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Abstract: Non-communicable diseases (NCDs) sauch as diabetes, obesity and cardiovascular diseases
are rising rapidly in all countries world-wide. Environmental maternal factors (e.g., diet, oxidative
stress, drugs and many others), maternal illnesses and other stressors can predispose the newborn
to develop diseases during different stages of life. The connection between environmental factors
and NCDs was formulated by David Barker and colleagues as the Developmental Origins of Health
and Disease (DOHaD) hypothesis. In this review, we describe the DOHaD concept and the effects
of several environmental stressors on the health of the progeny, providing both animal and human
evidence. We focus on cardiovascular diseases which represent the leading cause of death worldwide.
The purpose of this review is to discuss how in vitro studies with pluripotent stem cells (PSCs),
such as embryonic and induced pluripotent stem cells (ESC, iPSC), can underpin the research on
non-genetic heart conditions. The PSCs could provide a tool to recapitulate aspects of embryonic
development “in a dish”, studying the effects of environmental exposure during cardiomyocyte (CM)
differentiation and maturation, establishing a link to molecular mechanism and epigenetics.

Keywords: Developmental Origins of Health and Disease (DOHaD); cardiovascular diseases (CVDs);
pluripotent stem cells (PSCs); cardiomyocytes differentiation; environmental factors; epigenetics

1. Introduction

The significant increase of chronic diseases (e.g., diabetes, obesity, some cancers,
cardiovascular diseases, neuronal disorders) is attributed more frequently to the influence
of environmental factors, which have a pivotal role in disease aetiology. Previously, it was
considered that the foetus in the uterus was free from damages caused by external agents
(environment). However, it is now clear that exposure to different environments before
birth plays a significant role in the origin of these diseases. Scientists are now increasingly
focusing on the understanding of the hypothesis known as the Developmental Origins of
Health and Disease (DOHaD) [1,2]. The DOHaD hypothesis has significant implications
for understanding the epidemiology of non-communicable diseases (NCDs), especially
those including the onset of cardiovascular, metabolic and neurological disorders [3,4].
One of the main goals of DOHaD-related research is to develop and evaluate interventions
to improve health and prevent diseases that can occur at different stages of an individual
life, e.g., gestation, childhood or adulthood [5].
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To date, it is known that altered conditions during the periconceptional (PC) period
of gamete maturation and early embryonic development have long-lasting effects on
the health of the progeny. In other words, if the embryo is exposed to a hostile uterine
environment it responds with adaptation to survive, however, in the long-term, this can
lead to irreversible changes in development, structure and function of some tissues and vital
organs [1,2]. Nonetheless, the exact mechanism of causes (i.e., cellular, metabolic and/or
physiological alterations) behind this hypothesis are still poorly understood [2]. Epigenetic
changes have a pivotal role and add to the complexity in the study of developmental
programming [6–8].

The PC period might be a programming period of high susceptibility to maternal diet
which can affect lifelong health in the offspring. This PC sensitivity may reflect how the
number of totipotent and pluripotent cells in the embryo are modified by the extensive
epigenetic restructuring that characterises this period. These changes in environmental
conditions cause the embryo to optimise its future development program, resulting in a
form of plasticity related to the concept of predictive adaptive responses in DOHaD [9].

Moreover, studies in animal models have shown that the PC environment influences
subsequent development programming in mammalians [10–12]. Not only external envi-
ronmental factors can influence the development of the embryo, but internal factors and
the environment in which the embryo is located play also a role. Small changes in the
environment (for example, changes in diet or exposure to toxins) or changes in the mother’s
homeostasis, can affect the uterine environment, changing the uterine fluid composition
(i.e., amino acids) affecting the embryo and its epigenetic status, and this can also result in
changes later in life [10]. The uterine fluid plays an important role in the pregnancy [13],
secreting or transporting bioactive substances that regulate the uterine preparation for the
embryo implantation and development [14].

Previous studies have suggested that environment changes during the pre-implantation
period affect the offspring, but it is also the case with changes before and after the pre-
implantation period; for example, mothers who are exposed to a diet with an excess of fatty
acids before conception and during pregnancy present structural changes in the thickness
and surface of the placenta [15]. These changes may lead to a reduction in blood flow in
the placenta, which may contribute to the development of diseases in the offspring (for
example, in the immune system or cardiovascular system) [16].

Much of the evidence underpinning the DOHaD concept has been obtained from
animal models and observational human studies [1,17–19]. Nevertheless, cellular models
could also underpin the research in the DOHaD area. Indeed, the in vitro models allow to
assess the functional properties of tissue and to study the stages of tissue development [20].
To that end, it is possible to manipulate pathways and mechanisms in order to consider
additional downstream implications and to assess therapeutic interventions [21].

In this review, we provide an overview of the current studies recapitulating the
DOHaD hypothesis, giving a general description of the human clinical evidence and the
in vivo models used in this research. Our aim is to highlight the use of pluripotent stem
cells (PSCs), including embryonic and induced pluripotent stem cells (ESC, iPSC), as a tool
for modelling non-genetic cardiovascular diseases and for studying the effects of several
stressors on cardiomyocytes (CMs) differentiation and maturation.

2. The DOHaD Concept and Non-Communicable Diseases (NCDs)

The DOHaD concept explains that the late-onset diseases may stem from events
originating in utero, as initially studied in the 1980s by Barker and colleagues [22,23].
Subsequent studies in this field ultimately led to DOHaD or “Barker’s hypothesis” [24].
Scientific evidence showed that offspring worldwide exhibit future disease risks associated
with different exposures of their parents before and during the pregnancies, including
chemical, nutritional and environmental stressors or with other conditions like repro-
ductive failure, adverse pregnancy outcome, diabetes, obesity and assisted reproductive
technologies (ART) [1]. Emerging data from animal and human studies revealed that
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the time around conception is crucial in the DOHaD concept. The PC period represents
a window of a few weeks in humans when cells of the embryo are directly exposed to
stressors that make them vulnerable to alterations in epigenetic, cellular, metabolic and/or
physiological mechanisms [2].

During the last thirty years, scientists have focused on the mechanisms at the basis of
NCDs in the DOHaD field due to the high risk of mortality that these diseases account for
worldwide. According to World Health Organization (WHO), NCDs such as cardiovascular
diseases, diabetes and some forms of cancer accounted for about 63% of all deaths globally
in 2008 [25]. Nowadays, this number is even higher and accounts for 41 million people
(more than 70% of all death world-wide) who die every year prematurely, between ages
30 and 70 years, due to heart attacks, stroke, cancer, chronic respiratory diseases, diabetes
or mental disorders [26]. The most critical issue is that, initially, NCDs were regarded
as problems primarily associated with the elderly, but to date, it is well known that
these conditions also affect large numbers of younger people in low and middle-income
countries [3,27].

Multiple developmental factors affect the health of the progeny, such as an unbalanced
parental diet, smoking and alcohol consumption, exposure to toxins or pollutants and ART
interventions (Figure 1). Nutrition and metabolic diseases (such as diabetes and obesity)
are perhaps the most frequently investigated conditions for their susceptibility linked to the
foetal period exposure [2,3,28]. Early interventions on the mother and/or infant represent
the best preventive measures, and even during adolescence interventions are likely to be
effective at counteracting NCDs. However, a growing consensus has emerged that the
risk of developing NCDs is cumulated throughout the life course, and thus screening in
adults may be too late to reduce the risk and later interventions on adults may have limited
effects [5].
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Figure 1. Maternal and paternal exposure to stress factors can perturb the foetal status and predispose to the onset of
NCDs, such as cardiovascular diseases. Pregnancy environment contributes significantly to the newborn development, and
numerous stressors have long-lasting effects on the health of the progeny. IUGR: intra uterine growth restriction, GDM:
gestational diabetes mellitus.
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3. Study of DOHAD: Observational Evidence

Numerous studies have investigated increased chronic diseases in later life and alter-
ations in the development, structure and function of some tissues and vital organs. Both
human and animal studies identified several parental factors such as diet, body composi-
tion, metabolism, changes in epigenetics, proteins and metabolites profile or microbiome
can affect the perinatal outcomes [1,11,19]. Several observational human studies come
from babies born following ART interventions that make this population (several million
persons worldwide) one of the largest well-defined clinical cohorts [29]. In details, some
of the ART procedures involve embryo culture and exposure to potentially inappropriate
environmental factors, which may alter offspring phenotype [30]. The contribution of
maternal and paternal influence represents a growing field of interest, promoting the study
of female reproductive fitness and male fertility.

Nevertheless, cellular models such as PSCs could also underpin research in DO-
HaD [31]. Indeed, the PSCs in vitro models allow studying the functional properties and
developmental stages of tissues and support the principles of three Rs (3Rs: Replacement,
Reduction and Refinement) of more ethical use of animals in testing by reducing the need
for live animals. Cell-based models create space to manipulate pathways and mechanisms
to consider additional downstream implications and assess therapeutic interventions. A
summary of the models discussed below is shown in Table 1.

Table 1. Advantages and disadvantages of the models to study DOHaD and CVD risks.

Human Studies Animal Studies hPSC Models

Small Animals (Rodents) Large Animals

PROS

Data supporting DOHAD:
Undernutrition [32–37]
Overnutrition [38–42]

Birth weight [23,43–45]
Paternal contribution

[1,2,46–53]
ART technique [2,54,55]

Easier handling/housing
and

genetic manipulation [17,56]
High sequence conservation

with humans [57]
Data supporting nutrition

and pregnancy
complications [58–65]

Similarities with human
[56,66]

Data supporting nutrition
and pregnancy

complications [67–72]

Unlimited supply of
genetically well-defined

material [73]
Recapitulate embryonic
development [31,74–77]

Possess the complete
genetic background of
donor/patient [21,78]

Easier to introduce and/or
correct genetic variants [21]

Disease modelling in
human cells/tissues [21,78]

CONS

Necessity of long-term
data, larger prospective
cohorts and expensive

longitudinal studies [2,79]

Physiological differences
with humans [56,66]

Genetic manipulation not
always reflect the pathogenic

mutation in human [57]

Cost and experimental
duration [56]

Difficult genetic
manipulation [56]

Ethical concerns [56,66]

Difficulty to predict in vivo
readouts with only in vitro

data [66]
Difficulty to resemble the
native tissue/multi-organ
complex environment [66]

Genetic instability [21]
Phenotypic heterogeneity
between iPSC lines [21]

Incomplete maturation of
iPSC-derived cells [21]

3.1. Human Studies

Investigating the influence of nutrition in utero has gained importance in the last three
decades. The foetal cardiovascular system is highly susceptible to unbalanced nutrition
during early gestation for various reasons.

In the context of undernutrition, several pieces of early epidemiological data supporting
the DOHaD concept come from well-documented famines and historical cohorts [32–35,37].
For example, during the Dutch Hunger Winter of 1944/45, analyses of maternal exposure to
famine revealed that offspring had higher risks of developing cardiometabolic and neurological
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abnormalities, especially when their mothers were exposed to famine during the earliest
stages of gestation [35,36]. Similarly, mothers exposed to the Chinese Great Famine (1959–61)
during the first trimester of pregnancy gave birth to offspring who were four times more likely
to develop hypertension in adulthood than individuals who had postnatal exposure to the
famine [37].

Moreover, David Barker and his colleagues linked birth weight with the risks of cardio-
vascular diseases. Their studies used birth weight as an indirect factor of the intrauterine
environment, their observations found an inverse relationship between the development
of cardiac pathologies (high systolic blood pressure (SBP) and mortality from ischemic
heart disease and birth weight [23,43]. Although initially the studies have focused on the
effect of low birth weight and its association with heart diseases, in populations with a
high prevalence of maternal obesity it has been shown that the risk for development of
cardiovascular diseases has a “U” shape; this indicates that high birth weight individuals
are also at risk of heart diseases [44,45].

On the other hand, high maternal Body Mass Index (BMI), obesity and increasing
rates of type 2 diabetes mellitus (T2DM) during the PC period are also negative factors that
could influence neonatal adiposity and the cardiometabolic profile in the offspring [38,40].
Undoubtedly, maternal overnutrition can be harmful to both mother and foetus, as a
significant weight gain is associated with reduced fertility and decreased oocyte quality [42].
Moreover, maternal obesity might perturb the blastocyst glucose and insulin homeostasis,
which might lead to an elevated foetal insulin and adult cardiometabolic dysfunction. In
2009, a study was conducted comparing the cardiometabolic risk between siblings with or
without maternal obesity: siblings born before the mother underwent bariatric surgery (a
set of surgical procedures used to treat obesity) had factors of metabolic risk significantly
higher than siblings born after maternal weight loss [41]. The intrauterine environment is
closely related to the development of diseases during pregnancy; during gametogenesis
overnutrition leads to the accumulation of metabolites and inflammation in the mother’s
ovarian follicles [39].

It is important to mention that the external environment to which a mother is exposed
during the PC period or the pregnancy also influences the development of heart diseases.
Epidemiological studies have linked that exposure to stress [80] or molecules such as
nicotine can increase the risk of developing high blood pressure in the foetus later in
life [81,82].

Despite the well-known link between a mother’s lifestyle and the long-term health
of offspring, our knowledge of how the paternal factors contribute to the risk of adverse
birth outcomes remains far less understood. Nevertheless, some recently published data
linked adverse outcomes to paternal conditions such as sperm quality, epigenetic status
and seminal fluid composition [1,2]. Male fertility is significantly affected by nutrition
and body composition. As a matter of fact, an alteration from healthy BMI affects sperm
motility, quantity and quality, and increases the damage from reactive oxygen species
(ROS) [1,2]. Furthermore, overweight or obese men generally show a higher level of DNA
damage in sperm than normal-weight males [47,51,53].

Epidemiological studies have shown that paternal exposure to various environmental
factors can influence metabolic programming in offspring. This is the case with retrospec-
tive studies conducted on the population of Överkalix-Sweden and their problems with
food supply due to crop failures in the 19th century. These data identified that people
with an increased lifespan and lower risk of cardiovascular diseases had their paternal
grandparents with poor access to food during their youth. However, grandchildren of
paternal grandparents with excess food supply were more likely to suffer from diabetes
and cardiometabolic diseases, correlating with a reduced lifespan, suggesting that paternal
diet affects the offspring’s health [46,50,52]. Interestingly, the data from Överkalix-Sweden
population contradict those of the Chinese famine mentioned above. This may be due to
several reasons, such as differences between maternal and paternal inheritance, or different
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maladaptation responses to abrupt food uptake changes of the individuals. However, the
exact mechanisms will need further investigation.

Previously, it was thought that the primary information transmitted via sperm to the
offspring was limited to genetic material. However, the role of the paternal germline now
goes beyond this, as it is possible to transmit epigenetic information to the embryo, which
plays an important role in the development and progression of health and disease [48,49].
Although it is not easy to study the direct relationship between epigenetic modifications in
parental germline genes and the health of offspring in humans, epidemiological studies
suggest a strong correlation [49].

Finally, as mentioned above, one of the most important sources of knowledge con-
cerning developmental plasticity and DOHaD comes from babies born following ART
interventions. Despite several millions of children conceived by ART and born healthy,
little is known about the ART interventions’ long-term effects. Indeed, for the correct and
safe application of human ART it is important to monitor the resultant offspring’s health
status. Several human studies revealed different drawbacks of different ART techniques; for
example, children could develop type 1 diabetes during childhood or poor cardiovascular
health with increased risk of high blood pressure, vascular dysfunction and cardiovascular
remodelling during development in utero [2,54,83]. Furthermore, ART-associated adverse
effects on long-term health seem to have an epigenetic origin during the period around
conception [84]. Indeed, a systematic review and meta-analysis of DNA methylation lev-
els showed that IVF/ICSI-derived offspring have a higher likelihood of developing rare
imprinting disorders compared to spontaneously conceived children [55].

The current challenge is to understand better the underlying mechanism of some
factors affecting the embryo development and how to improve ART conditions to a level
which eliminates adverse effects compared to in vivo conditions, with a special interest
in the patient characteristics, hormone stimulation, laboratory procedures, culture media,
oxygen tension during the embryo culture and cryopreservation [79].

3.2. Animal Models

Despite their physiological differences with humans, animals can model complications
of human pregnancies; they are advantageous not only for developing and improving ART
procedures, but also for investigating alterations that impact lifelong health. A wide range
of species has been utilised [18,56,85], especially large animals (e.g., sheep, cows and pigs),
which have numerous advantages and remarkable similarities to human beings [56,66].
Among them, the relatively long gestation period, the delivery of a single foetus in most
cases with a fairly similar size to a human baby and numerous similarities in the function
and structure of organs are examples of advantages of these models. For instance, several
dietary models have been reported to use sheep in order to evaluate the effects of pre and
periconceptional undernutrition on cardiovascular development [67,71]. Other studies
have used the pig model to study the effects of a high-fat diet (HFD) during maternal
gestation [68,72].

Moreover, the effects of a maternal HFD on the offspring have also been investigated
in non-human primate models, showing that different body functions in the newborn can
be negatively affected. For example, the offspring could have impaired glucose metabolism,
liver dysfunctions and endothelial alterations [69,70]. Large animal models’ main disadvan-
tages are the cost and the experimental duration, difficult genetic manipulation, together
with numerous ethical concerns, especially regarding the non-human primate models [56].
For these reasons, the majority of DOHaD research has been conducted in rodent models
such as rat and mouse due to their easy handling and housing, short gestation, low mainte-
nance cost and the opportunity to perform genetic manipulations [17,56]. Likewise, rodent
cardiac morphogenesis as well as adult cardiac structures are similar to those of human
beings [57]. The early period of foetal development is sensitive in rodents, as several studies
show blastocyst abnormalities and cardiovascular alterations in undernutrition or HFD
models [58,59,65]. Nutritional deficiencies in rodents not only affect the foetal program-
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ming period but may also induce various pregnancy complications, negatively affecting
the foetal environment and possibly triggering the development of CVD in offspring [60].
For example, stress, toxins or hypoxia cause the offspring to be small for gestational age,
a risk factor for an increased incidence of CVD [63]. In addition, some studies in rodents
have shown that the microbiome during development has a very important role in the
occurrence of hypertension in the offspring. For this reason, as previously mentioned,
exposure to a suitable environment during pregnancy can be key to improving long-term
health and avoiding the development of CVD [61].

Paternal inheritance is also a critical aspect to consider in the development of CVD in
murine models. Cardiovascular and metabolic health has been shown to be compromised in
the offspring of obese fathers, and an epigenetic imprinting process in the sperm may cover
a pivotal role [86,87]. These observations have been made in human studies, too [62,64].

3.3. Novel Approaches to Model the DOHaD Concept In Vitro: Focus on Cardiovascular Diseases

Studying developmental plasticity in the DOHaD concept and understanding the
factors that can alter the offspring’s long-term health is challenging. CVD, like congenital
heart defects (CHD), can result from genetic mutations or arise from malnutrition, drug-
related effects, exogenous toxins, or maternal disease during gestation, leading to epigenetic
changes [88].

Stem cells (SCs), as non-specialised cells, can give rise to more than 200 types of
cells [73]. Over the past 20 years, stem cell biology has captured much attention in experi-
mental research and cell therapy in order to counteract disorders such as neurological and
cardiovascular diseases in both human and veterinary medicine [21,73,75,89]. Several types
of SCs are used in the research field, but the PSCs, including ESCs and iPSCs, are currently
the most attractive tool to study developmental biology and novel clinical applications [89].
Indeed, in the embryology field, PSCs have emerged as models to study the mechanisms
that underlie embryonic development, covering the need to understand the development of
tissues to predict and prevent numerous diseases caused by developmental defects [20,31].
The emergence of human embryonic stem cells (hESCs), derived from human blastocyst by
Thomson and colleagues more than two decades ago [77], quickly made them an advan-
tageous tool for human developmental studies. In 2007, the pioneer study of Yamanaka
and his group generated human induced pluripotent stem cells (hiPSCs), avoiding the
ethical concerns of hESCs and providing the opportunity to model patient-specific disease
in a dish [78]. Human iPSCs are patient somatic cells that have been reprogrammed to
acquire pluripotency capacity with unlimited self-renewal. The iPSCs are similar to the
ESCs in gene expression and differentiation potential to give rise to any cell type of the
organism. The hiPSC technology provides a unique in vitro platform to establish disease
models, since the main advantage of using hiPSCs is that the cells possess the complete
genetic background of the donor, including disease or risk-associated mutations [21,78].
Additionally, researchers can introduce and/or correct genetic variants with genome edit-
ing tools. This allows the generation of new disease models to determine personalised
therapeutic strategies [21]. One of the powerful characteristics of this technology is that
PSCs can spontaneously form aggregates named embryoid bodies (EBs), which are widely
used as the initial step in several differentiation protocols, through exposure to specific
differentiation signals [74–76].

In the DOHaD field, the usage of human PSC (hPSC) facilitates investigations of the
factors that affect early human development [31]. In addition, hPSCs are a promising tool
to identify potential biomarkers of epigenetic, cellular, metabolic and/or physiological
changes during the early embryonic life and their effects on long-term health.

4. Epigenetic Background of Cardiovascular Diseases

Epigenetic status and heart development are strictly correlated [90], thus, comprehen-
sive reviews have focused on the relationship between epigenetics and CVD risk factors,
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highlighting the importance of several biomarkers implicated in epigenetic mechanisms
relating to [91,92].

Heart development is regulated by precise changes in gene expression, which are
orchestrated by complex epigenetic mechanisms [93]. A mounting body of evidence from
in vivo and in vitro studies implicates epigenetic modulation as a fundamental mech-
anism affecting the heart development and transmission of other alterations to future
generations [58,94–98].

DNA methylation and histone modifications are highly dynamic in shaping the
cardiomyocytes transcriptome during development and postnatal maturation [99]. The
dynamic epigenetic status during the differentiation from progenitor cells to CMs has
been investigated [100]; however, the detailed epigenetic process leading to cardiac alter-
ations during embryonic development has been only recently investigated and not fully
uncovered yet [99,101,102].

During cardiac development, DNA methylation and transcriptional changes have
been identified for around 440 cardiac genes [99,101,103]. Of interest, methylation patterns
of CMs exposed to pathological stress partially resemble those of foetal CMs, suggesting
how the adaptation is firmly linked to changes in gene regulation and activity [97].

Histone modification has a central role in cardiac development, as well. Interestingly,
pathological gene expression has been linked to changes of active histone marks, explaining
up to 50% of pathological gene expression. For this reason, they can be considered as
predictive markers for failing CMs [99]. In the biological process of cardiac diseases,
histone demethylations are important epigenetic markers [104–106]. Specifically, JMJD2A
histone demethylase, a member of the Jumonji protein family, seems to be correlated in the
development of cardiac hypertrophy through the demethylation of H3K9me in a murine
model [107]. It has been recently shown that JMJD2A can induce hypertrophy markers
in the heart [108]. In a hiPSC-derived CMs (hiPSC-CMs) model, the JMJD2A effect seems
linked to the demethylase activity in the ventricular (NPPB) and atrial (NPPA) natriuretic
peptide regulatory region [108].

The intrauterine environment of mothers affected by diabetes, pre-eclampsia, obe-
sity and intrauterine growth restriction have been attributed to long-term adverse effects,
known as epigenetic priming of foetal development [109]. The heart responds to envi-
ronmental signals by modifying the epigenome [58,110,111]; however, the details of the
epigenetic status changes in CMs are still not fully explored.

A common response of the adult heart to various stresses is the re-activation of foetal
cardiac genes by downregulation of adult transcripts, such as those involved in metabolism
and calcium handling [112,113]. This response may also play a crucial role during early
development. For example, enhancer of zeste homolog 2 (EZH2) represses the expression
of Six1 in cardiac progenitors to stabilise the postnatal cardiac gene expression [114]. Down-
regulation of EZH2 in cardiac precursors destabilises cardiac gene expression and leads to
pathological heart remodelling by the re-activation of foetal genes and pro-fibrosis factors.
This causes postnatal myocardial pathology and upregulation of Ink4a/b, regulators of the
cell cycle normally repressed by EZH2, leading to hypoplasia and decreased cardiomyocyte
proliferation [114–116].

A significant part of the human genome is transcribed into noncoding RNAs (ncRNAs),
which play crucial roles in CVDs and have been considered as potential biomarkers and
therapeutic targets [115].

Of interest, dysregulation of numerous miRNAs has been shown if the foetus is exposed
to a hostile intrauterine environment [95,96]. Neonatal heart development requires a broad
regulation of numerous miRNAs, such as miR-15 and let-7 family members [117,118]. In the
developing heart, aberrant overexpression of miR-195 (a miR-15 family member) results in heart
abnormalities and premature cell cycle arrest [118]. On the other hand, knockdown of let-7
results in a significant decrease of hESC-derived CMs (hESC-CMs) size, area, sarcomere length,
and expression of several maturation markers. These and multiple other miRNAs also play
a role in disease progression [119]. For instance, knockdown of miRNA-133 leads to cardiac
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hypertrophy and re-activation of the foetal gene program in the adult mouse heart [120], while
disruption of one of the two miR-1 family members, miR-1-2, has adverse consequences for
development and maintenance of the heart, leading to ventricular septum defects [121].

Epigenetic modifications are involved in various biological processes, including foetal
programming of normal development as well as disease predisposition. The studies re-
viewed here provided evidence that the epigenetic status of cardiac development is a
highly complex mechanism involving miRNAs, DNA methylation and histone modifi-
cation, with a crucial role in regulating CMs proliferation, maturation and remodelling.
Of interest, this review will focus on CMs differentiation-related mechanisms and their
potential transcriptional and phenotypic alterations following environmental toxicants.

5. Modelling Cardio Myogenesis with Pluripotent Stem Cells

The heart is still immature at the end of organogenesis and during the whole perinatal
period, while during the postnatal period it undergoes adaptations and metabolic switch
to complete the maturation. Energy can be produced both from anaerobic glycolysis
in the cytosol or through oxidative metabolism in mitochondria, and it is stored in the
form of adenosine triphosphate (ATP) and phosphocreatine (PCR). The foetal heart is
characterised by high glycolytic activity due to the low levels of circulating fatty acid
and high lactate levels in utero, the major source of cardiac oxygen consumption [122].
During this period, glucose contributes to cardiac growth by hyperplasia. Indeed, glucose
induces CMs proliferation in a dose-dependent way [123]. Immediately after birth, to
promote the metabolic switch to fatty acid oxidation, glucose uptake is drastically reduced
in the foetus, and this phenomenon is also accentuated by the first meals of the newborn
from maternal milk [122]. As cardiac energy demands increase immediately after birth,
the mitochondria count grows considerably in the CMs, as well as their mass, due to the
activation of transcription factors and regulators [124]. Among them, the nuclear receptor
factors peroxisome proliferator-activated receptor (PPARs) and their coactivator like the
PGC-1α are important for the mitochondrial biogenesis, as well as nuclear erythroid 2-like
2 (NFE2L2 or NRF2) that provides the transcription of antioxidants in order to balance the
high ROS production from the mitochondrial oxidative phosphorylation [122,124].

One of the advantages of PSC technology is the in vitro generation of cardiac tissue
following precisely the embryonic differentiation and development of the tissue, as shown
in Figure 2 [125,126].

This tool allows the investigation of differentiation and maturation processes of CMs,
also of changes, interactions and possible alterations that can affect cardiomyogenesis in the
early stage of gestation. Human CMs can now be easily produced in large quantities from
human PSC and used for the study of cardiac physiology and pathophysiology [127,128]. Many
cardiac tissue PSC models are available to date. For example, studies have reprogrammed and
differentiated adult somatic cells into pluripotent stem cells to generate CMs in vitro [129,130].
Especially, the main goal is to reproduce in vitro the in vivo cardiac architecture as well as
possible. In a 2D model, this can be achieved by differentiating cardiac cell populations, such
as CMs, endothelial cells and vascular mural cells, collecting and re-plating them to construct
cardiac tissue sheets [130]. Since in 2D cultures it is arduous to fully recapitulate the heart’s
unique cytoarchitectural arrangement, to bring this tool to an even higher level of similarity to
the original tissue, it is necessary to develop a 3D cellular model, for generating CMs spheroids
as well, using different methods, such as suspension bioreactors and the formation of EBs [129].
Indeed, a functional heart reconstruction requires not only a resource of heart cells, but also a
complex tissue arrangement, including matrices and vascular structures. To combine tissue
engineering, stem cell biology and heart developmental biology into a new platform, there are
studies on repopulating decellularised rodent hearts with human ESC or iPSC. This might be a
novel strategy to generate artificial humanised hearts, even if their pumping capacity is still
very low compared to normal hearts [131,132]. However, CMs spheroids are still the most used
3D model due to their easier handling and observation, as well as lower costs compared to a
whole 3D heart.



Genes 2021, 12, 1564 10 of 30Genes 2021, 12, x FOR PEER REVIEW 10 of 31 
 

 

 

Figure 2. Comparison of cardiac development during prenatal days with PSC differentiation stages. Key genes are also 

shown at each time-point. FHF: First Heart Field, SHF: Second Heart Field. 

This tool allows the investigation of differentiation and maturation processes of CMs, 

also of changes, interactions and possible alterations that can affect cardiomyogenesis in 

the early stage of gestation. Human CMs can now be easily produced in large quantities 

from human PSC and used for the study of cardiac physiology and pathophysiology 

[127,128]. Many cardiac tissue PSC models are available to date. For example, studies have 

reprogrammed and differentiated adult somatic cells into pluripotent stem cells to gener-

ate CMs in vitro [129,130]. Especially, the main goal is to reproduce in vitro the in vivo 

cardiac architecture as well as possible. In a 2D model, this can be achieved by differenti-

ating cardiac cell populations, such as CMs, endothelial cells and vascular mural cells, 

collecting and re-plating them to construct cardiac tissue sheets [130]. Since in 2D cultures 

it is arduous to fully recapitulate the heart’s unique cytoarchitectural arrangement, to 

bring this tool to an even higher level of similarity to the original tissue, it is necessary to 

develop a 3D cellular model, for generating CMs spheroids as well, using different meth-

ods, such as suspension bioreactors and the formation of EBs [129]. Indeed, a functional 

heart reconstruction requires not only a resource of heart cells, but also a complex tissue 

arrangement, including matrices and vascular structures. To combine tissue engineering, 

stem cell biology and heart developmental biology into a new platform, there are studies 

on repopulating decellularised rodent hearts with human ESC or iPSC. This might be a 

novel strategy to generate artificial humanised hearts, even if their pumping capacity is 

still very low compared to normal hearts [131,132]. However, CMs spheroids are still the 

most used 3D model due to their easier handling and observation, as well as lower costs 

compared to a whole 3D heart.  

Despite the advantages of hiPSC-CMs in 2D and 3D cultures, the main challenge is 

still to obtain functional and mature CMs in terms of contractile structure, metabolism 

and electrophysiological properties. For these reasons, many research groups have fo-

cused their studies on developing an efficient and cost-effective protocol that provides a 

well-established in vitro model that could recapitulate more faithfully the in vivo physi-

ology. Available protocols for hPSC cardiac differentiation require the accurate regulated 

expression of multiple families of secreted growth factors, such as transforming growth 

factor-β (TGF-β) superfamily members, like activin A, BMP2 and/or BMP4 and modula-

tors of canonical Wnt signalling [125,133,134]. At the same time, it is relevant to focus on 

the long-term culture of CMs to increase their maturation. Seeing as hPSC-CMs corre-

spond to the foetal state for their functional and physiological characteristics [135,136], the 

study of long-term alterations in adulthood can be challenging to analyse. Available ex-

amples in the literature provide interesting strategies to promote CMs maturation, such 

as repressing hypoxia-inducible factor α (HIF1α) [137], overexpressing the miRNA let-7 

family [117], or supplementing the culture medium with fatty acids [138]. However, more 

Figure 2. Comparison of cardiac development during prenatal days with PSC differentiation stages. Key genes are also
shown at each time-point. FHF: First Heart Field, SHF: Second Heart Field.

Despite the advantages of hiPSC-CMs in 2D and 3D cultures, the main challenge is
still to obtain functional and mature CMs in terms of contractile structure, metabolism
and electrophysiological properties. For these reasons, many research groups have fo-
cused their studies on developing an efficient and cost-effective protocol that provides a
well-established in vitro model that could recapitulate more faithfully the in vivo physi-
ology. Available protocols for hPSC cardiac differentiation require the accurate regulated
expression of multiple families of secreted growth factors, such as transforming growth
factor-β (TGF-β) superfamily members, like activin A, BMP2 and/or BMP4 and modu-
lators of canonical Wnt signalling [125,133,134]. At the same time, it is relevant to focus
on the long-term culture of CMs to increase their maturation. Seeing as hPSC-CMs cor-
respond to the foetal state for their functional and physiological characteristics [135,136],
the study of long-term alterations in adulthood can be challenging to analyse. Available
examples in the literature provide interesting strategies to promote CMs maturation, such
as repressing hypoxia-inducible factor α (HIF1α) [137], overexpressing the miRNA let-7
family [117], or supplementing the culture medium with fatty acids [138]. However, more
complex approaches are also under evaluation. Especially, the maturation of CMs can be
improved by controlling the surrounding extracellular matrix [139], applying mechanical
and electrical stimulation [140], as well as using dynamic culture [129,141]. Ruan and
his group showed that mechanical stimulation improved the sarcomere alignment and
formed stiffer constructs, while electrical stimuli improved contractility [140]. Of interest,
dynamic cultures overcome the limitation of 2D models since they allow the production of
large numbers of hiPSC-CMs and increase the functional genes and contractile proteins
expression of CMs [129,141]. In this regard, it is necessary to consider the influence of shear
stress that could alter cell viability and proliferation through physical damage and cell
death. Despite this drawback, the appropriate application of shear stress is an effective
approach to improve cardiac differentiation efficiency and maturity [129,141].

Furthermore, PSC-CMs are a valid model to study the epigenetic status during car-
diac programming of disease state as well as normal development [100]. Recent evidence
shows how hiPSC and hESC-CMs are used to investigate the functional role of structural
epigenetic changes in the heart, such as the 3D chromatin topology dynamics, during
development and disease [142–144]. Indeed, it is known that alterations in genome topol-
ogy play key roles in CHD and CVD and can represent promising targets for therapeutic
intervention [145,146]. Moreover, by using PSC-CMs is possible to control the in vitro
environment, and thus specifically test for genetic or epigenetic effects in response to
controlled perturbation [147].
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Summing up, these approaches will improve many facets of cardiomyocyte maturation
but most important they will give a model to evaluate the long-term effect of several
stressors affecting the health of cardiac tissue during its development.

6. Studying the Effects of Environmental Factors on Cardiomyocytes Differentiation

As mentioned, aside from genetic mutations, several environmental factors (e.g., diet,
oxidative stress, chemicals or pathogens), maternal diseases or other causes like ART
procedures (e.g., regiments for the stimulation of ovulation followed by IVF such as ICSI)
can lead to cardiac diseases in the newborn. Congenital heart disease is the most common
cause of neonatal mortality related to congenital disabilities. Although genetic factors play
a significant role in CHD development, a genetic diagnosis is established for only 11% of
the individuals [148], highlighting the crucial role of non-genetic contributors. Moreover,
many other complications can result from both environmental and nutritional stressors
without any genetic predisposition. For example, ischemia-reperfusion injury, metabolic
dysregulations and hypertension lead to heart failure in adulthood [149]. Pluripotent stem
cells derived CMs can be exposed in vitro to various stressors to investigate their effects on
CM function.

6.1. Nutritional Effects on Cardiomyocytes Function

Maternal HFD or elevated maternal glucose and insulin concentrations are adverse
effects of high maternal BMI, diabetes and obesity, which can affect the cardiometabolic
functionality in offspring, as previously mentioned. Similarly, lipid and fatty acid accumu-
lation are strictly correlated with CVD predisposition [1,2]. Maternal HFD has also been
shown to reprogram cardiac metabolism and induces cardiac hypertrophy [150,151] and
myocardial cell fat deposition [152]. Interestingly, Watkins et al. found in a murine model
in which mothers had a low protein diet during the pre-implantation period (days 0 to
3.5 of embryonic development), that the offspring showed arterial hypertension during
postnatal life [153], as do offspring exposed to maternal low protein diet during the whole
pregnancy [154,155]. This was confirmed in vitro with a culture of mouse embryos in
different concentrations of insulin and branched-chain amino acids (known as factors that
induce the programming of a low protein diet), showing an increase in SBP in the off-
spring [156]. Moreover, maternal undernutrition reduces offspring CMs [157] by increasing
apoptosis [158] and/or reducing proliferation [154,159].

A metabolic condition strictly related to nutrition and widely studied is maternal
diabetes before or during pregnancy (also known as gestational diabetes), which is associ-
ated with increased early-onset CVD rates [160]. Diabetes in mothers is characterised by
poor maternal glucose control, leading to the heart remodelling or defects in the foetus
that predispose to risks of cardiac complications in adulthood [123,161]. In gestational
diabetes mellitus (GDM), glucose homeostasis can be affected by increased maternal levels
of oestrogen, progesterone, cortisol and human placental lactogen [160]. In all cases, preg-
nancy complicated by diabetes involves large amounts of maternal glucose freely cross the
placenta, leading to increased secretion of foetal insulin [162]. This increase exposes the
foetus to hyperinsulinemia and hyperglycemia with long-lasting effects on the embryonic
heart and foetal vascular gene expression, resulting in vascular function changes and
contributing to higher CVD risks of hypertrophy [160]. To further complicate the picture,
exogenous insulin therapy in diabetics can lead to hypoglycemia as a common side effect.
Thus, maternal hypoglycemia has been linked with the disorganisation of myocardial
layers, cardiomegaly and heart failure in several in vivo and in vitro animal studies clearly
collected in a review of Ida W. Smoak [163]. However, the molecular mechanisms by
which maternal diabetes may cause the risk of developing CVD in offspring is still poorly
understood [160,162,163].

Both human ESC and iPSC are used for studying the effect of impaired glucose
homeostasis on the cardiac lineage [123,161,164], as well as the effect of nutritional over-
consumptions [165,166]. As described by Nakano and colleagues, if glucose uptake is
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not reduced in foetus just before birth, the nucleotide biosynthesis supported by high
levels of glucose can inhibit cardiac maturation [123]. As a consequence, the delay of the
metabolic switch may lead to pathological remodelling of the neonatal heart, contribut-
ing to the onset of CHD. The impact of glucose exposure on cardiac differentiation was
analysed using hESC-CMs cultured in media containing various glucose concentrations,
which dose-dependently suppressed the expression of key cardiac markers TNNT2 and
NKX2-5, as well as the mitochondrial marker PPARGC1A [123]. Similarly, Balistreri and his
group aimed to assess the effects of high glucose on foetal cardiac development, generat-
ing hiPSC-CMs in microtissues within silicone micro molds. They showed that elevated
glucose exposure impaired the ability of CMs to self-assemble into the 3D model cardiac
tissue, as well as CMs calcium handling function [161]. Moreover, hiPSC-CMs exposed to
prolonged hyperglycemia show pathological hypertrophy and reduced contractility due to
calcium cycling dysfunctions [164]. Following nutritional alterations, phenotype as cardiac
hypertrophy, disorganisation of myocardial layers and alteration of contractility rate has
been observed in animal models, too [150–152].

Modelling cardiac non-genetic conditions allows for studying the effects of nutritional
stressors. For example, approaches of metabolic overload with fatty acids can recapitulate
insulin resistance condition [165,166]. Overconsumption of lipids is correlated with high
risks of developing heart failure. In this context, CM accumulate elevated rates of long-
chain fatty acid (LCFA). Therefore, the oxidation capacity of the mitochondria is overloaded,
inducing mitochondrial dysfunction over time. Upon high palmitate culturing, hiPSC-
CMs developed the main features of insulin resistance such as loss of insulin-stimulated
LCFA/glucose uptake and increased basal LCFA uptake [166]. Ultimately, lipid oversupply
leads to CMs contractile dysfunction. The human pathological model of insulin resistance
can be recapitulated in hESC-CMs with either TNFα or free fatty acids (FFA), both leading to
higher transcription of proinflammatory markers NFKB1, IL6 and CXCL8 and the inhibition
of PPARGC1A gene expression [165].

6.2. The Role of Hypoxia and Reactive Oxygen Species on Cardiomyocytes

Stem cells in vivo occupy a hypoxic niche, and their energy metabolism is mainly
dependent on glycolysis for ATP generation [167]. However, the relationship between
hypoxia and differentiation of stem cells is a matter of debate yet. Hypoxia alone can revert
committed cells back to an undifferentiated-like state, together with other reprogramming
factors included in the process [168]. At 2% of oxygen concentration, hypoxia-inducible
factors (HIFs) are stabilised in the niche, working as a de-differentiation rheostat. However,
the detailed mechanism under this process is still under investigation [168]. By contrast, hy-
poxia seems to play an important role in the proliferation, differentiation and maintenance
of committed cells, among them CMs during development. In this context, the exogenous
expression of HIF-1α has been shown to promote cardio myogenesis in ESC [169]. To
further complicate the picture, it is widely known that exposure to hypoxia during foetal
development has the potential to cause abnormal heart morphology and function [170,171].
Additionally, hypoxia has been shown to impair foetal CMs proliferation, followed by an
increase of apoptotic events [172]. Medley and colleagues employed a mouse iPSC-CMs
(miPSC-CMs) based approach to investigate the mechanism by which hypoxia influences
cardiomyocyte development. In this work, miPSC-CMs exposed to relatively short-term
hypoxia exhibit a long-term failure to develop of a contractile phenotype [173]. Further-
more, in Gaber et al. [174], hESC-CMs were exposed to 1% hypoxia for 72 h, which was
followed by an increase of HIF1α expression. They recapitulated the foetal hypoplastic left
heart syndrome (HLHS) in a chronic hypoxia model. Consequently, hESC-CMs displayed
more DNA damage, transcript alterations and senescence with reduced cell proliferation
and fewer cardiac progenitors [174]. Interestingly, Kobayashi et al. supported transcript
alterations in patient HLHS-derived CMs, linked to epigenetic modification of important
cardiac genes involved in the early cardiac development program, as NKX2-5, HAND1 and
NOTCH1 [175]. Of particular note, ChIP assay suggested that reduced H3K4me2 and in-
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creased H3K27me3 on the NKX2-5 promoter might be the epigenetic mechanism that leads
to impaired transcriptional expression in the differentiation processes of HLHS-derived iPS
cells, thus causing critical defects for cardiac differentiation and heart morphogenesis [175].
Following hypoxia exposure, epigenetic and transcriptional alterations have been observed
in animal models, too [176,177].

Hypoxia, as well as other factors like environmental pollutants [178,179] and hyper-
glycemia [164,180], are known to trigger the production of reactive oxygen species (ROS),
altering cellular oxidative homeostasis [181,182]. ROS are derived from molecular oxy-
gen and are produced in subcellular compartments as highly active molecules, ions or
radical (e.g., hydrogen peroxide, superoxide and hydroxide) with a pivotal role in cellu-
lar metabolic activity, particularly during cardiac differentiation and development [183].
Their physiological or pathological effects depend on their spatiotemporal source, such
as the release duration, the local levels and interaction with different subcellular com-
partments [183,184]. NADPH oxidases, the mitochondrial electron transfer chain and
uncoupled NO synthases are important ROS sources [183]. Superoxide anions can be
converted to hydrogen peroxide (H2O2) via superoxide dismutase (SOD), and they can also
react via different pathways (e.g., Fenton reaction) to generate hydroxide anion [183]. High
ROS levels activate the nuclear factor erythroid 2-like 2 (NFE2L2 or NRF2), which regulates
the production of antioxidant defences (e.g., glutathione peroxidase, thioredoxins, heme
oxygenase-1, NAD(P)H dehydrogenase 1) [185].

The main source of hypoxia-induced ROS comes from the complex I and III of the
mitochondria electron transport system [182]. Under normal conditions, electrons flow
freely in the electron transport system, reducing the time at which free radicals can interact
with molecular oxygen. During hypoxia, the flow rate of electrons slows and the molecular
oxygen can gain an unpaired electron to produce superoxide [182]. Since hypoxia can alter
redox status, significant changes in cellular homeostasis and subsequent changes in gene
expression can occur. It is still unclear what signals mediate repression of cardioprotective
genes in utero during hypoxia, however, stress factors such as the trigger of oxidative stress
may be involved [171]. Under hypoxic conditions, CMs are subjected to increased oxidative
stress [186]. The molecular mechanism of prenatal hypoxia impacting foetal heart develop-
ment and the risk of heart disease in adulthood is still poorly understood. Recently, Chen
et al. showed that prenatal hypoxia induced a global epigenomic reprogramming, strictly
linked to long-lasting effects on the adult heart [176]. Indeed, previous studies showed
that hypoxia is involved in in utero epigenetic programming, leading to an inhibition of
cardioprotective genes (e.g., PKCε, HSP70 and eNOS) in foetal CMs [111,177,187].

In the human body, ROS play a contradictory role. The limit between a beneficial and
deleterious response (oxidative eustress and distress, respectively) remains to be clearly
evaluated in health and disease [183]. Evidence shows that normal levels of ROS play
a critical role in cellular homeostasis and function during the cardiovascular commit-
ment [188–190]. Indeed, Li and colleagues showed a link between H2O2 treatment and
the gene expression of cardiogenesis, demonstrating that ROS signals are indispensable
in modifying cell fates through the induction of cardiac-specific genes such as GATA4,
NKX2-5 and MEF2C [184]. On the other hand, H2O2 stress stimuli are highly dependent
on the duration and the magnitude but also on the differentiation status of the cells. In-
deed, they showed that short-time stress of H2O2 could promote cardiac commitment,
but the excessive ROS stress damages the cardiomyocyte’s differentiation and contractile
phenotype [184]. The production of ROS is essential to induce the maturation of CMs, and
in vitro studies confirmed this hypothesis [190]. Specifically, ROS are associated with the
improvement of CM functions such as contractility [191], calcium handling [192], metabolic
switch [193] and hypertrophic growth [194]. However, overproduction of ROS can lead to
cellular oxidative stress, resulting in abnormal embryogenesis [195–197] (Figure 3).
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As mentioned above, high ROS levels trigger antioxidant defences and, among them,
NRF2/KEAP1 and endothelial NO synthase (eNOS) pathways are probably the most
relevant in the cardiac system [198]. NRF2 is a transcription factor that binds antioxidant
response element (ARE) to regulate the production of antioxidant enzymes. NRF2 is
abundant in all tissues, but in the heart it counteracts conditions such as hypertrophy,
myocardial infarction, atherosclerosis and hypertension [185,199]. NRF2 is negatively regu-
lated by Kelch-like ECH-associated protein 1 (KEAP1), which, under unstressed conditions,
mediates the NRF2 turnover and ubiquitylation in the cytoplasm [185]. In response to
oxidative stress, KEAP1 is oxidised and inactivated, resulting in NRF2 stabilisation and
translocation into the nucleus [185]. NRF2 is highly important in the cardiac system [199]
and plays a pivotal role during pregnancy, protecting the foetus from adverse oxidative
stress conditions in utero both during early and late development [109]. On the other
hand, nitric oxide (NO) is another important regulator of the cardiovascular system during
its development [200]. The NO is a vasodilator produced from the eNOS and its role is
crucial in preventing the pathogenesis and progression of heart diseases [200]. Indeed,
the downregulated protein expression or the uncoupled activity of eNOS predispose to
heart alterations [200,201]. NRF2/ARE signalling is highly correlated with eNOS pathway
through the PI3K/Akt activation [198]. Under redox imbalance, PI3K/Akt pathway acti-
vates NRF2 and its downstream targets, and on the other side regulates eNOS activation
and NO production, which targets NRF2 signalling again. Pathophysiological conditions in
heart such as fibrosis, apoptosis, hypoxia, ischemia trigger PI3K/Akt and other pathways
to activate NO-NRF2/ARE axis to counteract cardiac and vascular complications [198].

Oxidative stress has been suggested to alter the epigenetic status of the heart [202].
Additionally, in the ART area, in vitro manipulation of gametes or embryos makes it
difficult to maintain pro and antioxidant balance, and the increased ROS levels are one of
the major triggers of early life epigenetic changes with long-lasting effects in adult life [203].
Of interest, among several epigenetic changes, the antioxidant systems NRF2/KEAP1 and
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eNOS have been proposed as targets of epigenetic priming during foetus development
under adverse intrauterine environment [109,204]. For instance, West and colleagues have
listed several methylation patterns in the offspring of diabetic mothers. In particular,
they found hypermethylation of DJ-1 (PARK7), a stabiliser of NRF2. This epigenetic
variance was previously linked to vascular endothelial cells’ alterations as it potentially
decreases the NRF2 protection in the vasculature [205]. Furthermore, in conditions such
as diabetic cardiomyopathy, NRF2 alterations have been correlated with KEAP1 promoter
demethylation that leads to the transcription factor ubiquitination [206]. In another work,
Sherrer’s team found that increased methylation on the promoter of the eNOS gene led to a
reduction of NO levels in plasma. This increased blood pressure and vascular dysfunction
and caused a shorter lifespan in mice born following ART procedures in mothers exposed
to a high-fat diet [207]. Even if epigenetic changes occurring during high glucose stress
or hypoxia are still under evaluation, evidence links them to eNOS dysfunction. For
example, maternal hyperglycemia could affect the eNOS activity by reducing the chromatin
accessibility at the NOS3 locus [208]. On the other hand, hypoxia causes a significant
decrease in H3/H4 acetylation of eNOS proximal promoter histones [187].

Human PSC can be a novel in vitro model to study the effects of oxidative stress on the
early embryo [209,210], as suggested by several studies mentioned in this section, as well
as to investigate the changes in the epigenetic status of CMs under hypoxia and oxidative
stress.

6.3. Alcohol Consumption and Cigarette Smoking

Maternal alcohol consumption and cigarette smoking leading to exposure during
the gestational period can affect the foetus development and cause heart alterations, with
negative implication for postnatal cardiac function [178,211–213]. However, there are few
in vitro studies concerning the effects of these substances on CMs differentiation and mat-
uration yet. Concerning the effect of maternal alcohol consumption, a clear and recent
example is provided by Rampoldi et al. who evaluated the impact of ethanol on hiPSC-CM
functionality as a model of prenatal exposure during maternal alcohol intoxication [195].
Ethanol exposure of hiPSC-CMs results in reduced cell viability, increased cell loss, and
ultimately leads to overproduction of ROS. This study elucidated that, despite the activity
of key calcium handling proteins being modulated by ROS, as RyR2 (cardiac ryanodine
receptor) and SERCA (SR calcium transport ATPase) [214], the impaired levels of these
products contribute to abnormal calcium handling. Indeed, treatment of hiPSC-CMs with
the ROS scavenger N-acetyl cysteine reduced the ethanol-induced ROS production and
abnormal calcium transients in hiPSC-CMs [195]. Interestingly, RNA-seq detected sig-
nificantly altered genes, among which members of the potassium voltage-gated channel
family and solute carrier family [195]. Furthermore, ethanol has been reported to have
toxicity on mouse ESC-CMs (mESC-CMs), inducing mESC growth inhibition and the delay
of cardiac differentiation through the Wnt/β-catenin signalling pathway suppression [215].
On day 11 post-differentiation, ethanol significantly suppressed the expressions of im-
portant cardiac transcripts required for the differentiation (i.e., NKX2-5, MEF2C, TBX5,
HAND2 and aMHC) and maturation (i.e., CX43 and TNNC1). Transcriptional alterations
of specific cardiac genes and increased oxidative stress have been also observed in foetal
mice, leading to heart dysplasia and CHD [216]. Indeed, alcohol exposure reduces histone
methyltransferase (HMT) activity in the heart [216]. Among different HMTs, G9α-HMT is
closely related to cardiac development [115,216]. Under alcohol exposure, the suppressed
activity of G9α-HMT seems linked to H3K9me3 hypomethylation, which in turn pro-
motes the overexpression of cardiomyogenesis-related genes (e.g., MEF2C and CX43). This
mechanism may be involved in alcohol-induced cardiac dysplasia, leading to CHD in
foetuses [216].

Detrimental effects are also experienced with foetal exposure to maternal cigarette
smoking due to many toxic chemicals such as formaldehyde, benzene, toluene, phenols,
nicotine, etc. [178,213]. According to a population-based study, it is well known that
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smoking mothers have a high risk of affecting heart development and function in the
offspring [217]. In this regard, Cheng et al. conducted a study concerning the effect
of cigarette smoke on cardiac development in vitro [218]. Exposure of cigarette smoke
to mESC-CMs impairs cardiac-specific genes expression (e.g., GATA4, NKX2-5, MEF2C,
α-MHC and MLC1a) through the BMP-SMAD4 signalling pathway. Despite cigarette
smoke inducing apoptosis in mESC-CMs, those cells that survive can undergo further
differentiation, potentially risking abnormal heart development, leading to CHD [218].
Notably, the non-cytotoxic dosages of cigarette smoke significantly decreased global hi-
stone H3 acetylation level in mESC-CMs. In particular, low levels of histone acetylation
were observed in the promoter regions of GATA4, MEF2C and NKX2-5 [218]. Histone
acetylation promotes the relaxation of chromatin structure for the transcriptional activation
and, during CMs differentiation, it controls transcription of several cardiac genes, like
GATA4, MEF2C and NKX2-5 [219]. Thus, alterations in this epigenetic regulation contribute
to CHD [220]. Furthermore, a recent study conducted by Guo et al. [212] shows that
6-day exposure to nicotine reduces the viability of hESCs, increases ROS and alters cell
cycling in hESC-derived EBs, suggesting that nicotine affects embryo development as early
as the pre-implantation stage. In addition, Ca2+ signalling was found to be affected in
hESC-CMs upon nicotine exposure, increasing the propensity to Ca2+-associated arrhyth-
mia [212]. Electronic and conventional cigarette smoking extract impaired hiPSC-CMs
function, slowed beating and increased ROS-induced cell death [221]. Notably, RNA-seq
revealed numerous altered genes essential for normal heart function and response to stress,
including MYLK, NPPA, TNNT2 and TNNI3. Most of them were downregulated, prob-
ably due to a significant increase in upstream methylation signals (for both DNMT3A
and B pathways) [221]. Interestingly, pathological heart remodelling, transcriptional and
epigenetic changes have been also observed in mice [213].

Overall, the studies revised in this paragraph show that using iPSCs-derived CMs
will facilitate to investigate cellular toxicities and transcriptional profile changes triggered
by alcohol and cigarette smoking, affecting CMs functionality.

6.4. Glucocorticoids

Many of the hormones produced by the placenta are essential for proper foetus
growth [222]. In this context, the hypothalamic–pituitary–adrenal axis plays a pivotal
role during embryonic development with potent programming effects on organ develop-
ment [222]. Recent studies support the role of glucocorticoids in regulating CM devel-
opment [223–226]. In vitro studies report that thyroid and glucocorticoid hormones are
critical for CMs maturation, also suggesting a method to improve PSC-CMs differentia-
tion efficiency and maturity [224,225]. However, future assessment of the effects of these
hormones in vitro is needed.

Maternal diet and other stressors may modulate hormonal secretion patterns and alter
the uterine environment, compromising the integrity of the placenta itself, the gestation
length and the foetal growth rates [222,227,228]. Moreover, despite that glucocorticoids are
able to improve neonatal survival in preterm infants, an excess of exogenous glucocorti-
coids during pregnancy is related to reduced birth weight and adverse outcomes in the
offspring, especially if glucocorticoids are administered during late gestation when growth
is speeding up, and it is probably most susceptible to the catabolic effects of steroids [227].
The excess of glucocorticoids exposure during pregnancy increases the myocardium suscep-
tibility of male offspring’s heart to postnatal injury due to the decrease of protective factor
BMP4 caused by the hypermethylation on BMP4 promoter, in all likelihood correlated to mi-
tochondrial damage and myocardial susceptibility to injury [229]. Despite glucocorticoids
being necessary for cardiac maturation, excessive in utero exposure to glucocorticoids can
negatively impact the maturation process. Indeed, a high concentration of maternal cortisol
throughout late gestation alters the regular cardiac gene expression pattern in the ovine
foetus [230,231], which persists into postnatal development. Transcriptomic profile of lipid
metabolism, cell proliferation and cardiac remodelling, are affected postnatally after the in
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utero cortisol exposure, together with increased cardiac wall thickness and altered glucose
metabolism [232]. These alterations may cause postnatal cardiac hypertrophy and altered
responses to oxidative stress [232]. In addition to higher cortisol release, stress triggers the
increase of norepinephrine and inflammation, which affect the foetal environment and lead
to infant health complications. This may lead to conotruncal heart defect and neural tube
defects in offspring, and the risk of delivering a low-birth-weight infant as well as preterm
birth [233].

6.5. Chemical Exposure

Exposure to environmental pollutants may cause severe toxicity problems, resulting
in infertility, early spontaneous abortion, developmental defects or cancer [178]. Pesticides,
antibiotics and industrial excipients are chemical substances widely used in agriculture,
medicine, and the chemical industry. It is well known that they can circulate from the ma-
ternal blood into the developing embryo or foetus via the placenta, causing developmental
toxicity as well as malfunction of organs after birth, such as the heart [178]. A low concen-
tration of flusilazole, a pesticide agent, can inhibit the differentiation of mESCs into CMs. In
addition, this substance decreases the viability of mESCs by about 50% and reduces cardiac
differentiation rate in a dose-dependent manner, leading to a significant change of cardiac
differentiation-related gene expression [234,235]. On the other hand, some antibiotics are
known to cause cardiac disorders like cardiac arrhythmias. A clear example is provided by
sparfloxacin and levofloxacin that were shown to markedly change the frequency and rate
of beating in mESC-CMs [236]. Furthermore, industrial excipients play a critical role in
developmental toxicity [178]. For example, trichloroethylene hinders the CMs maturation
and the Ca2+ dependent contractibility in hESC-CMs, while perfluorooctane sulfonate
alters the expression of cardiac-specific genes and can induce mitochondrial damage in
mESC-CMs [237,238]. Moreover, bisphenol A (BPA) is an organic compound used in
the production of various materials like plastics and, due to its accumulation in human
tissues and organs, it is potentially harmful to human health [239]. Exposures to BPA
on mESC-CMs affected the morphology of the cells, enlarging the cardiomyocyte size,
increasing collagen expression and damaging the mitochondria [240]. On the other hand,
hESC-CMs exposed to non-cytotoxic BPA concentrations showed higher expression of
hypertrophic-related transcript levels (such as NPPA and NPPB), increased cellular size
and reduced ATP provision due to changes in mitochondria features [241]. Due to its
hormone-like properties, BPA may bind to oestrogen receptors [239,242]. Notably, BPA
embryonic exposure seems to affect the cardiac phenotype through the oestrogenic and
epigenetic pathways, increasing the expression of the oestrogen receptor (ESR2b) and
promoting the over-expression of a histone acetyltransferase (KAT6a), which causes an
increase in histone acetylation. Both mechanisms might act in synergy and can lead to the
upregulation of HAND2, a crucial factor for CMs differentiation [242]. The overexpression
of HAND2 has been correlated previously with excessive proliferation of cardiac progenitor
cells, leading to malformations in the heart tube and the ventricular outflow tract [243]. A
summary of the models revised above is shown in Table 2.
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Table 2. Effect of several stressors on pluripotent stem cell-derived cardiomyocytes.

Model Condition Stimulus Key Phenotype Reference

hESC-CMs Hyperglycemia High-glucose exposure
â CM maturation inhibition
â Suppression of TNNT2, NKX2-5 (cardiac markers) and
PPARGC1A (mitochondrial marker)

[123]

hiPSC-CMs (3D
microtissues) Hyperglycemia High-glucose exposure

â Alteration in self-assemble into 3D model and in
calcium handling function [161]

hiPSC-CMs Hyperglycemia High-glucose exposure
â Pathological hypertrophy
â Reduced contractility [164]

hiPSC-CMs Insulin resistance High-palmitate exposure â Oxidation capacity of mitochondria overloaded [166]

hESC-CMs Insulin resistance TNFα and FFA exposure
â Increase of NFKB1, IL6 and CXCL8 (proinflammatory
markers)
â Inhibition of PPARGC1A (mitochondrial marker)

[165]

hESC-CMs HLHS Hypoxia for 72 h
â Increase of HIF1α expression
â DNA damage, senescence, reduced cell proliferation
and fewer cardiac progenitors

[174]

miPSC-CMs Hypoxia Hypoxia for 24 h â Long-term failure contractile phenotype [173]

P19 ECC derived CMs Oxidative stress Different dose-dependent
stimuli (e.g., H2O2)

â Impairment of differentiation and contractile
phenotype of CMs [184]

hiPSC-CM Oxidative stress Ethanol exposure
â Reduction of cell viability, increase of cell loss and
overproduction of ROS
â Abnormal calcium handling

[195]

mESC-CMs Toxicity effects Ethanol exposure

â Delay of cardiac differentiation and suppression of
Wnt/β-catenin signalling pathway
â Suppression of important cardiac transcripts required
for the differentiation and maturation

[215]

mESC-CMs Oxidative stress Cigarette smoke
â Impairment of cardiac-specific genes expression
â Pathological heart remodelling [218]

hESC-CMs Nicotine toxicity Nicotine exposure
â Reduced viability of hESC
â Ca2+ signalling affected in CMs [212]

hiPSC-CMs Smoke toxicity Electronic and regular
smoke extract

â Slowed beating
â Increased ROS and cell death
â Genes’ alteration (MYLK, NPPA, TNNT2, TNNI3)

[221]

hIPSC-CMs Hormones Thyroid and
glucocorticoids exposure

â Improvement of CMs maturation [224,225]

mESC-CMs Chemicals Flusilazole exposure
â Inhibition of cardiac differentiation and changes in
CMs gene expression [234,235]

mESC-CMs Chemicals Sparfloxacin and
Levofloxacin

â Alteration of the frequency and rate of beating of CMs [236]

hESC-CMs Chemicals Trichloroethylene and
Perfluorooctane sulfonate

â Altered expression of cardiac specific genes
â Mitochondrial damage [237,238]

mESC-CMs Organic compounds BPA exposure
â Altered CMs morphology
â Mitochondrial damage [240]

hESC-CMs Organic compounds BPA exposure
â Altered CMs morphology
â Higher expression of NPPA, NPPB
â Reduced ATP provision

[241]
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7. Concluding Remarks

Here we summarised the main features of the DOHaD concept, highlighting that several
stress factors during foetal and perinatal life can influence the future health of the individual
and increase susceptibility to adult diseases, such as CVD. The epigenetic state can be modified
by maternal environmental influences, such as high glucose, oxidative stress, hypoxia, which
in turn alter DNA methylation and modify histones [7]. Moreover, a wide variety of environ-
mental toxicants including cigarette, alcohol, chemicals and hormones have a role in epigenetic
aberrations [7,213]. Since there is an obvious connection between altered conditions during the
PC period and the risk for the offspring to develop CVD in adulthood, studying alterations
during early cardiac development might allow efficacious disease prediction and prevention
for future generations. In such case, the use of PSC-CM becomes essential to study the onset of
CVD, given their incidence later in adult life.

The advent of PSC technology has permitted assessing the tissue functional properties
and studying the stages of tissue development, enabling to recapitulate organ-like complexity
and functionality. PSCs may be a useful tool to investigate early developmental toxicities of
various stress due to their pluripotency that recapitulates the dynamic nature of embryonic
development. Recently, PSC-CMs have also become an important in vitro model for toxicity
screening [212,244]. This tool may help to understand better the degree of individual, genetic
susceptibility to stressor-induced cardiotoxicity. However, stress exposure in vitro, for practical
reasons, is different from the in vivo stress exposures occurring over a longer period of time
and in variable doses. Developing a more sophisticated in vitro model system with longer
differentiation time might help to overcome the current limitations. Moreover, comparing
the exposure effects in variable specific time points of the in vitro cardiac differentiation and
extrapolating to in vivo development might allow to generate data comparable to the stress
exposures occurring in vivo. Detecting the most sensitive stages of differentiation in vitro would
be helpful to identify such in vivo stages, too. In addition, the PSC-CMs models discussed in
this review showed that stress exposure leads to epigenetic alterations, such as dysregulation of
genes involved in CMs differentiation or functionality, which are studied to investigate the role
of structural epigenetic changes in the heart during early development. Even if PSCs can be an
effective model to reduce the use of experimental animals, which is costly and time-consuming,
and involves numerous ethical issues, using PSCs instead of animals is still a controversial
issue because it is difficult to predict the in vivo results with only in vitro data [66]. Moreover,
even if the features of PSC-CMs are improving due to numerous efforts [245], differentiation
methods still need further improvement to reach the desired degree of maturity. Indeed, this
represents a major difficulty to recapitulate the adult phenotype and, therefore, an adult disease
modelling observed in vivo. On the other hand, the maturation of ESC/iPSC-derived CMs
from embryonic stage represents a unique opportunity to evaluate the disease progression from
early stages of development to the adult tissue and to understand late-onset changes, as well.

In the near future, it will be essential to efficiently identify determinants of NCDs
during the entire life course, including the PC period that is a (perhaps the most) critically
important period in which it might be possible to intervene to improve human health
during the rest of the life course. The most challenging part will be to define the epigenetic
basis of DOHaD and whether epigenetic environmental changes associated with CVD risks
are heritable. The reprogramming process from patient somatic cells to iPSC is removing
the majority of epigenetic marks. The experimental reestablishment of epigenetic markers
during differentiation might offer insights on understanding the role of genetic background
in individual responses to environmental stressors contributing to DOHaD. Subsequently,
it will be relevant to propose appropriate interventions to reduce an individual’s risk of
developing these conditions.
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