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Abstract
Background: A detailed understanding of an RNA's correct secondary and tertiary structure is
crucial to understanding its function and mechanism in the cell. Free energy minimization with
energy parameters based on the nearest-neighbor model and comparative analysis are the primary
methods for predicting an RNA's secondary structure from its sequence. Version 3.1 of Mfold has
been available since 1999. This version contains an expanded sequence dependence of energy
parameters and the ability to incorporate coaxial stacking into free energy calculations. We test
Mfold 3.1 by performing the largest and most phylogenetically diverse comparison of rRNA and
tRNA structures predicted by comparative analysis and Mfold, and we use the results of our tests
on 16S and 23S rRNA sequences to assess the improvement between Mfold 2.3 and Mfold 3.1.

Results: The average prediction accuracy for a 16S or 23S rRNA sequence with Mfold 3.1 is 41%,
while the prediction accuracies for the majority of 16S and 23S rRNA structures tested are
between 20% and 60%, with some having less than 20% prediction accuracy. The average prediction
accuracy was 71% for 5S rRNA and 69% for tRNA. The majority of the 5S rRNA and tRNA
sequences have prediction accuracies greater than 60%. The prediction accuracy of 16S rRNA
base-pairs decreases exponentially as the number of nucleotides intervening between the 5' and 3'
halves of the base-pair increases.

Conclusion: Our analysis indicates that the current set of nearest-neighbor energy parameters in
conjunction with the Mfold folding algorithm are unable to consistently and reliably predict an
RNA's correct secondary structure. For 16S or 23S rRNA structure prediction, Mfold 3.1 offers
little improvement over Mfold 2.3. However, the nearest-neighbor energy parameters do work
well for shorter RNA sequences such as tRNA or 5S rRNA, or for larger rRNAs when the contact
distance between the base-pairs is less than 100 nucleotides.
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Background
The biological functions of 16S, 23S and 5S rRNAs,
tRNAs, telomerase RNA, Group I and II introns, RNaseP,
and other structural RNAs are dictated by their three-
dimensional structures. Thus, an accurate depiction of an
RNA's secondary and tertiary structure is fundamental for
our understanding of the mechanisms and consequences
of its function, and an accurate prediction of an RNA fold-
ing into its secondary and tertiary structure from its pri-
mary structure will have a significant effect on our study
of molecular biology. This RNA folding problem is usu-
ally divided into two components: the first is the determi-
nation of an RNA's folding pathway, and the second is the
accurate and reliable prediction of an RNA's secondary
and tertiary structure from its primary structure. In this
paper, we focus on the second aspect and in particular
RNA secondary structure prediction, which is a difficult
problem. It has been estimated that the number of sec-
ondary structures models is greater than 1.8n, where n is
the number of nucleotides (nt) in the sequence[1]. For
example, Saccharomyces cerevisiae Phe-tRNA is only 76 nt
in length and has an estimated 2.5 × 1019 secondary struc-
ture models, while a larger RNA, such as the 16S rRNA
from Escherichia coli, with 1542 nt, has an estimated total
of 4.3 × 10393 possible secondary structure models.

The most popular method for predicting RNA secondary
structure from a single sequence is free energy minimiza-
tion using a dynamic programming approach[2,3], based
on energy parameters determined according to the near-
est-neighbor model[4-10]. Programs based on this tech-
nique include Mfold[2,11], RNAStructure[12,13] and
RNAFold[14]. Mfold is the most popular program in use
today. By default, Mfold determines the optimal (mini-
mum energy) structure and a set of suboptimal foldings
that are within 12 kcal/mol (default setting) of the mini-
mum energy structure. The set of suboptimal foldings
exists and covers such a large energy range due to uncer-
tainties in the thermodynamic data[2]. Mfold applies the
following constraints: 1) only G:C, A:U and G:U base-
pairs are formed (due to limitations of the energy param-
eters), 2) hairpin loops have at least three bases, and 3) no
pseudoknotted structures are formed[15]. Attempts have
been made to characterize the reliability of an RNA sec-
ondary structure prediction using dot plots[16].

Comparative analysis is another method for predicting
RNA secondary and some tertiary structure[17-25]. Com-
parative analysis of RNA sequences and structures is a
knowledge-based technique based on two fundamental
assumptions: 1) different, homologous RNA sequences
are capable of folding into the same secondary and terti-
ary structure, and 2) during the course of evolution, the
secondary and tertiary structure of an RNA molecule
remains mostly unchanged, while the primary structure

can change significantly. The accuracy of the comparative
method has recently been established using high-resolu-
tion crystal structures for the 30S and 50S ribosomal sub-
units[26,27]. Over 97% of the secondary structure base-
pairs predicted by comparative analysis are present in the
crystal structures[28].

The superior performance of the comparative method
may lead one to incorrectly assume that the other meth-
ods for RNA secondary structure prediction are no longer
necessary. Different methods for predicting RNA second-
ary structure are utilized in different situations and can
have different objectives. Free energy minimization based
RNA structure prediction methods are usually applied to
a single RNA sequence. The most energetically stable RNA
secondary structure(s) that are composed of canonical
G:C, A:U, and G:U base-pairs and organized into standard
helices are predicted. Non-canonical base-pairs and base-
pairs not in standard helices cannot be predicted at this
time. In contrast, RNA comparative sequence analysis
methods predict a structure by searching an alignment for
base-pairings that are common to all sequences in the
dataset. This latter method can accurately predict canoni-
cal and non-canonical base-pairs that occur in secondary
and tertiary structures. However, RNA comparative analy-
sis is an iterative process requiring substantial sequence
data, accurate sequence alignments, and the analysis of a
structure that is common to all of the sequences in the
dataset. In order to create an initial alignment, sequences
must have significant identity to be aligned accurately
while having sufficient variation (and covariation) to
identify potential base-pairs and posit a structural hypoth-
esis. The structural hypothesis is subsequently tested,
refined, and expanded by the addition of more sequences
to the alignment. Much of this process is still done manu-
ally, as computational tools to automate the process do
not currently exist. The most recent comparative structure
model for SSU rRNA is based on an alignment of 7,000
sequences[28]. The data was collected and the model was
refined over a period of 20 years. The sequences included
in this analysis are very diverse, spanning the entire tree of
life.

In 1995 and 1996, the Gutell Lab conducted two compre-
hensive studies that: 1) determined how well the optimal
secondary structure model predicted with the program
Mfold (version 2.3) matched the structure model deter-
mined with comparative analysis for a set of 16S and 23S
rRNAs, and 2) examined other aspects of the folding, such
as the prediction accuracy of "short-range" base-pairs
(base-pairings where the 5' and 3' halves of the base-pair
are separated by 100 nt or less), or the prediction accuracy
for base-pairs in different loop environments, to learn
more about differences between the thermodynamic and
comparative models[29,30]. The most significant findings
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from those studies were: 1) the average accuracy of the
optimal prediction for a 16S rRNA was 46% while the
average accuracy for a 23S rRNA was 44%. 2) The accura-
cies of the predicted secondary structure models for at
least one individual 16S or 23S rRNA sequence were as
high as 80% and as low as 10%. 3) On average, the
Archaeal rRNAs were predicted with the highest accuracy,
followed by the (eu)-Bacterial and Chloroplast, then
Mitochondrial and Eukaryotic Nuclear rRNAs. 4) Short-
range pairings, which comprised 75% of the total compar-
ative base pairings for both 16S and 23S rRNA, were pre-
dicted more accurately than long-range pairings (base-
pairings where the 5' and 3' halves of the base-pair are sep-
arated by more that 100 nt). 5) Base-pairs closing hairpin
loops were predicted more accurately than those closing
internal and multistem loops.

Since those studies were completed in 1995, four new
developments have directly affected RNA structure predic-
tion. 1) A new version of Mfold (3.1) was released with
energy parameters revised to include sequence depend-
ence and different secondary structure motifs[31]. 2) The
accuracy of the comparative model for ribosomal RNA
was established[28] with high-resolution crystal structure
data from both the small and large ribosomal subu-
nits[26,27]. 3) The number of available 16S and 23S
rRNA secondary structures determined by comparative
analysis increased significantly[24]. 4) Faster computers,
which have significantly decreased the time it takes to fold
an individual sequence, had become available to facilitate
large-scale folding studies. These developments afforded
us the opportunity to do a comprehensive re-evaluation
of Mfold.

For more than 20 years, the basic paradigm for RNA sec-
ondary structure prediction, from a single sequence, has
essentially remained the same: global free energy minimi-
zation with refinements to the nearest-neighbor energy
parameters and minimization algorithms in an attempt to
improve prediction accuracy. Refinements to the energy
parameters, summarized in multiple sources[31-33],
included measures for effects such as base-pair mis-
matches, base-pair positioning in helices, internal, bulge
and multistem loops, and coaxial stacking. Newer ver-
sions of the program Mfold included these refinements in
energy parameters in addition to improvements in the
folding algorithm[31,34,35]. We questioned whether the
improvements in the energy parameters and the algo-
rithms could result in dramatic improvements in the accu-
racy and reliability of RNA secondary structure prediction
programs such as Mfold, or would the energy-based RNA
folding approach need to be fundamentally altered.

To begin to address this question, we analyzed the ability
of Mfold 3.1 to predict RNA secondary structure models

determined with comparative analysis. In addition, we
compared the predictions and accuracies of Mfold 3.1
with its predecessor, Mfold 2.3, for a large set of phyloge-
netically diverse 16S and 23S rRNA sequences. All metrics
considered in previous studies to evaluate the accuracy of
Mfold 2.3[29,30] were revisited here. In addition, we ana-
lyzed the suboptimal population of predicted secondary
structures and characterized metrics such as the number of
suboptimals that were better (or worse) than the optimal
structure prediction, the total number of comparative
base-pairs observed, and the number of times a given
base-pair is predicted in a set of optimal and suboptimal
structure predictions. Only the most significant findings
and metrics were discussed here; the reader is referred to
the website[36] for a detailed presentation of all results
from this analysis.

Results
Comparative structure database
The dataset assembled for this study was significantly
larger than previous studies comparing RNA structure
models predicted by comparative analysis and the Mfold
folding program[29-31,35]. In particular, the 1995 and
1996 studies conducted by the Gutell Lab with Mfold 2.3
analyzed only 56 16S[29] and 72 23S[30] rRNA
sequences respectively, and the 1999 study by Mathews et
al. with Mfold 3.1 analyzed a total of 151,503 nt and
43,519 comparatively predicted canonical base-pairs (i.e.,
G:C, A:U and G:U) from 955 sequences, which included
22 16S, 5 23S, and 309 5S rRNA sequences, 484 tRNA
sequences 23 Group I and three Group II intron
sequences, 91 SRP sequences, and 16 RNase P
sequences[31]. For this study, our sequence set included
all three types of rRNA (5S, 16S and 23S) and Type I tRNA.
As shown in Table 1, we analyzed a total of 1,411 RNA
sequences, encompassing 1,505,143 nt and 385,854
canonical secondary structure base-pairs. Of the 1,411
sequences analyzed, 569 were tRNA, 496 were 16S rRNA,
256 were 23S rRNA, and 90 were 5S rRNA.

While the size of the comparative structure databases
increased significantly between this study and previous
Gutell Lab studies, only minor differences exist between
the 1995 and 2004 versions of the 16S and 23S rRNA
comparative structure models. For the 2004 version of the
Haloferax volcanii 16S rRNA secondary structure model, 30
base-pairs were added, 17 base-pairs were removed, and
427 base-pairs remained unchanged, resulting in a net dif-
ference of approximately 3% in the total number of base-
pairs in the model. Similar numbers were observed for the
other comparatively predicted structures evaluated. The
comparative structure database used by Mathews et
al.(1999) utilized known modified nucleotide informa-
tion in tRNA to limit the base-pairing potential for those
nucleotides that are modified[31]. In this study, rRNA or
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Table 1: Distribution of Comparatively Predicted Secondary Structure Models Analyzed

5S rRNA 16S rRNA 23S rRNA tRNA Total

Structures 90 496 256 569 1,411
Total AGCU Nucleotides1 10,777 724,475 712,575 42,283 1,490,110
Total Nucleotides2 10,819 736,412 714,723 43,189 1,505,143
Total Comparative Pairings3 3,107 191,994 178,958 11,796 385,854
Average Sequence Length 120 1,485 2,792 76 -
Average Pairings/Structure3 35 387 699 21 -
Phylogenetic Distribution

Archaea 12 23 17 76 128
Bacteria 28 195 75 155 453
Eucarya

Nuclear 45 133 52 207 437
Chloroplast 4 33 31 131 199
Mitochondrion 1 112 81 - 194

Pairwise Sequence Identity4 Archaea Bacteria Nuclear Chloroplast Mitochondrion
16S rRNA

< 80% Identity 380 / 75% 32,456 / 86% 16,574 / 94% 746 / 71% 12,332 / 99%
< 50% Identity 0 / 0% 0 / 0% 8,500 / 48% 98 / 9% 9,852 / 79%
>= 95% Identity 16 / 3% 1,588 / 4% 212 / 1% 4 / 0.4% 12 / 0.1%
Total Pairs 506 37,830 17,556 1,056 12,432

23S rRNA
< 80% Identity 236 / 87% 5,214 / 94% 2,568 / 97% 710 / 76% 6,394 / 99%
< 50% Identity 0 / 0% 0 / 0% 1,960 / 74% 62 / 7% 5,830 / 90%
>= 95% Identity 6 / 2% 42 / 1% 8 / 0.30% 18 / 2% 8 / 0.1%
Total Pairs 272 5,550 2,652 930 6,480

tRNA Amino Acid Distribution5 Archaea Bacteria Nuclear Chloroplast Total
Alanine (Aln) 13 14 6 5 38
Arginine (Arg) 4 9 17 12 42
Asparagine (Asn) 3 9 10 3 25
Aspartic acid (Asp) 4 4 12 6 26
Cysteine (Cys) 2 5 3 5 15
Glutamine (Gln) 3 6 13 4 26
Glutamic acid (Glu) 4 8 23 8 43
Glycine (Gly) 6 18 17 9 50
Histidine (His) 3 6 10 7 26
Isoleucine (Ile) 3 16 8 10 37
Leucine (Leu) - - - - -
Lysine (Lys) 3 8 15 4 30
Methionine (Met) 4 7 7 9 27
Phenylalanine (Phe) 3 6 16 10 35
Proline (Pro) 5 10 12 8 35
Serine (Ser) - - - - -
Threonine (Thr) 7 14 6 10 37
Tryptophan (Trp) 1 6 3 10 20
Tyrosine (Tyr) 2 - 6 3 11
Valine (Val) 6 9 23 8 46

Total 76 155 207 131 569

1 Considers only A, G, C or U nucleotides.
2 Considers all nucleotides.
3 Includes only G:C, A:U and G:U base-pairings predicted with comparative analysis.
4 Average sequence identities for all pairwise comparisons between sequences. Number of pairwise comparisons equals (n2-n) where n is the 
number of sequences considered.
5 Only Type I tRNAs are considered.
Page 4 of 22
(page number not for citation purposes)



BMC Bioinformatics 2004, 5:105 http://www.biomedcentral.com/1471-2105/5/105
tRNA base modifications were not taken into account. A
simple analysis of our tRNA dataset shows that 70% of
our tRNA sequences came from genomic DNA sequences:
as a result, no modification data was available for those
sequences. For the remaining 30%, the number of modi-
fications that could prevent A-form helix formation was
minimal; between only 1 to 5 modifications per sequence.

Our dataset was extremely diverse in sequence and struc-
ture and included sequences from each of the three major
phylogenetic domains, the Archaea, Bacteria, and
Eucarya[37]. The eukaryotic dataset included sequences
encoded in the Nucleus, Chloroplast and Mitochondrion.
Since a dataset with sequences that were nearly identical
would be less useful than a dataset with significant varia-
tion between the sequences, we characterized the diversity
of the sequences in our dataset by calculating sequence
identity for all pairs of 16S and 23S rRNA sequences
within the different phylogenetic classifications of our
dataset.

For our 16S rRNA dataset, 75% of the Archaeal, 86% of
the Bacteria, 71% of the Chloroplast, 99% of the Mito-
chondrial, and 94% of the Eukaryotic Nuclear sequence
pairs had less than 80% sequence identity, while only 4%
or fewer of the pairs in a given phylogenetic classification
had 95% or more sequence identity (Table 1). Moreover,
79% of the Mitochondrial and 48% of the Eukaryotic
Nuclear 16S rRNA sequence pairs had less than 50%
sequence identity (Figure 1). The 23S rRNA dataset exhib-
ited even more diversity than the 16S rRNA dataset, as
87% of the Archaeal, 94% of the Bacteria, 76% of the
Chloroplast, 99% of the Mitochondrial, and 97% of the
Eukaryotic Nuclear sequence pairs had less than 80%
sequence identity, while 2% or fewer of the sequence pairs
in a given phylogenetic classification had more than 95%
sequence identity (Table 1). This demonstration of signif-
icant sequence variation between sequences in the same
phylogenetic categories reveals the relative independence
of the sequences within our dataset.

RNA secondary structure prediction
The most important parameters used to control RNA sec-
ondary structure prediction by Mfold are window size
(W), percent suboptimality (P), and the inclusion or
exclusion of additional energy calculations based on coax-
ial stacking (efn2). The percent suboptimality variable
establishes the energy range for computed foldings. The
range is ∆Gmin to ∆Gmin + ∆∆G, where ∆∆G is P% of ∆Gmin.
The window size variable establishes the difference
between the suboptimal folds by requiring that given
folding has at least W base-pairs that are at least a distance
W from any base-pairs in the foldings already computed.
The program efn2 is used to re-compute the energetics of
each predicted structure based on coaxial stacking oppor-

tunities with the structure. The structures are then re-
ordered by the modified ∆G and a new optimal structure
is selected. Previous studies by the Gutell Lab, Konings et
al.[29] and Fields et al.[30], with Mfold 2.3 used window
sizes of 10 and 20, respectively, with no efn2 re-evalua-
tion; the selection of window size was limited by the com-
putational resources available at the time the studies were
conducted. Mathews et al.[31] used Mfold 3.1 with a win-
dow size of 0, percent suboptimality of 20%, and efn2 re-
evaluation.

Each of the 1,411 sequences in our dataset was folded
with Mfold 3.1, using a window size (W) of 1, percent
suboptimality (P) of 5%, and maximum number of sub-
optimal foldings (MAX) of 750. The optimal, or mini-
mum, free energy prediction and 749 suboptimal
predictions were determined after re-ordering the struc-
ture predictions by the efn2 re-computed energetics.
(Note: some sequences did not yield 749 suboptimal
structure predictions under the folding conditions used in
this study.) We configured the folding of our RNA
sequences to: 1. maximize the number of structures pre-
dicted for any given sequence, 2. densely sample the sub-
optimal population close to the minimum free energy
structure, since the structure with the lowest free energy
(based on nearest-neighbor energetics) is expected to be
most similar to the structure observed in nature for the
free energy minimization techniques, and 3. to include
coaxial stacking in the energy calculations with the efn2
option in Mfold 3.1.

The only difference between the run parameters from the
previous Gutell Lab studies and this study was the signifi-
cantly smaller window size used in the current study. The
difference in window size affects the number of
suboptimal structures computed. Since the previous
Gutell Lab studies did not include any energy re-computa-
tion and re-ordering of predicted structures for potential
coaxial stacking, this difference would not have a signifi-
cant impact on the results.

The study by Mathews et al. used different values for per-
cent suboptimality and window size in computing subop-
timal structure predictions. The net result of the difference
is that the Mathews et al. study considered suboptimal
structures with energy values further away from the mini-
mum free energy prediction than in our study. This differ-
ence could have an impact on the results since the
Mathews et al. study may include a structure prediction for
a given sequence that is not very energetically stable (and
would be excluded from the suboptimal population in
our study) but upon efn2 re-ordering becomes the mini-
mum energy structure. If this predicted structure was more
accurate than any other prediction in the population, the
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Mathews et al. study would reflect a higher prediction
accuracy score for that given sequence.

Overall accuracy for RNA structure prediction with Mfold 
3.1
Given that 97–98% of the RNA secondary structure base-
pairs predicted with comparative analysis were verified
with the high resolution crystal structures[28], we scored
the accuracy of the structures predicted with Mfold 3.1 by

quantifying how well the optimal (minimum energy)
structure prediction matched the comparative structure
model for each sequence in our dataset. Results were only
based on sequences folded in their entirety. We calculated
accuracy by dividing the number of comparative base-
pairs that were predicted exactly with Mfold by the total
number of canonical base-pairs in the comparative model
(excluding any base-pairs with IUPAC symbols other than
G,C,A or U, see Prediction Accuracy Calculations in Meth-

Direct Comparison of Mfold 2.3 and Mfold 3.1 Folding Accuracy for Selected 16S and 23S rRNAsFigure 1
Direct Comparison of Mfold 2.3 and Mfold 3.1 Folding Accuracy for Selected 16S and 23S rRNAs. Base-pairs 
marked in red are predicted correctly by both Mfold 2.3 and Mfold 3.1. Base-pairs marked in blue are predicted correctly only 
by Mfold 2.3, and base-pairs marked in green are predicted correctly only by Mfold 3.1. Black base-pairs are not predicted cor-
rectly by either version of Mfold. Only canonical base-pairs in the comparative models in the current study and previous Gutell 
Lab studies are considered. Non-canonical base-pairs in the comparative structure models are not counted. Full-sized versions 
of each annotated structure diagram are available at our website[36]. A: Archaea 16S rRNA Haloferax volcanii. B.1: Archaea 23S 
rRNA, 5' half, Thermococcus celer. B.2: Archaea 23S rRNA, 3' half, Thermococcus celer. C: Eukaryotic Nuclear16S rRNA, Giardia 
intestinalis. D.1: Eukaryotic Nuclear 23S rRNA, 5' half, Giardia intestinalis. D.2: Eukaryotic Nuclear 23S rRNA, 3' half, Giardia 
intestinalis.
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ods). This method for calculating accuracy was the same
as the previous Gutell Lab studies that utilized Mfold
2.3[29,30], with the exception that previous studies
excluded comparative base-pairs that were pseudoknotted
from consideration.

In contrast, base-pairs predicted with Mfold 3.1 in the
Mathews et al.[31] study were considered correct if: 1. they
matched a comparatively predicted base-pair exactly or 2.
either nucleotide of the Mfold predicted base-pair (X,Y
where X and Y are the positions of the nucleotides in the
sequence) is within one nucleotide of its comparatively
predicted position (X, Y ± 1 or X ± 1,Y). While the Math-
ews et al. study included a measure of the percentage of
comparative base-pairs considered pseudoknotted, we
were unsure if those base-pairs were specifically excluded
from their accuracy calculations. Based on these differ-
ences in the accuracy calculations, the Mathews et al. study
is reporting higher accuracies than our study.

Direct comparisons between the current study and the
two previous Gutell Lab studies are meaningful due to the
use of similar methodologies to calculate prediction accu-
racy. The only difference is the scoring method between
the studies is the exclusion of pseudoknotted base-pairs
from previous Gutell Lab studies. However, direct com-
parison of results between the current study and the Math-
ews et al. study are impacted by differences in the folding
parameters and the scoring criteria.

Raw folding accuracy
The compilation of the accuracies for each sequence and
the accuracy ranges for each RNA type and phylogenetic
grouping were summarized in Table 2. The average fold-
ing accuracies per sequence for 5S rRNA and tRNA, the
two smallest molecules in this study, were 71% and 69%
respectively. The study by Mathews et al. reported average
accuracy per sequence of 78% for 5S rRNA and 83% for
tRNA[31]. Accuracies for our sets of 5S rRNAs and tRNAs
were about 25% higher than the average accuracies for the
16S (41%) and 23S (41%) rRNAs. By comparison, the
Gutell Lab's previous studies using Mfold 2.3 reported an
average folding accuracy of 46% for 16S rRNA and 44%
for 23S rRNA[29,30]. The study by Mathews et al. reported
average accuracies (for folding complete RNA sequences)
of 51% for a dataset of 22 16S rRNAs and 57% for a data-
set of 5 23S rRNAs[31]. When considering only sequences
analyzed in previous Gutell Lab studies, the average pre-
diction accuracy with Mfold 3.1 was 45% for 16S rRNA
and 43% for 23S rRNA (Table 2).

Variation in observed folding accuracy
To gauge the variation in accuracy score for the optimal
structures predicted with Mfold, the percentages of scores
greater than 60% and less than 20%, the median accuracy

score, and the highest and lowest accuracy scores were
identified for the four RNA types (Table 2). This analysis
revealed a large range of accuracy scores with values signif-
icantly larger and smaller than the respective average
value. For our current analysis, the highest accuracy score
for the optimal structure for each RNA type was 100% for
tRNA (i.e., at least one of the predicted tRNA structures
had 100% of the base-pairs in the comparative model),
98% for 5S rRNA, 77% for 16S rRNA, and 74% for 23S
rRNA. In contrast, at least one of the optimal folds for 5S
rRNA or tRNA had a score of 0 (i.e., none of the base-pairs
in the comparative structure model were predicted with
Mfold). The lowest accuracy score was 5% for 16S rRNA
and 1% for 23S rRNA.

The median accuracy score observed for each RNA type
was 70% for tRNA, 81% for 5S rRNA, 41% for 16S rRNA
and 41% for 23S rRNA. For 16S and 23S rRNA the over-
whelming majority (86% for 16S rRNA and 89% for 23S
rRNA) of optimal structures predicted with Mfold had an
accuracy score greater than 20% and less than 60%, a
trend also observed in our previous studies (Table
2)[29,30]. The majority of optimal structures predicted
for 5S rRNA (77%) had an accuracy score greater than
60% (Table 2). For the tRNA, 60% of the optimal struc-
tures were predicted with accuracy greater than 60% and
39% of the optimal structures predicted with accuracy
between 20% and 60%. The percentage of predicted struc-
tures with an accuracy score below 20% was highest for
23S rRNA (6%); increased from 1% previously[30], fol-
lowed by 16S rRNA (4%); decreased from 9% previ-
ously[29], 5S rRNA (4%), and tRNA (2%) (Table 2). Our
website[36] contains a complete list of accuracy scores
and secondary structure diagrams indicating base-pairs
that were predicted correctly for all sequences in our
dataset.

Phylogenetic dependence in observed folding accuracy
Our previous thermodynamic-based folding analysis of
16S rRNAs[29] and 23S rRNAs[30] also revealed signifi-
cant variation in the accuracy scores within and between
the five major phylogenetic groups. For our current 16S
rRNA dataset, the Archaeal sequences had the highest
average accuracy (62%), while the Mitochondrial
sequences had the lowest average accuracy (30%).
Between these two extremes were the Bacteria (49%),
Chloroplast (46%), and Eukaryotic Nuclear (34%)
sequences (Table 3). These results were consistent with
our previous studies, except that the Archaeal and Bacte-
rial accuracy scores were slightly lower in our newer anal-
ysis (62% vs. 68% and 49% vs. 56%)[29]. For 23S rRNA
(Table 3), the Archaeal dataset again had the highest accu-
racy scores (58%), followed by the Bacterial (49%),
Eukaryotic Nuclear (42%), Chloroplast (39%), and Mito-
chondrion (30%). These results were also consistent with
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the trends observed in the previous studies, although the
accuracy values for the current study were slightly less
than the earlier analysis.

Direct comparison of structure predictions by Mfold 2.3 and Mfold 
3.1 for specific RNA sequences
To access specific differences between the optimal fold-
ings from Mfold 2.3 and Mfold 3.1 for select 16S and 23S
rRNA sequences, we mapped the base-pairs predicted with
both versions of Mfold onto the comparative structure
models for each sequence. Some of the base-parings were
predicted correctly with both versions of Mfold, other
base-pairings were predicted exclusively by one version,
while a third set of base-pairings were not predicted cor-
rectly with either version. The Haloferax volcanii 16S rRNA
(Figure 1A) and Thermococcus celer 23S rRNA (Figure 1 B.1

and B.2) sequences were generally predicted very well
with both versions of Mfold. Meanwhile, Giardia intestina-
lis 16S (Figure 1C) and 23S (Figure 1 D.1 and D.2) rRNA
sequences were predicted poorly with both versions of
Mfold. The base-pairings in the comparative model that
were missed by both versions of Mfold were generally
longer range (see Accuracy and the RNA Contact Distance).
This relationship between the comparative structure
model for G. intestinalis 16S and 23S rRNA and the poor
prediction of this structure with both versions of Mfold
(Figure 1C, D.1 and D.2) was representative of other
sequences predicted with low accuracy by Mfold 2.3. A
total of 9 out of 10 16S sequences and 7 of the 8 23S
sequences predicted with accuracy of 30% or less with
Mfold 2.3 were still predicted with less than 30% accuracy
with Mfold 3.1 (Table 4).

Table 2: Average Accuracy of the Optimal RNA Structure Predicted with Mfold 3.1†

5S rRNA 16S rRNA 23S rRNA tRNA

M1 C2 P1
3 M C P2

4 M C M5 C

Sequences 309 90 56 22 496 72 5 256 484 569
Accuracy6,7,8,9 78 ± 23 71 ± 24 46 ± 17 51 ± 16 41 ± 13

45 ± 16
44 ± 11 57 ± 14 41 ± 13

43 ± 12
83 ± 22 69 ± 24

High/Low10 98/0 81/10 77/5 74/19 74/1 100/0
Median 81 41 41 70
Distributions
≤ 20% acc11 4 9 4 1 6 2
≥ 60% acc12 77 25 9 6 5 60
20%<acc<60%13 19 66 86 93 89 39

†All values are percentages unless otherwise indicated. All averages are per sequence averages for folding complete sequences as defined in the Per 
Sequence Averages section in Methods. C, Current Study; P1, Previous Study by Gutell Lab for 16S rRNA[29]; P2, Previous Study by Gutell Lab for 
23S rRNA[30]; M, Previous Study by Mathews et al.[31]. Accuracies from all previous studies are for folding complete sequences.
1 All sequences from the Mathews et al. study (M) were folded with Mfold 3.1 using a window size (W) of 0, percent suboptimality (P) of 20%, 
maximum number of suboptimals (MAX) of 750 and efn2 re-evaluation and re-ordering. 
2 All sequences in the current study (C) were folded with Mfold 3.1 using a window size (W) of 1, percent suboptimality (P) of 5% and efn2 re-
evaluation and re-ordering 
3 All sequences in the previous Gutell Lab study on 16S rRNA (P1) were folded with Mfold 2.3 using a window size (W) of 10 and no efn2 re-
evaluation and re-ordering. 
4 All sequences in the previous Gutell Lab study on 23S rRNA (P2) were folded with Mfold 2.3 using a window size (W) of 20 and no efn2 re-
evaluation and re-ordering. 
5 Bases modified in tRNA that are subsequently unable to fit into an A form helix were constrained to be single-stranded. 
6 Comparative base-pairs that are pseudoknotted were excluded from the analysis in previous Gutell Lab studies (P1, P2), but were included in the 
current study. The Mathews et al. study included a measure of the percentage of pseudoknotted base-pairs in comparatively predicted structures 
they considered, but it was unclear if they were included in the analysis. 
7 In all studies, only canonical, comparative base-pairs (excluding any base-pairs with IUPAC symbols) were considered. For both the current study 
(C) and previous Gutell Lab studies (P1, P2), a predicted base-pair was considered correct only if it matched a comparative base-pair exactly. In the 
Mathews et al. (M) study, a base-pair was considered if: 1. it matched a comparatively predicted base-pair exactly or 2. either nucleotide of the 
Mfold predicted base-pair (X,Y where X and Y are the positions of the nucleotides in the sequence) is within one nucleotide of its comparatively 
predicted position (X, Y ± 1 or X ± 1,Y). 
8 Accuracy values in bold under the (C) columns for 16S and 23S rRNA represent average prediction accuracies in the current study for just the 
subset of sequences considered in the previous Gutell Lab studies.[29, 30]. The following sequences were considered in previous Gutell Lab 
studies, but excluded from the current study, Olisthodiscus luteus (16S rRNA, Chloroplast) and Sulfolobus solfataricus (23S rRNA, Archaea). 
9 When the efn2 re-evaluation and re-ordering step was omitted from our study, the average prediction accuracy was 40 ± 13 for 16S rRNA, 40 ± 
13 for 23S rRNA, 69 ± 24 for 5S rRNA, and 66 ± 24 for tRNA. For complete details, see our website[36]. 
10 Accuracy scores for the best and worst predicted structures in each group. 
11 Percentage of predicted structures with an accuracy of 20% or less. 
12 Percentage of predicted structures with an accuracy of 60% or higher. 
13 Percentage of predicted structures with an accuracy between 20% and 60%.
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Six significant results came from this section. 1) Direct
comparison of previous Gutell Lab studies with the cur-
rent study (in light of the significantly larger size and
richness in sequence variation of the comparative struc-

ture database for the current study and the inclusion of
comparative base-pairs in pseudoknots) suggests that
refinements in the energy parameters and folding algo-
rithm have not improved the accuracy of the Mfold pro-

Table 3: Average Accuracy of the Optimal RNA Structure Predicted with Mfold 3.1 Grouped by Phylogeny†

5S rRNA 16S rRNA 23S rRNA tRNA

C P1 C P2 C C

Archaea 79 / 98 / 29 68 / 81 / 55 62 / 77 / 51 59 / 74 / 51 58 / 74 / 40 73 / 100 / 32
Bacteria 62 / 94 / 18 56 / 69 / 39 49 / 68 / 21 53 / 66 / 45 49 / 66 / 31 74 / 100 / 0
Eucarya (n)1 75 / 94 / 0 30 / 47 / 10 34 / 50 / 15 41 / 60 / 23 42 / 63 / 21 61 / 100 / 0
Eucarya (c) 67 / 85 / 16 48 / 71 / 32 46 / 71 / 19 39 / 54 / 19 39 / 49 / 21 73 / 100 / 19
Eucarya (m) 31 / 56 / 17 30 / 60 / 5 38 / 57 / 24 30 / 61 / 1
Eucarya (m)2 31 / 60 / 5
Eucarya (m)3 33 / 60 / 16

†All values (average/high/low) shown as percentages unless otherwise indicated. The determination of the accuracy for the structures predicted 
with Mfold is described in the Methods section, RNA Secondary Structure Prediction and Prediction Accuracy Calculations. C, Current Study; P1, 
Previous study by the Gutell Lab for 16S rRNA[29]; P2, Previous study by the Gutell Lab for 23S rRNA[30].
1 (n), Nuclear-encoded sequences; (c), Chloroplast-encoded sequences; (m), Mitochondrial-encoded sequences. 
2 Based on comparative models with 100 or more canonical base-pairs only.
3 Based on comparative models with 300 or more canonical base-pairs only.

Table 4: RNA Folding Accuracy of Specific 16S and 23S rRNA Sequences using Mfold 2.3 and 3.1†

Previous[29, 30] Current

16S rRNA
Eukaryotic Mitochondrion

Zea mays (X00794) 17 30
Ascaris summ (X54253) 17 13
Caenorhabditis elegans (X54252) 23 24

Eukaryotic Nuclear
Hexamita sp. (Z17224) 27 29
Giardia muris (X65063) 22 29
Giardia ardeae (G17210) 30 33
Giardia intestinalis (X52949) 10 23
Encephalitozoon cuniculi (X98467) 18 21
Vairimorpha necatrix (Y00266, M24612) 28 25
Babesia bigemina (X59064) 20 19

23S rRNA
Eukaryotic Chloroplast

Astasia longa (X14386) 19 23
Eukaryotic Mitochondrion

C. elegans (X54252) 30 31
Gallus gallus (X52392) 28 25
Saccharomyces. cerevisiae (J01527) 27 20
Z. mays (K01868) 24 29

Eukaryotic Nuclear
E. gracilis (X53361) 23 21
G. intestinalis (X52949) 24 33

†All values are percentages unless otherwise indicated. The determination of the accuracy for the structures predicted with Mfold is described in 
the Methods section, RNA Secondary Structure Prediction and Prediction Accuracy Calculations. Genbank accession numbers are listed in parentheses 
for each sequence.
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gram between versions 2.3 and 3.1 for the set of 16S and
23S rRNAs analyzed. 2) The discrepancies between the
results of the Mathews et al. study and our study could be
due to the different methods by which the sequences were
folded and prediction accuracy calculated. 3) The accuracy
scores for the majority of the 16S and 23S rRNA secondary
structure models predicted with Mfold 2.3 and 3.1 were
between 20% and 60%, while the accuracy scores for the
majority of 5S secondary structure models predicted with
Mfold were greater than 60%. 4) Some secondary struc-
ture models predicted with Mfold 2.3 and 3.1 have
accuracy scores less than 20%. 5) The folding accuracy for
Archaeal rRNAs was the highest, followed by Bacterial,
Eukaryotic Chloroplast, Nuclear, and Mitochondrial
rRNAs. 6) Sequences that were well-predicted with Mfold
2.3 tend to be well-predicted with Mfold 3.1, and
sequences that were poorly-predicted using Mfold 2.3
tend to be poorly-predicted using Mfold 3.1.

Accuracy and the RNA contact distance
For a given protein, the average sequence separation
between pairs of amino acids involved in non-covalent
interactions is defined as the "Contact Order"[38]. Two
similar topological descriptions for non-covalent interac-
tions in RNA are: 1) "RNA Contact Distance" is the sepa-
ration on the RNA sequence between two nucleotides that
base-pair, and 2) "RNA Contact Order" is the average of
the RNA Contact Distances for a given RNA sequence. We
considered any base-pair with a contact distance of 100 nt
or less to be "short-range," a contact distance of 101–501
nt to be "mid-range," and a contact distance of 501 or
greater to be "long-range." The majority of base-pairs in
the 16S and 23S rRNA secondary structure models pre-
dicted with comparative analysis were short-range (Table
5), and previous studies have established that short-range
base-pairs are predicted more accurately than long-range
base-pairs[29,30]. In this section, we: 1) compared the
accuracies of the short-range interactions predicted with
Mfold 3.1 and Mfold 2.3, 2) compared the number of
short-, mid-, and long-range base-pairs in the comparative
models with those predicted by Mfold 3.1, and 3) deter-
mined the relationship between the base-pair prediction
accuracy and the contact distance for 16S rRNA.

Accuracy of Short-range interactions
The 496 16S rRNA comparative structure models in this
study were comprised of 191,994 canonical base-pairs. A
total of 145,058 (76%) of these base-pairs were short-
range, and 75,763 (52%) of these base-pairs were pre-
dicted correctly by Mfold 3.1 (Table 5). The average accu-
racy for short-range base-pairs was 50% per sequence
(Table 5) (see Per Sequence Averages in Methods for a dis-
cussion on how per sequence averages are computed). By
comparison, in the 1995 study, an average accuracy of

approximately 55% per sequence was observed for short-
range base-pairs[29].

For the 23S rRNA dataset, the 256 comparative structures
contained a total of 178,958 canonical base-pairs.
134,085 (75%) of the 23S rRNA comparative, canonical
base-pairs were short-range, and 67,130 (50%) of those
base-pairs were predicted correctly by Mfold 3.1 (Table 5).
The average prediction accuracy for short-range base-pairs
was 47% per sequence (Table 5). In the 1995 study, an
average accuracy of approximately 53% per sequence was
observed for short-range base-pairs[30].

Distribution by RNA contact distance of comparative and Mfold 
predicted base-pairs
A total of 223,957 base-pairs were predicted with Mfold
3.1 for our 16S rRNA dataset (Table 5). This was 31,963
more than in the 16S rRNA comparative structure models
(Table 5). Of the 223,957 base-pairs, 150,886 (67%) were
short-range and 73,071 (33%) were mid- or long-range.
Of the 150,886 short-range base-pairs, 75,763 (50%)
were correct while only 6,171 (8%) of the mid- and long-
range base-pairs were correct.

A total of 29,573 long-range base-pairs were predicted
with Mfold 3.1, while the comparative models contained
only a total of 3,932 long-range base-pairs; in other
words, 13% of the total number of 16S rRNA base-pairs
predicted with Mfold 3.1 were long-range while only 2%
of the comparatively predicted base-pairs were long-
range. Finally, of the 29,573 long-range base-pairs pre-
dicted by Mfold 3.1, only 193 (0.7%) were correct.

Similar results were observed for our 23S rRNA dataset
(Table 5). A total of 218,908 base-pairs were predicted by
Mfold 3.1; 137,780 (63%) were short-range, while 81,128
(37%) were mid- or long-range. 67,130 (49%) of the total
short-range base-pairs predicted were correct, but only
10,758 (13%) of the total mid- and long-range base-pairs
predicted were correct. Akin to the 16S rRNA dataset, a
total of 36,989 (17%) 23S rRNA long-range base-pairs
were predicted with Mfold 3.1, while only 7,752 (4%) of
the comparatively predicted base-pairs were long-range.
Only 1,317 of the 36,989 (4%) long-range base-pairs pre-
dicted by Mfold 3.1 were correct.

Relationship between prediction accuracy and RNA contact distance
These results prompted a more sophisticated analysis to
quantify the relationship between the accuracy of base-
pairs predicted with Mfold 3.1 and RNA contact distance.
Figure 2A shows the distribution of contact distances for
the 191,994 canonical base-pairs from the 496 16S rRNA
comparative structure models in this study. The frequency
of base-pairs observed decreases exponentially as contact
distance increases. Based on this observation, we divided
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the 191,994 16S rRNA comparative base-pairs into seven
somewhat equally-sized bins (within one order of magni-
tude of one another) by considering the contact distance
values on a logarithmic scale instead of a linear scale. (see
Logarithmic Binning of Base-pairs by Contact Distance for 16S
rRNA in Methods).

The Mfold prediction accuracy for each of these bins was
determined. The prediction accuracy was 61% for base-
pairs in the smallest contact distance bin, 3–8, 57% for

base-pairs in the 9–19 contact distance bin, 47% for base-
pairs in the 20–47 bin, 46% for the 48–117 bin, 15% for
the 118–293 bin, 7% for the 294–733 bin, and 0% for the
734–1833 bin (Figure 2B). The approximately linear rela-
tionship obtained from plotting the accuracy for logarith-
mically-scaled bins revealed an exponential relationship
between the accuracy of Mfold and the contact distance
(Figure 2B).

Table 5: Accuracy of Base-pairs Predicted with Mfold 3.1 as a Function of RNA Contact Distance†

16S rRNA 23S rRNA

RNA Contact Distance 496 Structures 256 Structures

Comparative Total Base-pairs % of Total Total Base-pairs % of Total

Total 191,994 100 178,958 100
2–100 145,058 76 134,085 75

2–50 121,170 63 106,534 60
51–100 23,888 12 27,551 15

101+ 46,936 24 44,873 25
101–500 43,004 22 37,121 21
501+ 3,932 2 7,752 4

Predicted with Mfold 3.1

Total 223,957 100 218,908 100
2–100 150,886 67 137,780 63

2–50 123,708 55 109,078 50
51–100 27,178 12 28,702 13

101+ 73,071 33 81,128 37
101–500 43,498 19 44,139 20
501+ 29,573 13 36,989 17

Correctly Predicted with Mfold 3.1 %C1 %M %C %M
Total 81,934 43 37 77,888 44 36
2–100 75,763 52 50 67,130 50 49

2–50 64,651 53 52 54,898 52 50
51–100 11,202 47 41 12,232 44 43

101+ 6,171 13 8 10,758 24 13
101–500 5,978 14 14 9,441 25 21
501+ 193 5 0.7 1,317 17 4

Avg. Percent Correct2 Current Previous[29] Current Previous[30]
2–100 50 55 47 53

2–50 52 - 49 -
51–100 44 - 40 -

101–200 22 15 26 35
201–300 10 14 22 21
301–400 9 13 13 10
401–500 4 12 16 13
501+ 4 - 14 -

†All base-pairs predicted in the comparative and the Mfold optimal structure predictions including those base-pairs predicted correctly (any base-
pairs with IUPAC symbols other than A,G,C, or U are excluded) are grouped by RNA contact distance for 16S and 23S rRNA. RNA contact 
distance is defined as the number of nucleotides intervening between the 5' and 3' halves of a base-pair. The determination of the accuracy for the 
structures predicted with Mfold is described in the Methods section, RNA Secondary Structure Prediction and Prediction Accuracy Calculations.
1 %C, the percentage of comparatively predicted base-pairs; %M, the percentage of Mfold predicted base-pairs.
2 The Per Sequence Average (see Per Sequence Average in Methods) percentage of comparative base-pairs in each distance category predicted 
correctly in the Mfold optimal structure predictions.
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Accuracy of Comparatively Predicted Base-pairs from 496 16S rRNA Sequences and RNA Contact DistanceFigure 2
Accuracy of Comparatively Predicted Base-pairs from 496 16S rRNA Sequences and RNA Contact Distance. 
A. The RNA contact distance (the number of nucleotides in the RNA sequence that are separates the 5' and 3' base-paired) 
for all 191,994 base-pairs in comparative structure models is determined and plotted. B. The 191,994 comparatively predicted 
base-pairs are divided into seven RNA contact distance bins (see Logarithmic Binning of Base-pairs by Contact Distance for 16S 
rRNA in Methods) represented by columns. The accuracies for all base-pairs in each bin are also plotted as points.
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Five significant results were observed from the analysis in
this section. 1) The accuracy of the predictions for short-
range base-pairings was similar for Mfold 3.1 and Mfold
2.3. 2) More base-pairs were predicted with Mfold for any
given sequence than in the corresponding comparative
structure model. 3) Significantly more long-range base-
pairs were predicted with Mfold 3.1 than in the compara-
tive structure models. 4) The number of base-pairs in the
comparative structure models decreases exponentially as
the contact distance increases. 5) Base-pairs with a contact
distance between 3 and 8 were predicted with the highest
accuracy (61%) by Mfold, and accuracy values decreased
exponentially as the RNA contact distance increases. The
complete set of results for the prediction of 16S and 23S
rRNA short-, mid-, and long-range base-pairs with Mfold
3.1 and comparisons with the comparative structure mod-
els are provided at our website[36].

Suboptimal foldings
One of the features of the dynamic programming algo-
rithm for free energy minimization employed by Mfold
was the ability to provide a set of suboptimal structure
predictions in addition to the minimum free energy or
optimal structure prediction[2,12]. Mathews et al.
included metrics which consider how suboptimal popula-
tion may impact the prediction accuracy[31]. In this sec-
tion, we introduce new metrics to continue the
examination of the suboptimal population using the 496
16S rRNA sequences in our dataset. Due to the differences
in the folding parameters and in the methods for comput-
ing accuracy, our survey of the suboptimal population
should not be directly compared with the Mathews et al.
study. Rather, our metrics provide a different perspective
from which to excogitate the importance of the subopti-
mal structure predictions. In particular, we considered: 1)
the amount of structural variation and the ∆∆G difference
(before efn2 based re-evaluation) for pairs of structure
predictions in the suboptimal population, 2) how many
additional unique, canonical base-pairs in the compara-
tive models were found in the suboptimal population,
and how many incorrect base-pairs were predicted, and 3)
which comparative base-pairs were predicted correctly in
all, an intermediate number, or no structure predictions,
in the set of suboptimal foldings.

Structural variation and ∆∆G difference for structure predictions in 
the suboptimal population
It has been previously noted that suboptimal structure
predictions can be very similar or very different from one
another[31]. Here we tested for a relationship between the
∆∆G (before efn2 based re-evaluation) and the structural
variation score (see Suboptimal Structural Variation Score in
Methods) for pairs of structure predictions within a sub-
optimal population. Higher structural variation scores
indicate that two structures compared were more different

from one another, while lower structural variation scores
indicate that two structures were more similar. We
analyzed the two 16S rRNA sequences with the highest
and lowest optimal accuracy before efn2 re-evaluation
and re-ordering in the Archaea dataset, Haloferax volcanii
and Methanospirillum hungatei. The accuracy for H. volcanii
based on the pre-efn2 minimum free energy structure pre-
diction was 80%, while M. hungatei was predicted at 46%
accuracy (Table 6). For the suboptimal population of each
sequence, we calculated the structural variation and the
difference in free energy for all possible pairwise compar-
isons. The total number of unique pairwise combinations
for each sequence was 280,875, based on a total of 750
structure predictions (optimal plus 749 from the subopti-
mal population).

For H. volcanii, 24,621 pairs (9%) of structure predictions
had a structural variation score of 501 or higher, while
134,44 pairs (48%) had a score of 100 or less (Table 6).
Thus, the majority of the structural predictions in the
suboptimal population were more similar with one
another. The observed ∆∆G range was the same for both
categories, 0–11 kcal/mol (Table 6). More striking was the
similarity in the average ∆∆G. For those pairwise compar-
isons with a structural variation score of 100 or less, the
average ∆∆G was ~2.60 kcal/mol (weighted) (Table 6).
For those pairwise comparisons with a structural variation
score of 500 or higher, the average ∆∆G was 2.24 kcal/mol
(Table 6). These results were summarized graphically in
Figure 3A.

In contrast with H. volcanii, our analysis for M. hungatei
revealed that a significant number of the structure predic-
tions were different from one another. A total of 103,462
pairs (37%) of structure predictions had a structural vari-
ation score of 501 or higher, while only 43,376 pairs
(16%) had a score of 100 or less (Table 6). The observed
∆∆G range was slightly smaller than in H. volcanii, 0–8.6
kcal/mol, while the average ∆∆G values were similar for
H. volcanii and M. hungatei. For the pairwise comparisons
with a structural variation score of 500 or higher, the aver-
age ∆∆G was 1.82 kcal/mol (Table 6). For those pairwise
comparisons with a structural variation score of 100 or
less, the average ∆∆G was ~2.05 kcal/mol (weighted)
(Table 6). These results were summarized graphically in
Figure 3B.

The most important observation from this section was
that the ∆∆G between two structure predictions appeared
to be independent of the similarity between the structure
predictions. For example, H. volcanii pairwise
comparisons with a structural variation score of 500 or
higher had an average ∆∆G of 2.24 kcal/mol, while those
pairwise comparisons where the score was 100 or less had
an average ∆∆G of ~2.60 kcal/mol (weighted). In other
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words, free energy alone was not sufficient to adequately
distinguish between different structure predictions. While
the results suggest that suboptimal structural variation
score could potentially be used as an indicator of the reli-
ability of the structure prediction by Mfold, further inves-
tigation is required to evaluate the extent of this
correlation.

Number of comparative base-pairs in the suboptimal population
For each individual 16S rRNA sequence, we identified the
set of unique comparative base-pairs present from the col-
lection of all base-pairs predicted in the suboptimal pop-
ulation. Since most comparative base-pairs were observed
in more than one suboptimal structure, the total number
of unique base-pairs observed was much lower than the
total number of comparative base-pairs in the suboptimal
population. Our entire 16S rRNA dataset of 496 compar-
ative structure models contained a total of 191,994
unique canonical, comparative base-pairs (Table 7).
81,934 of these canonical base-pairs were predicted with
Mfold 3.1 to be in a minimum free energy structure (after
efn2 re-evaluation and re-ordering), an average accuracy
of 41% per sequence (Table 7) (see Per Sequence Average in

Methods). However, when considering the entire subop-
timal population of structure predictions for each
sequence, a total of 137,000 comparative canonical base-
pairs were predicted correctly by Mfold, an average accu-
racy of 71% per sequence (Table 7). This represented a
30% increase in the average number of base-pairs in the
comparative model that were predicted correctly per
sequence. The average accuracy per sequence for an
Archaeal, Bacterial, Eukaryotic Nuclear, Chloroplast, and
Mitochondrial sequence increased by 21%-41% respec-
tively (Table 7), and the largest increase for a single
sequence (68%) was observed in the Mitochondrial data-
set (Table 7).

However, these dramatic improvements in accuracy were
offset by a significant increase in the number of base-pairs
predicted incorrectly; Mfold experienced a large drop in
selectivity. The total number of unique incorrect base-pair
predictions for the 496 optimal structure predictions was
only 142,023, while the total number of unique incorrect
predictions was 2,372,305 for the 496 sets of optimal plus
749 suboptimal structure predictions, a 1,664% increase
in the number of incorrect predictions (Table 7).

Table 6: Average, Minimum and Maximum ∆∆G Values for Pairwise Comparisons of Different Suboptimal Folds†

Haloferax volcanii Methanosprillum hungatei

Optimal Accuracy1 80% 46%
Total Fold Predictions (Optimal + 
Suboptimal)

750 750

Total Pairwise Comparisons 280,875 280,875
Structural variation score of 1 to 50

Num of Pairwise Comparisons 32,378 12%2 11,016 4%
∆∆G Min (kcal/mol) 0 0
∆∆G Max (kcal/mol) 11 8.60
∆∆G Average (kcal/mol) 2.84 2.19

Structural variation score of 51 to 100
Num of Pairwise Comparisons 102,071 36% 32,360 12%
∆∆G Min (kcal/mol) 0 0
∆∆G Max (kcal/mol) 11 8.60
∆∆G Average (kcal/mol) 2.53 2.01

Structural variation score of 101 to 500
Num of Pairwise Comparisons 121,805 43% 134,037 48%
∆∆G Min (kcal/mol) 0 0
∆∆G Max (kcal/mol) 11 8.6
∆∆G Average (kcal/mol) 2.24 1.74

Structural variation score of 501+
Num of Pairwise Comparisons 24,621 9% 103,462 37%
∆∆G Min (kcal/mol) 0 0
∆∆G Max (kcal/mol) 11 8.6
∆∆G Avg (kcal/mol) 2.24 1.82

†Both sequences are 16S rRNAs. For each sequence, Mfold 3.1 predicts one optimal or minimum free energy fold and 749 suboptimal folds (750 
total folds). Pairwise comparisons are grouped based on the structural variation between the two folds compared. For details on how structural 
variation between two folds is calculated see Materials and Methods. The range of ∆∆G values observed is 0–11 kcal/mol for H. volcanii and 0–8.60 
kcal/mol for M. hungatei., and all ∆G values are pre-efn2 re-evaluation.
1 Without efn2 re-evaluation and re-ordering of predicted folds.
2 Percentage of total pairwise comparisons.
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∆∆G vs. Structural Variation for Pairwise Comparisons from the "Suboptimal Population"Figure 3
∆∆G vs. Structural Variation for Pairwise Comparisons from the "Suboptimal Population". A set of 750 structure 
predictions (optimal + top 749 suboptimal) are compared, resulting in a total of 280,875 pairwise comparisons. The ∆∆G (pre 
efn2 re-evaluation) for two structure predictions is calculated by taking the absolute value of the difference between the ∆G of 
each structure prediction before efn2 re-evaluation. Structural variation for two structure predictions is calculated by counting 
the number of nucleotides in each structure prediction that either 1) have different pairing partners or 2) are paired in one 
structure prediction and unpaired in the other structure prediction (see Suboptimal Structural Variation Score in Methods). The 
shading within the figure indicates the number of pairwise comparisons that have the same values for both ∆∆G and structural 
variation score. A: Archaea 16S rRNA Haloferax volcanii. B: Archaea 16S rRNA Methanospirillum Hungatei.
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Two significant results came from this analysis. 1) When
all of the base-pairs in the suboptimal population were
included in the accuracy computation, we observed a 30%
increase in average accuracy per sequence. 2) This same
collection of suboptimal structures contained a 1,664%
overall increase in the number of base-pairs that were not
in the comparative model compared to the optimal struc-
ture prediction. In other words, a large decrease in selec-
tivity was observed.

Distribution of base pairs throughout a suboptimal population
In the previous section, we considered the unique base-
pairs predicted with Mfold 3.1. As mentioned earlier, the
number of unique base-pairs is very small compared to
the total number of base-pairs predicted within the top
750 predicted structures. A total of 166,690,139 base-
pairs were predicted in the top 750 structure predictions
for all 496 16S rRNA sequences in our dataset (some of
the sequences did not yield 750 structure predictions with
the Mfold folding parameters used in this study, see
Counts of Suboptimal Predictions More or Less Accurate than
the Optimal Structure Prediction for Different 16S rRNA

Sequences under Additional Information at our web-
site[36]). Of these, 59,454,137 were correct, while
107,236,002 were incorrect. In this section, we
investigated 1) the frequency at which each base-pair in
the comparative structure model appeared in the set of
750 structures (i.e., optimal + suboptimal population)
predicted with Mfold 3.1 and 2) the relationship between
this frequency and the RNA contact distance.

The frequency of prediction with Mfold 3.1 for each base-
pair in the comparative structure model was displayed for
two Archaeal 16S rRNA comparative structure models in
Figure 4. Given the analysis in the previous section on
suboptimal structural variation, we selected H. volcanii
and M hungatei for the panels in Figure 4. For both H. vol-
canii 16S rRNA (Figure 4A), and M. hungatei 16S rRNA
(Figure 4B), some comparative base-pairs were predicted
correctly in all 750 structure predictions, while others
were predicted correctly in 600–749 structure predictions,
151–599 structure predictions, and 1–150 structure
predictions. A few of the canonical base-pairs in the com-
parative structure model were not predicted in any of the

Table 7: Distribution of 16S rRNA Base-pairs Predicted Correctly and Incorrectly†

Overall Archaea Bacteria Eucarya

(C)1 (M) (N)

Comparative 191,994 10,211 83,385 13,406 29,979 55,013
Opt Correct2 81,934 6,376 41,032 6,105 9,459 18,962
Subopt Correct3 137,000 8,570 65,177 10,032 21,201 32,020
Opt Incorrect2 142,023 4,758 49,563 8,603 27,617 51,482
Subopt Incorrect3 2,372,305 101,253 947,197 161,397 472,614 689,844
Opt Accuracy2,4 41% 62% 49% 46% 30% 34%
Subopt Accuracy3,4 71% 84% 78% 75% 71% 59%
Avg Improvement5 30% 21% 29% 30% 41% 24%
Best Prediction6 92% 91% 89% 92% 92% 90%
Max Improvement7 68% 35% 54% 53% 68% 48%
Min Improvement8 10% 10% 12% 12% 14% 11%

†All 496 16S rRNA sequences are considered. Each sequence is folded for a population of one optimal and 749 suboptimal structure predictions. 
The determination of the accuracy for the structures predicted with Mfold is described in the Methods section, RNA Secondary Structure Prediction 
and Prediction Accuracy Calculations. Values are calculated by summing the number of unique base-pairs encountered for each sequence that satisfy 
each particular category (any base-pairs involving IUPAC symbols other than A,G,C, or U are excluded). For example, Subopt Correct is calculated 
by summing the number of unique, correctly predicted base-pairs encountered in the population of optimal plus suboptimal structure predictions 
for each of the 496 16S rRNA sequences. Prediction accuracy when including base-pairs predicted correctly in suboptimal structure predictions is 
also tabulated.
1 (c), Chloroplast-encoded sequences; (m), Mitochondrial-encoded sequences; (n), Nuclear-encoded sequences.
2 Considering only the optimal prediction.
3 Considering the optimal prediction plus up to 749 suboptimal predictions.
4 Averages calculated on per sequence basis. Please see Per Sequence Averages in Methods.
5 Average improvement in Mfold secondary structure prediction accuracy when pooling base-pairs from both the optimal prediction and suboptimal 
predictions.
6 The highest Mfold secondary structure prediction accuracy for an individual sequence when pooling base-pairs from both the optimal and 
suboptimal populations.
7 The largest improvement in Mfold secondary structure prediction accuracy for an individual sequence when pooling base-pairs from both the 
optimal and suboptimal populations.
8 The smallest improvement in Mfold secondary structure prediction accuracy for an individual sequence when pooling base-pairs from both the 
optimal and suboptimal populations.
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750 structure predictions. For H.volcanii (Figure 4A), the
majority of the base-pairs predicted correctly were present
in 600 to 749 structure predictions, with a significant
number of base-pairs predicted correctly in all 750 struc-
ture predictions. Base-pairs predicted correctly in all 750
structure predictions were almost exclusively short-range
(RNA contact distance less that 100 nt), while those pre-
dicted correctly in only 1–150 structure predictions were
almost always long-range (RNA contact distance greater
than 100 nt). This distribution was different for the M.
hungatei 16S rRNA (Figure 4B). Here, smaller numbers of
base-pairs were predicted correctly in all 750 structure pre-
dictions, and more base-pairs were predicted correctly in

only 151 to 599 of the structure predictions. Similar to H.
volcanii, the majority of base-pairs predicted correctly in
all 750 structure predictions have small RNA contact dis-
tances. For both sequences, short-range and long-range
base-pairs were observed that were predicted correctly in
zero structure predictions.

The distribution of comparatively predicted base-pairs, as
observed from up to 750 structures of the suboptimal
population, as a function of the RNA contact distance for
all 496 16S rRNA sequences in our dataset, was
summarized in Table 8. 76% of the base-pairs were short-
range (RNA contact distance less than 101 nt), 22% were

Frequency of Base-pair predictions within a "Suboptimal Population" for selected 16S rRNAsFigure 4
Frequency of Base-pair predictions within a "Suboptimal Population" for selected 16S rRNAs. The frequency of 
the prediction of each of the base-pairs in the comparative structure model in a set of 750 structure predictions (optimal + top 
749 suboptimal) is displayed on the comparative structure model. Base-pairs marked in red are predicted correctly in all 750 
structure predictions. Base-pairs marked in blue are predicted correctly in 600 to 749 structure predictions. Base-pairs marked 
in magenta are predicted correctly in 151 to 599 structure predictions, base-pairs marked in green are predicted correctly in 
only 1 to 150 structure predictions, and base-pairs marked in black are not predicted in any of the 750 structure predictions 
(some are non-canonical or occur in pseudo-knots, and thus are not expected to be predicted correctly). Full-sized versions of 
each annotated structure diagram are available at our website[36]. A: Archaea 16S rRNA Haloferax volcanii. B: Archaea 16S rRNA 
Methanospirillum hungatei.
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mid-range (RNA contact distance of 101–500 nt), and 2%
were long-range (RNA contact distance greater than 500
nt). Of the comparative base-pairs predicted correctly in
all 750 structure predictions for each 16S rRNA sequence
in our data set, 98% were short-range, representing almost
15% (21,049 out of 137,000) of the total number of base-
pairs predicted correctly. In contrast, only 2% of long-
range base-pairs were predicted correctly in 600 or more
structure predictions, representing <<1% (33 out of
137,000) of the total number of base-pairs predicted cor-
rectly. For comparative base-pairs predicted correctly in
600–749 structure predictions, 94% were short-range, for
151–599 structure predictions, 81% were short-range,
and for 1–150 structure predictions, 70% were short-
range. 80% (1,161 out of 1,460) of the long-range base-
pairs predicted correctly appeared in 150 or fewer struc-
ture predictions. A total of 54,994 canonical, comparative
base pairs were never predicted correctly, an average of
111 per 16S rRNA considered; 54% of these base pairs
were short-range, 42% were mid-range, and 4% were
long-range.

Three important observations were presented in this sec-
tion. 1) For a given sequence, some of the comparative
base-pairs were predicted correctly in all 750 structures
(optimal + suboptimal population). 2) A sequence with
higher optimal accuracy contained a larger percentage of
the comparative base-pairs predicted correctly in more of
the structure predictions within the suboptimal popula-

tion, compared to a sequence with lower optimal accu-
racy. 3) Base-pairs predicted correctly in more suboptimal
structure predictions tend to have a smaller RNA contact
distance.

Conclusions
In this paper, we evaluated how well the computer pro-
gram Mfold 3.1[31], with the newest nearest-neighbor
energy values, can predict the secondary structure base-
pairs in comparative structure models for different RNAs.
This study expands upon previous studies conducted by
this lab in four ways. First, we analyzed 5S rRNA and tRNA
sequences in addition to 16S and 23S rRNA sequences.
Second, the number of comparative structure models in
the current dataset was significantly larger, with a total of
1,411 RNAs (vs. 56 16S[29] and 72 23S[30] rRNAs stud-
ied previously), 1.5 million nucleotides and over 400,000
base-pairs, which covered all three phylogenetic domains
and exhibited significant sequence variation (Table 1).
Third, the increase in the speed of computers allowed us
to analyze the best 749 suboptimal predictions in addi-
tion to the optimal prediction. Finally, the latest version
of Mfold (version 3.1) was used. Our five most important
conclusions are summarized hereunder.

1) The comparative structure models for most sequences are
predicted with similar accuracy by Mfold 2.3 and Mfold 3.1
(Figure 1, Table 2,3,4) when the differences between the data-
sets for previous Gutell Lab studies and the current study (e.g.,

Table 8: Frequency of Comparative Base-pairs in 750 Structures Predicted with Mfold 3.1†

RNA Contact Distance

Frequency
1

2–100 nt 101–500 nt 501+ nt

750 21,049 98% 18% 417 2% 2% 0 0% 0% 21,466
600–749 42,362 94% 37% 2,805 6% 14% 33 0% 2% 45,200
151–599 20,775 81% 18% 4,594 18% 23% 266 1% 18% 25,635
1–150 31,285 70% 27% 12,253 27% 61% 1,161 3% 80% 44,699
Correct 115,471 84% 20,069 15% 1,460 1% 137,000
Never 29,587 54% 22,935 42% 2,472 4% 54,994
Total 145,058 76% 43,004 22% 3,932 2% 191,994

†For all 496 16S rRNA sequences, a total of 750 structure models are predicted for each sequence (one optimal and 749 suboptimal structure 
predictions). Every base-pair (excluding any base-pairs involving IUPAC symbols other than A,G,C, or U) in the comparative structure model that 
appears in a set of 750 structure predictions for a particular sequence is categorized by 1) the number of structure predictions in which it appears 
and 2) the RNA contact distance. The four bold percentages for each of the three RNA contact distances each total 100%, and reveal the 
percentage of base-pairs predicted correctly for the four frequency ranges. For example, a total of 115,471 base-pairs with an RNA contact distance 
of 2–100 nt were predicted correctly. Of those base-pairs, 18% (21,049) were predicted in 750 structure predictions, 37% (42,362) were predicted 
in 600–749 structure predictions, 18% (20,775) were predicted in 151–599 structure predictions, and 27% (31,285) were predicted in 1–150 
structure predictions. In contrast, the three italicized percentages for each of the four frequency ranges, and the "Correct", "Never", and "Total" 
categories total 100%. For example, 54,994 base-pairs were never predicted in 750 structure predictions. Of those base-pairs, 54% (29,587) have an 
RNA contact distance of 2–100 nt, 42% (22,935) have an RNA contact distance of 101–500 nt, and 4% (2,472) have an RNA contact distance of 
501+ nt.
1 Frequency of prediction throughout a suboptimal population of up to 750 structure predictions.
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sample size, minor differences in comparative models, sequence
variation within the dataset) are considered. The average
folding accuracy for our current study is 41% for complete
16S rRNA sequences and 41% for complete 23S rRNA
sequences, which is slightly less than in our earlier studies
(Table 2). While the majority of optimal structure predic-
tions for each RNA sequence still have an accuracy score
between 20% and 60%, sequences with accuracy scores
less than 20% are also observed (Table 2,4). On average,
Archaeal and Bacterial 16S and 23S rRNA sequences still
have higher accuracy scores than Eukaryotic Nuclear,
Chloroplast, and Mitochondrial sequences (Table 3).

2) Base-pairs with smaller RNA contact distances are both
abundant in comparatively predicted structures and predicted
more accurately by both versions of Mfold, and base-pairs with
large RNA contact distances which are abundant in Mfold pre-
dicted structures only, are frequently incorrect. The prediction
accuracy for individual base-pairs decreases exponentially as
RNA contact distance increases. Figure 2A shows that the
number of comparative base-pairs decreases exponen-
tially as the RNA contact distance increases. Using a
logarithmic scale, we show that the base-pair prediction
accuracy decreases in a linear fashion as contact distance
increases (Figure 2B), which indicates an exponential
relationship between base-pair prediction accuracy and
RNA contact distance. In addition, many more long-range
base-pairs (RNA contact distance of 501 or higher) are
predicted than found in the corresponding comparative
structure model, and the overwhelming majority of these
predicted base-pairs are incorrect (Table 5).

3) While uncertainties in the energy parameters may play a
small role, free energy (calculated in its current form) alone is
insufficient to distinguish between different structural possibil-
ities for the same sequence. The variation between any two
structure predictions within the suboptimal population is
not correlated with the ∆∆G between those two structure
predictions (Table 6, Figure 3). We observe that two struc-
tures that are more similar with one another (structure
variation score of less than 100), and very different from
one another (structure variation score greater than 500),
have very similar ∆∆G values.

4) Without prior knowledge of the correct structure model,
analysis of the suboptimal structure models can not improve our
ability to both predict correctly the base-pairs in the secondary
structure and assemble them into a single secondary structure
model. Our analysis of the accuracy of base-pairs predicted
in the suboptimal population for our 16S rRNA dataset
reveals that the entire population contained a higher
percentage of base-pairs present in the comparative model
than the optimal structure prediction alone (Table 7).
When considering the suboptimal population, the free
energy minimization method is able to identify an aver-

age of 71% or more of the comparatively predicted base-
pairs for a given sequence (Table 7) vs. only 41% when
considering just the optimal structure prediction. How-
ever, this same suboptimal population contains a signifi-
cant increase in the number of incorrect base-pairs (Table
7). In other words, the increase in recall is offset by the
inability of Mfold to consistently identify a single
structure model containing a high percentage of compar-
ative base-pairs.

5) The frequency of correctly predicted base-pairs in the subop-
timal population is extremely variable, and base-pairs with a
smaller RNA contact distance are more likely to be observed at
a higher frequency. A qualitative analysis of Figure 4 shows
that some base-pairs in the comparative structure model
are predicted in all structure predictions within a subopti-
mal population, others are predicted in a subset, and yet
others are not predicted at all. 98% of base-pairs predicted
correctly in all structure predictions have an RNA contact
distance less than 101 nt, while 80% of base-pairs with an
RNA contact distance of 501 nt or more are only predicted
correctly in 150 or less structure predictions (Table 8).
Additionally, 63% (2,472 out of 3,932) of base-pairs with
an RNA contact distance of 501 nt or more are never pre-
dicted correctly in the suboptimal population (Table 8).

From our previous analysis with version 2.3 of Mfold, we
had determined that free energy minimization does not
consistently identify the correct base-pairs in the 16S and
23S rRNA comparative secondary structure mod-
els[29,30]. We arrive at the same conclusion with our
analysis of the current version 3.1 of Mfold and a signifi-
cantly larger set of rRNA comparative structure models.
One explanation could be incorrect energy parameters for
multi-stem loops. Especially with longer sequences such
as 16S or 23S rRNA, many long-range base-pairs occur
along with the formation of these multi-stem loops. As we
have shown in Table 5, only 8% (6,171 out of 73,071) of
16S rRNA and 13% (10,758 out of 81,128) 23S rRNA
base-pairs predicted by Mfold with an RNA contact dis-
tance 101 or more nucleotides are correct. A more accu-
rate characterization of the energetics of multi-stem loops
may lead to significantly better prediction accuracies.
Mathews et al. have started to address this issue using
experimental studies[39,40] and known RNA secondary
structures[31] to generate multi-stem loop initiation
parameters that can be used in energetic calculations.

We believe that another potential reason for the inaccu-
rate structures predicted with Mfold is that kinetics plays a
role in RNA folding. Here, we suspect that nucleotide
interactions with smaller contact distances will form more
quickly, as suggested by Higgs[41], and will dominate the
number of base-paired interactions formed. Presumably,
these short-range interactions that form rapidly will be in
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equilibrium with other helices with a minimum contact
distance (driven by nearest-neighbor energetics), and in
the process, prevent energetically stable helices with larger
contact distances from forming[41]. Several of our results
support these ideas: 1) In the 16S and 23S rRNA compar-
ative structure models, 75% of the predicted base-pairings
have a contact distance of 100 or less; 2) Minimum free
energy structures for 16S rRNA (as predicted by Mfold)
have almost 10 times more long-range base-pairs than the
comparative structure models (Table 5); 3) 92% (75,763
out of 81,934) and 86% (67,130 out of 77,888) of cor-
rectly predicted base-pairs have a contact distance of 100
or less for 16S and 23S rRNA (Table 5); 4) The higher pre-
diction accuracy observed for short RNA molecules such
as 5S rRNA or tRNA (Table 2).

Knowledge-based approaches that incorporate compara-
tive analysis and high-resolution crystal structure data
have been successful in the prediction of protein struc-
tures[42-44]. With the recent increase in the number of
high-resolution crystal structures for different RNA mole-
cules, it has been suggested that similar approaches could
be utilized to predict RNA structure[45]. We envision a
knowledge-based RNA folding algorithm with three fun-
damental facets: 1) a kinetic model of RNA folding that
includes cooperative formation of short-range base-pairs
and helices, 2) a thermodynamic component provided by
the nearest-neighbor model applied locally within differ-
ent parts of the sequence, and 3) relationships between
RNA sequence and structure elements and observed
structural biases, for example tetraloops[46], AA:AG
motifs at the ends of helices[47], a bias for unpaired ade-
nosines in the secondary structure model [48], and Lone
Pair Triloops[49]. Use of sequence-structure relationships
requires evaluation of known two- and three- dimen-
sional RNA structures, hence the "knowledge-based" facet
of the algorithm. Some researchers in the field have begun
to adopt this approach. In Mfold 3.1, free-energy bonuses
are applied to certain classes of hairpin loops and the
energetic parameters for multi-branch loops were tuned
using comparatively predicted structures[31]. Other
researchers have developed RNA secondary structure pre-
diction algorithms that combine energetics and compara-
tive sequence analysis [50-52]. We believe that a tuned
algorithm of the form just described has the potential to
predict RNA secondary and eventually tertiary structure
more accurately and reliably than methods currently
available.

Methods
RNA secondary structure prediction
All 1,411 sequences in our dataset were folded using
Mfold 3.1[31]. The optional parameters used for this
study were window size (W) of 1, percent suboptimality
(P) of 5% (default value), and maximum number of pos-

sible foldings (MAX) of 750. The efn2 program was used
to re-compute the energetics for each predicted structure
for a given sequence. The predicted structures were then
ordered by the efn2 calculated free energies, and the min-
imum free energy structure reported was the lowest energy
structure after efn2 re-evaluation. Only a single structure
was selected as the minimum free energy structure, and we
did not look for other foldings with the minimum free
energy. The previous Gutell Lab studies[29,30] used win-
dow sizes (W) of 10 and 20 respectively and no efn2 re-
evaluation. The Mathews et al.[31] study used a window
size (W) of 0, percent suboptimality (P) of 20%, and efn2
re-evaluation.

Prediction accuracy calculations
The accuracy of an Mfold prediction for a sequence was
determined by: 1) counting the number of canonical
base-pairs (excluding any base-pairs with IUPAC symbols
other than G,C,A, or U) in the comparatively-derived sec-
ondary structure model that appeared in the Mfold 3.1
prediction, and 2) dividing that value by the total number
of canonical base-pairs in the comparatively-derived
model. Any canonical, pseudoknotted base-pairs in a
comparatively derived secondary structure model were
included in the total number of comparatively predicted
base-pairs for the given model. For example, in the 16S
rRNA from Archaeoglobus fulgidus, the Mfold 3.1 optimal
structure prediction contained 256 of the 448 compara-
tively predicted canonical base pairings in the A. fulgidus
comparative structure model; thus, the accuracy was 65%.
Although the comparatively-derived models included
non-canonical pairing predictions (e.g., U:U), these were
not considered in the accuracy measure, since Mfold 3.1
does not predict non-canonical pairings.

Comparative structure database
A total of 1,411 secondary structure models were deter-
mined with comparative analysis (Table 1) and used to
benchmark the accuracy of Mfold 3.1. For our tRNA sec-
ondary structure models, 30% of the sequences contained
at least one known modification that would prevent the
nucleotide from participating in A-helix base-pairs. These
modifications were not included as constraints for Mfold
to use in the secondary structure prediction. 41% (349 out
of 842) of the rRNA secondary structure models were cur-
rently available (as of January 2004) at The Comparative
RNA Web (CRW) Site[24]. The other diagrams were not
available at the CRW Site for the following reasons: 1) vis-
ual improvements were needed for the diagrams, 2) a
small number of base-pairs needed to be changed in the
structure models and 3) the sequence and/or the structure
was not publicly available, pending submission of a man-
uscript. The secondary structure drawing program
XRNA[53], on Sun Microsystems computers, was used to
draw the comparative structure diagrams.
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Per sequence averages
Some average values for statistics computed in this study,
such as secondary structure prediction accuracy, were
calculated on a per sequence basis. A per sequence average
variant of a particular statistic was calculated by averaging
the value of the statistic for each individual sequence in
the dataset. For example, for the 16S rRNA dataset, the
overall accuracy was calculated by first determining the
accuracy of the Mfold optimal structure prediction for
each individual sequence[36]. Then, the 496 accuracy val-
ues were averaged to calculate the overall accuracy score of
41%.

Computational setup
All 1,411 sequences were folded on a computer with dual
AMD Athlon MP 1800 processors and 1GB of RAM, under
the SuSE Linux 8.0 operating system[54]. In addition, four
single-processor AMD Athlon computers (Thunderbird
1GHz processor), each with 512 MB of RAM and SuSE
Linux 8.0[54], were used to prepare sequences for folding
and to compress the results for storage. The sequences
were folded in under 48 hours using a workflow-based
system that was developed for automatically managing
the folding runs. Even after compression, the aggregate set
of folding results required over 150 GB of disk space. The
raw results were parsed and imported into a database,
managed by MySQL[55]. The database contained over
100 tables that held intermediate results from the folding
runs. Intermediate results were then retrieved, using sim-
ple SQL queries, when required to calculate final results.

Logarithmic binning of base-pairs by contact distance for 
16S rRNA
Figure 2A showed that the number of comparative base-
pairs observed decreased exponentially as the contact
increased; therefore, logarithmic binning was required to
group the base-pairs into somewhat equally-sized bins
based on contact distance. The shortest and longest
contact distances observed in our 16S rRNA data set were
3 and 1833, respectively[36]. Therefore, the overall range
of our logarithmic scale was from log10 (3) to log10
(1833). This range was divided into equal increments to
define our contact distance bins. After evaluating many
increment sets, with the requirement that the sizes of the
bins be within one order of magnitude of one another,
seven distance bins were established (Figure 2B).

Suboptimal structural variation score
The suboptimal structural variation score measures the
agreement between two different secondary structure
models for the same RNA sequence. We compute the
score by comparing the paired or unpaired state of each
nucleotide in the two structure models. We increment the
score when either a given position is unpaired in one
structure model and paired in the other or when the posi-

tion is paired to different positions in the respective struc-
ture models. We do not increment the score when a given
position is paired to the same position in both structure
models or is unpaired in both structure models. The
higher the structural variation score, the lower the level of
agreement between the two secondary structure models.
The structural variation score is zero for two identical
structure models. For two structure models that are differ-
ent at every position the structural variation score equals
the number of nucleotides in the sequence.
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