layer contained liver TG were carefully transferred into

a glass vial and dried completely under the nitrogen or air at 45˚C. The extract was reconsti-

tuted in absolute ethanol for the determination TG using a POLARstar microplate reader

(BMG Labtech, Germany).

Immunoblotting analysis

Immunoblotting analysis was performed as described in our recent reports [11, 18]. Briefly,

liver tissues were homogenized in ice-cold RIPA lysis buffer supplemented with protease

inhibitor cocktail and phosphatase inhibitor cocktail (Sigma Aldrich Pty Ltd, Australia) and

DL-dithiothreitol. Protein samples were then denatured in a SDS sample buffer. Proteins of

interest were analyzed by immunoblotting using specific antibodies from Cell Signaling

(USA) unless indicated otherwise. Key autophagy proteins included Atg3, Atg4B, Atg5,

Atg7, nucleoporin p62 (p62), light chain 3A/B (LC3A/B) and beclin-1, phosphor- (Ser2448)

and total- mTOR, phosphor- (Thr389) and total- S6K, phosphor- (Thr37/46) and total-

4EBP. For investigating the mechanism pathway of FoxO1: phospho- and total- FoxO1, ace-

tyl (D-19) FoxO1 (Santa Cruz, USA), sirtuin-silent mating type information regulation 2

homolog (SIRT1), phosphor- (Ser473) and total- Akt, phosphor- (Ser9) and total- glycogen

synthase kinase 3 β (GSK3β). Key lipogenic enzymes were examined using specific antibod-

ies including matured form of mSREBP-1c, acetyl-CoA carboxylase (ACC), fatty acid

synthase (FAS) and stearoyl-CoA desaturase (SCD1) (Santa Cruz, USA). Acyl-coenzyme A

oxidase 1 (ACOX1) (Santa Cruz, USA) was determined to indicate PPARα action and perox-

isomal FA oxidation. Proteins were analyzed and normalized against the housekeeper glycer-

aldehyde 3-phophate dehydrogenase (GAPDH) and/or α-Tubulin, or its specific total form

of protein. Immunolabeled proteins were visualized using a ChemiDoc densitometer and

quantified by densitometry of Image Lab software (Bio-Rad Laboratories, USA) with inclu-

sion of representative images.

Quantitative RT-PCR

RNA was exacted the liver tissue using TRIzol Reagent (Invitrogen, Australia) and reverse

transcribed using a high capacity cDNA reverse transcription kit (Applied Biosystems, Aus-

tralia) according to the manufacturer’s instructions. Primers (GeneWorks, Australia) and

SYBER green supermix (Bio-Rad, USA) were used for quantitative real time PCR. The

primer sequences for FoxO1 were: forward 5’-TTCAATTCGCCACAATCTGTCC-3’ and

reverse 5’-GGGTGATTTTCCGCTCTTGC-3’. All reactions were performed on QIAGEN

Rotor-Gene Q PCR system (Germany). 18s was used as the normalizing control gene.
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Statistical analyses

Data are presented as means ± SEM. One-way analysis of variance (ANOVA) or the t-tests

were used for comparison of relevant groups as needed. When significant differences were

found from an ANOVA test, the Tukey-Kramer post-hoc multiple comparisons test was

applied. Differences at p<0.05 were considered to be statistically significant.

Results

Effects of FB on whole-body parameters in PPARα-/- and FGF21-/- mice

PPARα-/- mice were approximately 16% heavier compared with PPARα+/+ mice at the start of

the experiment (25.5 ± 0.8 vs. 21.5 ± 0.2, n = 12, p<0.01). As shown in Table 1, plasma levels

of glucose were 40% lower in untreated PPARα-/- mice (p<0.01 vs. untreated PPARα+/+).

Chronic administration of FB did not influence the body weight gain or food intake in either

PPARα+/+ or PPARα-/- mice. Consistent with our previous reports [11, 18], PPARα+/+ mice

treated with FB displayed a 70% increase in liver weight (p<0.01 vs. untreated PPARα+/+

mice) but this effect were not detected in PPARα-/- mice. In comparison, FGF21-/- mice were

8% lighter compared with the age-matched FGF21+/+ mice at the start of the experiment

(21.5 ± 0.2 vs. 25.5 ± 0.8, n = 12, p<0.01, Table 2). In both of the FGF21+/+ and FGF21-/- mice,

chronic administration of FB increased liver weight by ~80% (p<0.01 vs. corresponding

untreated mice) but had no effect on body weight gain, food intake or plasma glucose.

Effects of FB on hepatic lipid metabolism and autophagic proteins in

PPARα+/+ and PPARα-/- mice

Chronic administration of FB had no significant effect on hepatic triglyceride (TG) content in

either PPARα+/+ or PPARα-/- mice (Fig 1A). In PPARα+/+ mice, FB up-regulated the protein

expression of ACOX1 (~2.2-fold, Fig 1B and 1C), a PPARα responsive enzyme catalysing FA

oxidation in peroxisomes. The levels of lipogenic proteins mature SREPB-1c, ACC, FAS and

SCD1 were increased by 2–3 fold (p<0.01). However, these increases were abolished in

PPARα-/- mice, confirming the requirement of PPARα for FB to up-regulate the lipogenic

pathway.

Table 1. Metabolic responses to chronic activation of PPARαwith FB in PPARα-/- mice.

PPARα+/+ PPARα+/+-FB PPARα-/- PPARα-/--FB

Body weight (g)

Basal

After

Body weight gain (g)

21.5 ± 0.1

24.2 ± 0.3

2.7 ± 0.2

21.5 ± 0.2

24.4 ± 0.4

2.9 ± 0.2

26.4 ± 0.9††

28.7 ± 1.1††

2.3 ± 0.2

24.5 ± 1.1

26.3 ± 1.8

1.8 ± 0.7

Food intake (g/day/mouse)

Basal

During treatment

3.2 ± 0.1

3.3 ± 0.2

3.2 ± 0.1

3.2 ± 0.1

4.1 ± 0.2

4.8 ± 0.2

5.0 ± 0.2

5.3 ± 0.2

Liver weight (g) 0.9 ± 0.0 1.6 ± 0.1** 1.1 ± 0.0 1.2 ± 0.1

Liver weight/Body weight (%) 4.0 ± 0.0 7.0 ± 0.0** 4.0 ± 0.0 5.0 ± 0.0

Plasma glucose level 10.0 ± 0.4 9.3 ± 0.3 6.9 ± 0.2†† 6.0 ± 0.2††

PPARα+/+ and PPARα-/- mice were administered with fenofibrate (FB, 50 mg/kg/day in diet) for 3 weeks. Data are means ± SEM (n = 5–6 mice/group).

* p<0.05,

** p<0.01 vs. vehicle control;
†† p<0.01 vs. corresponding wild-type.

https://doi.org/10.1371/journal.pone.0173676.t001
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In PPARα+/+ mice, chronic administration of FB reduced the protein levels of Atg3, Atg4B,

Atg5, Atg7 and beclin1 by more than 50% (all p<0.01, Fig 2), suggesting a decreased autop-

hagy capacity. The LC3II to LC3I ratio (indicative of autophagosome formation) was inhibited

by ~50% (due to the accumulation of LC3I) whereas p62 protein (indicator of non-degraded

aggregates) was accumulated by ~70%. In the liver of PPARα-/- mice, there were increases in

the expression of beclin 1 (~40%), Agt5 (~80%) and Agt7 (~60%) compared to untreated

PPARα+/+ mice (all p<0.05) but other measured autophagic proteins were similar. However,

chronic administration of FB in PPARα-/- mice had no effects on the level of autophagic pro-

teins, indicating the requirement of PPARα activation for FB to mediate the effect of FB to

reduce the level of autophagic proteins.

Effects of FB on hepatic lipid metabolism and autophagic proteins in

FGF21+/+ and FGF21-/- mice

We next investigated whether or not FGF21 may be required for the effects of FB on those

lipogenic and autophagic proteins. In FGF21-/- mice, fasting-induced increase in plasma levels

of FGF21 was completely diminished (Fig 3A), confirming the lack of FGF21 after its deletion.

While liver TG content was not affected (Fig 3B) after chronic administration of FB, the effect

of FB in increasing ACOX1 protein was significantly enhanced in FGF21-/- mice (p<0.05 vs.

FB-treated FGF21+/+ mice, Fig 3C). Despite this, the effects of FB to up-regulate mSREPB-1c,

ACC, FAS and SCD1 were similar in FGF21-/- mice compared to FGF21+/+ mice. Atg3, Atg4B,

Atg5, Atg7 and beclin1 were reduced (by more than 50%) along with an increase in p62

(2-fold) to the similar extent in both FGF21+/+ and FGF21-/- mice after chronic administration

of FB (Fig 4). These results suggest that FGF21 is not required for PPARα-induced expression

of proteins in the lipogenic and autophagic pathways in the liver.

Effects of FB on the mTOR and insulin signalling pathways in PPARα+/+

and PPARα-/- mice

We next examined the effects of FB on mTOR and insulin signalling in both PPARα+/+ and

PPARα-/- mice as the activation of these pathways can inhibit autophagy activity. In PPARα+/+

mice, FB inhibited the phosphorylation of mTOR (by ~20%) and its downstream effectors S6K

Table 2. Metabolic responses to chronic activation of PPARαwith FB in FGF21-/- mice.

FGF21+/+ FGF21+/+-FB FGF21-/- FGF21-/--FB

Body weight (g)

Basal

After

Body weight gain (g)

25.9 ± 1.4

29.5 ± 1.3

3.6 ± 0.1

25.1 ± 0.5

29.5 ± 0.6

4.4 ± 0.1

21.1 ± 1.1†

24.3 ± 1.2†

3.2 ± 0.1

22.0 ± 1.0†

25.2 ± 1.0†

3.2 ± 0.0

Food intake (g/day/mouse)

Basal

During treatment

4.2 ± 0.2

4.4 ± 0.2

4.1 ± 0.1

4.2 ± 0.1

3.8 ± 0.2

3.9 ± 0.1

4.1 ± 0.2

4.0 ± 0.2

Liver weight (g) 1.2 ± 0.0 2.1 ± 0.2** 1.1 ± 0.1 2.0 ± 0.1*

Liver weight/Body weight (%) 4.0 ± 0.3 7.2 ± 0.7* 4.4 ± 0.2 8.0 ± 0.2**

Blood glucose level 12.2 ± 1.6 10.5 ± 1.2 12.6 ± 1.8 13.2 ± 1.7††

FGF21+/+ and FGF21-/- mice were administered with fenofibrate (FB, 50 mg/kg/day in diet) for 3 weeks. Data are means ± SEM (n = 5–6 mice/group).

* p<0.05,

** p<0.01 vs. vehicle control;
† p<0.05,
†† p<0.01 vs. corresponding wild-type.

https://doi.org/10.1371/journal.pone.0173676.t002

Chronic stimulation of PPARα on autophagic proteins in liver

PLOS ONE | https://doi.org/10.1371/journal.pone.0173676 April 19, 2017 5 / 14

https://doi.org/10.1371/journal.pone.0173676.t002
https://doi.org/10.1371/journal.pone.0173676


(by ~65%) and 4EBP1 (~50%) (all p<0.05) (Fig 5). The phosphorylation of Akt was signifi-

cantly inhibited with a similar trend of change for GSK3β. However, these effects by FB were

all abolished in PPARα-/- mice. These results suggest that the changes in the expression of

autophagic proteins by PPARα activation with FB are not due to the activation of the mTOR

or insulin signalling pathway.

Effects of FB on FoxO1, SIRT1 and HDAC4 in PPARα+/+ and PPARα-/-

mice

We next investigated whether the reduced autophagic proteins after chronic administration of

FB may be mediated by FoxO1, a critical transcription factor regulating autophagic proteins.

In PPARα+/+ mice, the expression of FoxO1 was markedly reduced (by ~60%) by the activa-

tion of PPARα with FB (p<0.01, Fig 6A). This reduction was associated with increases in the

ratios of both p-FoxO1/FoxO1 (~1.5 fold) and Ac-FoxO1/Foxo1 (~2 fold). However, the

expression of FoxO1 mRNA of was not altered by FB treatment (Fig 6B). Concomitant with

the increased acetylation of FoxO1, the level of SIRT1 (a Class III deacetylase) was reduced

Fig 1. Effects of FB on hepatic TG content and the lipogenic pathway in PPARα+/+ and PPARα-/- mice.

Fenofibrate (+ FB) was administered to PPARα+/+ and PPARα-/- mice on the background of C57BL/6N at a

dose (50 mg/kg/day) for 3 weeks. (A) Effects on triglyceride (TG) content. (B) Representative images and (C)

Quantification of Western blots for ACOX1 (peroxisomal acyl-CoA oxidase 1, PPARα activation marker) and

lipogenic proteins: mSREBP1c (matured form of sterol regulatory element-binding protein 1 c), ACC (acetyl-

CoA carboxylase), FAS (fatty acid synthase) and SCD1 (stearoyl-CoA desaturase 1). ** p<0.01 vs. control

(-FB); n.s. not statistically significant. n = 5–6/group.

https://doi.org/10.1371/journal.pone.0173676.g001
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(~60%) and the phosphorylation of histone deacetylase 4 (HDAC4, a Class I deacetylase) was

decreased (~70%) (Fig 6C). In PPARα-/- mice, all of these effects of FB were abolished, indicat-

ing that these observed changes were entirely dependent upon PPARα.

Discussion

The present study investigated the effect of chronic activation of PPARα on liver autophagy in

mice and the results revealed several novel findings. Firstly, chronic administration of FB

PPARα-dependently down-regulate multiple autophagic proteins while up-regulating lipo-

genic proteins. Secondly, these PPARα-dependent effects were entirely independent of FGF21,

a key downstream mediator of PPARα. Thirdly, PPARα-induced the reductions in autophagic

proteins was associated with a reduction in FoxO1 (master transcriptional factor for

Fig 2. Effects of FB on hepatic autophagic proteins in PPARα+/+ and PARα-/- mice. Experiments were

conducted as described in Fig 1. (A) Representative of images and (B) quantification of the Western blots for

key autophagic proteins. Atg3 (autophagy-related gene protein 3), Atg4B (autophagy-related gene protein

4B), Atg5 (autophagy-related gene protein 5), Atg7 (autophagy-related gene protein 7), LC3 (microtubule-

associated protein light chain 3) and p62 (polyubiquitin-binding protein p62). * p<0.05, ** p<0.01 vs control

(-FB); † p<0.05, †† p<0.01 vs untreated PPARα+/+ mice; n.s. not statistically significant. n = 5–6/group.

https://doi.org/10.1371/journal.pone.0173676.g002
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autophagic proteins). These findings suggest that chronic activation of PPARα may reduce the

capacity for autophagy in the liver by reducing autophagic proteins via FoxO1 to influence

hepatic lipid metabolism.

PPARα plays an important role in regulating a wide range of metabolic effects in the liver.

Under physiological conditions, it is activated by elevated FAs to promote FA oxidation by up-

regulating enzymes in mitochondria and peroxisomes including ACOX1 [11, 19]. It has been

recently reported that short-term (24–48 hrs) activation of PPARα in primary hepatocytes

increase autophagic activity [9]. However, the effect of long-term activation of PPARα on

autophagy is not clear. The present study revealed that chronic administration of the PPARα
agonist FB down-regulates the expression of multiple autophagic proteins (i.e. Atg3, Atg4B,

Atg5, Atg7 and beclin1). Along with this, autophagic activity may be compromised as sug-

gested by the reduced LC3II/LC3I ratio and accumulation of p62, a polyubiquitin-binding pro-

tein p62 (SQSTM1) degraded by autophagy [1, 20]. These effects are specific to activation of

PPARα (indicated by increased ACOX1) because they are completely abolished in PPARα-/-

mice. These results lead us to suggest that persistent stimulation of PPARα may result in a neg-

ative feedback mechanism to down-regulate autophagic proteins in the liver. Consistent with

this notion, some autophagic proteins (beclin 1, Agt5 and Agt7) were found to be increased in

PPARα-/- in the absence of FB, suggesting a regulation of PPARα on the expression of autop-

hagic proteins under physiological conditions.

Fig 3. Effects of FB on hepatic TG content and lipogenic proteins in FGF21+/+ and FGF21-/- mice. (A)

Plasma levels of FGF21 in response to fasting. For B and C, FB was administered to FGF21+/+ and FGF21-/-

mice on the background of C57BL/6J at a dose (50 mg/kg/day) for 3 weeks. (B) Liver TG content. (C)

Representative images and quantification of the Western blots for ACOX1, mSREBP1c, ACC, FAS and

SCD1. * p<0.05, ** p<0.01 vs control (-FB); n.s. not statistically significant, n = 5–6/group.

https://doi.org/10.1371/journal.pone.0173676.g003
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Our previous work showed that chronic administration of FB promotes de novo lipogenesis

in the liver by up-regulating lipogenic proteins in mice in the presence of PPARα [18]. The

results from the PPARα-/- mice in the present study confirmed that the up-regulation of lipo-

genic proteins in response to FB is mediated specifically by PPARα. It has been shown that an

inhibition of autophagy can lead to increased de novo lipogenesis such as in high fructose feed-

ing [12]. Similarly, there is an inverse relationship of autophagic activity with de novo lipogene-

sis in response to chronic activation of PPARα. The results from this study suggest that the

altered autophagy by chronic activation of PPARα may also impact on de novo lipogenesis in

the liver.

PPARα is known to play a critical role in promoting hepatic gluconeogenesis and FA oxida-

tion mediated by FGF21 during starvation [15, 21] where autophagy activity is also altered.

However, the observed changes in autophagic proteins (Atg3, Atg4B, Atg5, Atg7, beclin1, LC3

and p62) and lipogenic proteins (mSREBP1, ACC, FAS and SCD1) by chronic activation

PPARα with FB remained intact in FGF21-/- mice. These findings indicate that PPARα-

induced expressions of autophagic and lipogenic proteins are independent of its downstream

mediator FGF21.

Autophagy activity can be regulated by the mTOR pathway [2–4]. However, chronic activa-

tion of PPARα with FB actually inhibits the mTOR pathway (indicated by reduced pmTOR,

Fig 4. Effects of FB on the content of autophagic proteins in the liver of FGF21+/+ and FGF21-/- mice.

FGF21+/+ and FGF21-/- mice were administrated with FB for 3 weeks as described in the methods. The liver

samples were collected for Western blots for autophagic proteins including Atg3, Atg4B, Atg5, Atg7, Beclin-1,

LC3 and p62. * p<0.05; ** p<0.01 vs group (- FB), n = 5–6/group.

https://doi.org/10.1371/journal.pone.0173676.g004
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pS6K and p4EBP1). Because mTOR can be activated by the stimulation of insulin signalling

[22, 23], we examined insulin signalling and found that the activity of pAkt and pGSK3β were

decreased by chronic stimulation of PPARα similarly to our recent reports [11, 18]. These

results together indicate that PPARα-mediated down-regulation of autophagic proteins cannot

be attributed to the mTOR pathway. Such interpretation agrees with the notion that the consti-

tutive activity of autophagy is insensitive to the mTOR pathway [10].

FoxO1 is a master transcription factor controlling the expression of autophagy proteins [3,

5, 6]. Interestingly our results showed the level of FoxO1 was markedly reduced following

chronic activation of PPARα as previously reported [24], suggesting that the down-regulation

of autophagic proteins is possibly due to the inhibition of FoxO1. FoxO1 is degraded once

translocated to the cytosol from the nucleus once phosphorylation and acetylation [5, 6].

Indeed, the reduction in FoxO1 protein level was associated with increases in its phosphoryla-

tion and acetylation but there was no change in the mRNA expression of FoxO1. Thus, we

speculate that the reduced FoxO1 content is due to an increased degradation promoted by its

phosphorylation and/or acetylation. It has been suggested that FoxO3 may also induce autop-

hagy by controlling the transcription of LC3 and Bnip3 [25, 26]. Additional studies are war-

ranted to investigate the role of FoxO3 in PPARα-induced changes in the expression of

autophagic proteins in the liver. However, we do not rule out the direct effect on autophagy

proteins (including the degradation of autophagic proteins) from PPARα because the

Fig 5. Effects of FB on the autophagy upstream pathways in PPARα+/+ and PARα-/- mice. Liver samples

were collected after 3 weeks of FB administration for Western blotting. (A) Effects of FB on key proteins of the

mTOR pathway: mTOR (mammalian target of rapamycin), S6K (P70S6 serine/threonine kinase), 4EBP1

(eukaryotic translation initiation factor 4E-biniding protein). (B) Effects of FB on key proteins the insulin

signaling pathway: Akt (protein kinase B) and GSK3β (glycogen synthase kinase 3 β). * p<0.05, ** p<0.01

control (-FB); n.s. not statistically significant, n = 5–6/group.

https://doi.org/10.1371/journal.pone.0173676.g005
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regulation of autophagy genes is multifactorial. The present study focused on the chronic effect

of PPARα activation (3 weeks) as opposed to acute effect reported by Lee et al [9] and Jiao

et al. [8]. The different time points to capture the dynamic changes in autophagy during

PPARα activation may also contribute to the discrepancy.

Several recent studies suggest that an increase in the acetylation of FoxO1 may result from

the inhibition of deacetylases [27, 28]. Our recent work showed that the acetylation of FoxO1

can be increased as a result of the suppression of the deacetylases SIRT1 and HDAC4 [29]. In

the present study, level of SIRT1 and HDAC4 phosphorylation were reduced chronic activa-

tion of PPARα. As deacetylase activity is a mechanism to retain FoxO1 in the nucleus of hepa-

tocytes [30], our findings from this study suggest that the chronic activation of PPARα may

promote the acetylation FoxO1 via suppressing of SIRT1 and HDAC4 as a mechanism con-

tributing to the degradation of FoxO1.

In summary, the present study suggests that chronic activation of PPARα decreases the

autophagic capacity in the liver by reducing multiple autophagic proteins while increasing

Fig 6. Effects of FB on FoxO1 and SIRT1 in PPARα+/+ and PARα-/- mice. Liver samples were collected

after 3 weeks of FB administration. (A) Effects on the content, phosphorylation and acetylation (Ac) of FoxO1

the protein level. (B) Effects on the level of mRNA of FoxO1. (C) Effects on deacetylases, SIRT1 (silent

mating type information regulation 2 homolog or NAD-dependent deacetylase sirtuin-1) and HDAC4 (histone

deacetylases 4). * p<0.05, ** p<0.01 vs control (-FB); n.s. not statistically significant; n = 5–6/group.

https://doi.org/10.1371/journal.pone.0173676.g006
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lipogenic proteins. These changes are independent of the PPARα downstream mediator

FGF21 and the mTOR pathway. The reduction in autophagic proteins may be due to a down-

regulation due to reduction in FoxO1. The suppression of SIRT1 and HDAC4 by chronic acti-

vation of PPARα may contribute to the acetylation of FoxO1. These findings may help explain

why chronic activation of PPARα fails to reduce hepatic steatosis in high fat fed mice despite

increased FA oxidation [11, 31]. As the fibrate class drugs are chronically used in clinics, the

observations from this study suggest a need to consider their potentially impact on level of

autophagic proteins.
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