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Abstract

Tendinopathies negatively affect the life quality of millions of people in occupational and athletic settings, as well as the general population. Ten-
don healing is a slow process, often with insufficient results to restore complete endurance and functionality of the tissue. Tissue engineering,
using tendon progenitors, artificial matrices and bioreactors for mechanical stimulation, could be an important approach for treating rips, fray-
ing and tissue rupture. In our work, C3H10T1/2 murine fibroblast cell line was exposed to a combination of stimuli: a biochemical stimulus pro-
vided by Transforming Growth Factor Beta (TGF-b) and Ascorbic Acid (AA); a three-dimensional environment represented by PEGylated-
Fibrinogen (PEG-Fibrinogen) biomimetic matrix; and a mechanical induction exploiting a custom bioreactor applying uniaxial stretching. In vitro
analyses by immunofluorescence and mechanical testing revealed that the proposed combined approach favours the organization of a three-
dimensional tissue-like structure promoting a remarkable arrangement of the cells and the neo-extracellular matrix, reflecting into enhanced
mechanical strength. The proposed method represents a novel approach for tendon tissue engineering, demonstrating how the combined effect
of biochemical and mechanical stimuli ameliorates biological and mechanical properties of the artificial tissue compared to those obtained with
single inducement.
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Introduction

Tendon is a peculiar connective tissue connecting and transferring
energy from muscle to bone, providing stability and mobility to the
entire body. This connective tissue is complex and organized in a
hierarchical way. Structurally, the tendon basic units are the collagen
fibrils, which are synthesized starting from soluble tropocollagen
molecules. Collections of these fibrils constitute bundles, arrays of
bundles form fascicles and, finally, a group of fascicles get together
to form a tendon. Each fibril bundle is surrounded by a thin sheath of
connective tissue, namely endotenon, while vessels and nerves are
located between the endotenon and the epitenon, a more external
membrane which encompasses several bundles [1].

Mature tendon tissue appears hypocellular and hypovascular,
composed of an abundant extracellular matrix (ECM) produced by
resident tenoblasts and tenocytes. The main component of tendon

ECM is collagen, which represents 65–80% of the total dry mass of
tendon (type I collagen representing 95% of total, with type III colla-
gen being the second most abundant). Due to the presence of colla-
gen fibres, and especially to their organization into parallel bundles,
tendons are able to withstand very high tensile and torsion forces [1–
3]. However, following trauma or excessive load, they are subjected
to rip, fraying or rupture.

Nowadays, tendinopathies represent major medical issues associ-
ated with physical activity and age-related degeneration. It has been
estimated that tendon, ligament and joint capsular pathologies repre-
sent 45% of the annual musculoskeletal compartment disorders in
the United States [4]. Unfortunately, due to hypocellularity and hypo-
vascularity, the natural healing ability of tendons is extremely limited
and slow (the healing process may last from few months to one or
two years) and the currently available medical treatments often fail in
obtaining a recovered tissue with the same characteristics of the
native one [5, 6]. Overall, the entire healing process can be divided
into three distinct phases: (i) inflammatory; (ii) proliferative; (iii)
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maturation and remodeling. Each phase is driven by different cell
populations and several inflammatory proteins and growth factors.
Some of these factors, including TGF- b, remain constant throughout
the process, highlighting their key healing role [7, 8].

For these reasons, the development of new technologies to build
a complete and functional tendon is a research field in continuous
expansion. So far, one of the most promising strategies is repre-
sented by the use of biomimetic matrix scaffolds (preferably hydro-
gels) capable of mimicking the extracellular matrix and providing a
support for the growth, differentiation and organization of tenocyte
precursors [9, 10]. Such precursors, as demonstrated in the recent
past, may be harvested from different sources including periosteum
[11–13], bone marrow [14–17], tendon itself [16–18] and adipose
tissue [4, 17]. Different biomaterial-based systems have been devel-
oped and tested for the fabrication of artificial tendon tissue, including
natural matrices [19–21], hybrid matrices (featuring natural and syn-
thetic components) [22, 23] and fully synthetic matrices [14, 24].
However, cells and biomaterials alone are not sufficient to achieve an
optimal level of differentiation and organization. In fact, a key role is
played by growth factors, able to provide transcriptional activation of
genes involved in tenogenic differentiation [8, 25]. Among these,
TGF-b has been shown to promote the production and incorporation
of collagen and other ECM components in the matrix itself [26, 27].
Mechanical stimulation is another pivotal factor for tenogenic differ-
entiation. It has been demonstrated that mere cyclic mechanical stim-
ulation of cells embedded in a three-dimensional support is able to
activate tenogenic pathways [14]. For this reason, several studies
have been performed to assess the effect of cyclic mechanical stimu-
lation on tenogenesis, demonstrating its crucial role for the develop-
ment of a well-structured artificial tendon tissue, with correct ECM
orientation [17, 23, 28–30], and several research groups have docu-
mented the design of bioreactors for tendon tissue engineering [31,
32].

In this work, we treated the murine fibroblast cell line CH310T1/2
with TGF-b and Ascorbic Acid (AA), an important cofactor for teno-
genic differentiation [33]. Cells were grown in a 3D environment rep-
resented by PEG-Fibrinogen (PF) [34], a semisynthetic hydrogel
matrix that has been shown to provide good support for cell growth
and differentiation in other settings, such as skeletal muscle regener-
ation [35–37]. Cell-laden PF hydrogels were cultured using a pur-
posely designed bioreactor which conveniently applied cyclic uniaxial
stretch to hydrogel constructs.

Materials and methods

Cell culture

C3H10T1/2 (10T/2) cells were cultured on conventional Petri dishes (BD

Falcon NY, USA) at 37°C, 5% CO2 in DMEM GlutaMAX (Gibco MA,

USA.) supplemented with 10% heat-inactivated foetal bovine serum

(FBS, EuroClone, Pero (MI), Italy), penicillin (100 IU/ml; Gibco) and
streptomycin (100 mg/ml; Gibco). All the experiments performed with

10T/2 in 2D were conducted for 15 days and cells were divided into

two experimental groups: the control group (2DC), cultured in growth
medium, and the treated group (2DT), cultured in differentiation med-

ium. Differentiation was induced 24 hrs after cell plating by supplemen-

tation with TGF-b 1 (PeproTech London, UK) to a final concentration of

5 ng/ml and ascorbic acid (AA; Sigma-Aldrich Milan, Italy) to a final
concentration of 50 lg/ml. Medium was changed twice a week.

3D hydrogel preparation

PF was synthesized as described elsewhere [34]. 10T1/2 were resus-

pended into a 14 mg/ml PF solution in PBS containing 0.1 wt.% pho-

toinitiator (Irgacure 2959, Ciba Specialty Chemicals) at a density of
2.5 9 107 cells/ml. Aliquots (120 ll) of the suspension were poured

into strip-shaped Teflon moulds (10 9 3.3 9 1.5 mm) and cured under

a longwave UV lamp (365 nm, 4–5 mW/cm2) for 5 min. into a laminar

flow hood. After UV crosslinking, samples were immediately transferred
into multiwell plates in DMEM growth medium and cultured for

15 days. A control group (3DC) was cultured in growth medium, while

a treated group (3DT) was cultured in differentiation medium (as previ-
ously described) after the first 24 hrs. Medium was changed twice a

week.

Bioreactor and mechanical stimulation

To provide a mechanical stimulation to the cell-laden PF hydrogels, a

custom bioreactor was designed and manufactured. The system was

assembled using standard laboratory supplies, with the aim of fabricat-
ing a cost-effective and easy-to-use device. Bioreactor was dimensioned

to fit 6-well plates culture supports (Fig. 1D). Among its features, the

apparatus enables the application of uniaxial cyclic stretching to six
hydrogel constructs simultaneously, with programmable frequency,

amplitude (applied strain) and duty cycle.

In particular, cyclic stimulation with a 3.3% duty cycle1 on a 60-min.

period, at a stretching frequency of 0.5 Hz and at 10% imposed strain
was selected. The anchoring of the hydrogel to the bioreactor was

ensured by means of comb-shaped stainless steel pins (3.5 mm wide,

3 mm long, 0.3 mm thick) which ensured a strong grip (Fig. 1A). To

achieve firm attachment of the hydrogel constructs to the pins
(Fig. 1B), these were placed into the above described Teflon moulds

where cell-containing PF solution was poured and UV-crosslinked. The

assembly was then fitted to the bioreactor, three constructs per side
(Fig. 1D). Bioreactor actuation was provided by a stepper motor con-

trolled by an Arduino Uno [www.arduino.cc] microcontroller board.

Mechanical stimulation was applied starting from 24 hrs after polymer-

ization. Also in this case, constructs were divided in two groups: a con-
trol group (3DSC) in growth medium and a treated group (3DST) with

TGF-b and AA supplementation.

Immunofluorescence analysis

Immunofluorescence analysis was performed according to Scardigli and

collaborators [38]. Briefly, cells and cell-laden PF constructs were fixed
with 2% PFA in PBS for 30 min. at 4°C. Then, samples were washed

with PBS and blocked with 10% goat serum in PBS for 1 hr at room

temperature (RT). Subsequently, they were incubated with anti-Collagen

Type I primary antibody (rabbit polyclonal, #ab21286, 1:100 dilution;
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Abcam Cambridge, UK) followed by incubation with AlexaFluor 488 con-
jugated goat anti-rabbit IgG (H+L) (Thermo Fisher Scientific #A-11008,

1:300). Finally, nuclei were counterstained with 300 nM DAPI (Thermo

Fisher Scientific MA, USA) for 10 min. Specimens were viewed under a
Nikon TE 2000 epifluorescence microscope equipped with a Photomet-

rics CoolSNAP MYO CCD camera.

Live/Dead assay

Cell viability of 3D constructs was assessed by the use of Cellstain Dou-

ble Staining Kit (Sigma-Aldrich), which allows the simultaneous fluores-

cence staining of viable and death cells. Briefly, after incubation of
constructs with Calcein-AM (viable cells) and Propidium Iodide (dead

cells) solutions for 30 min. at 37°C, live and dead cells were counted

from fluoresence micrographs. At least three randomly chosen non-
overlapping fields at 109 magnification were acquired for each sample,

and the experiment was conducted in triplicate; viability was expressed

as the percentage of live cells on total (Fig. S1).

Quantitative Real-time PCR (qRT-PCR)

RNA was extracted from dishes and cell-laden PF constructs using TRI-

zol (Thermo Fisher Scientific), according to the manufacturer’s

instructions. Two micrograms of RNA were retro-transcribed using the
High-Capacity cDNA Reverse Transcription Kit (Thermo Fisher Scien-

tific), according to the manufacturer’s instructions. Quantitative PCR

was performed with a real-time PCR thermocycler (LightCycler�,
Roche, Monza, Italy). Each cDNA sample was amplified in triplicate

using KAPA SYBR� FAST qPCR kit Master Mix (Kapa Biosystems).

After verifying the stable expression of glyceraldehyde 3-phosphate

dehydrogenase (GAPDH), this gene was selected as an endogenous
control. Relative mRNA levels were calculated by the delta-delta CT

method, according to Livak and colleagues [39]. Amplification efficiency

for the analysed genes was calculated according to Pfaffl and collab-

orators [40], while primer specificity was confirmed by melting curve
analysis.

Primers used are listed below:

GAPDH (109) – Fw: CGACTTCAACAGCAACTC
Rv: GTAGCCGTATTCATTGTCAT
COL1A1 (149) – Fw: GCATTCACCTTTCAAACTTAGT
Rv: CTTCAAGCAAGAGGACCAA
COL3A1 (137) – Fw: CAACGGTCATACTCATTC
Rv: TATAGTCTTCAGGTCTCAG

For each culture condition (i.e. 2D, 3D static and 3D under stretch-

ing, gene expression levels were expressed as the ratio between TGF-b/
AA-treated and non-treated (control) groups.

A

C

D

B

Fig. 1 Bioreactor. Comb-shaped stainless

steel pins (A); PF hydrogel anchored to

the pins (B); pins positioned into bar-

shaped Teflon moulds (C); one side of the
device with the three constructs in posi-

tion (white arrows) within the 6-well plate

(D).
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Mechanical testing

Mechanical properties of the constructs (control and treated) either cul-
tured in static conditions (3D group) or by the application of cyclic

stretching (3DS group) were assessed by tensile testing (Instron model

3365 with BlueHill software, equipped with a 10 N load cell). Additional

control groups were represented by no-cell hydrogels and freshly
seeded constructs.

Constructs were placed in the central portion of a silicone rubber

mould showing tapered ends (Fig. 2A). A 10 wt.% PEG diacrylate solu-

tion (PEG-DA; Sigma-Aldrich) containing 0.1 wt.% Irgacure 2959 pho-
toinitiator was poured into the side portions of the mould and UV cured

for 5 min., embedding the construct into a ‘dog-bone’ shaped speci-

men, suitable for tensile testing (Fig. 2B).
Specimens were individually measured and clamped to the tensile

tester by means of spring-loaded clamps (Fig. 2C). A strain rate of

1.25 9 10�2/s was selected and test was conducted up to 30% strain

level, while recording the stress–strain curve. Elastic modulus was cal-
culated as the slope of the linear portion of the curve in the 0–10%
tract.

Statistical analysis

All experiments were performed in quintuplicate (n = 5). One-way anal-
ysis of variance (ANOVA) was used for multiple means comparisons, fol-

lowed by post hoc testing (Tukey). Statistical significance was at the

0.05 level.

Results

Immunofluorescence microscopy

After 15 days, adherent cultures in growth medium (2DC) or in differ-
entiation medium enriched with TGF-b and AA (2DT), were analysed
for immunofluorescence against type I collagen, main constituent of
tendon fibrils. Results revealed that cell morphology and collagen flu-
orescent signal of the control group (Fig. 3A and B) were comparable
to those of the treated group (Fig. 3C and D).

A B

C D

Fig. 2Mechanical tests. Silicone rubber

mould used to produce dog-bone speci-

mens starting from the PF-cells constructs
(A); detail of the specimen showing the

construct with tapered PEG-DA ends (B);
specimen connected tester clamps at start

(C); specimen at maximum elongation
(D).
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A B

C D

E F

G H

I J

K L

Fig. 3 Immunofluorescence analysis. Col-
lagen type I (green) and DAPI (blue)

immuno-staining of 10T1/2 after 15 days

for: 2D culture of control (A, B) and trea-

ted (C, D) groups; 3D culture of control
(3DC, E, F) and treated (3DT, G, H)
groups under static conditions; 3D culture

of control (3DSC, I, J) and treated (3DST,
K, L) groups under mechanical stretching.
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In a similar manner, analysis of 3D constructs under static culture
conditions showed comparable extracellular matrix organization and
collagen fluorescence in the control (Fig. 3E and F) and in the treated
groups (Fig. 3G and H). Three-dimensional culture system high-
lighted remarkable differences in terms of cell distribution compared
with 2D adherent cultures, revealing cell clusterization due to teno-
genic differentiation, with consequent construct shrinkage and 3D
scaffold remodelling (Fig. 3E-H).

Mechanical stretching was applied to constructs cultured in growth
(3DSC) and in differentiation medium (3DST) for 15 days using a pur-
posely developed bioreactor (Video S1). Immunofluorescence analysis
results showed an ameliorated matrix organization (Fig. 3I and J) com-
pared to static control (3DC group). In the treated group (3DST), a much
more evident degree of organization and deposition of collagen fibres
along the stretching direction could be observed (Fig. 3K and L). Live/
dead essay revealed a comparable cell survival among the different
tested group (15 days of culture or stimuli), with a slight increased death
rate upon mechanical inducement (Fig. S1). Moreover, nuclei labelled by
40,6-diamidino-2-phenylindole (DAPI) staining clearly revealed the effect
of mechanical inducement in culture structure organization, promoting a
considerable alignment of the PF-encapsulated and stretched cells
towards the straining direction, as underlined by the flattened shape of
cell nuclei in the same direction in the treated group (3DST) (Fig. S2).

Collagen expression levels

Figure 4 shows the results of type I and type III collagen expression
as analysed by RT-qPCR, expressed as the ratio between treated
(TGF-b/AA) and non-treated (control) groups for each culture condi-
tion (2D, 3D static, and 3D dynamic conditions).

2D cultures showed a non-significant decrease in the expression of
both collagen isoforms compared to their internal controls. This result
is in line with previous evidence, reporting a drop in collagen synthesis
under TGF-b stimulation for fibroblast cells cultured in monolayer [41]
and lower collagen (type II) expression for 10T1/2 monolayers during
TGF-b-induced chondrogenesis [42], and evidence the importance of
three dimensional culture settings to promote cell differentiation.

In 3D static cultures, treated constructs showed comparable
mRNA expression of type I and type III collagen, with a slight—but
not significant—increase compared to control group. In mechanically
stimulated constructs, on the contrary, treatment resulted in
increased production of both collagen isoforms, with a significantly
higher prevalence of type I collagen.

Comparing 3D dynamic culture conditions with 3D static and 2D
ones, it was observed that the normalized (TGF-b/AA-treated versus
non-treated control) expression of collagen I was significantly higher
in 3DS group compared to both 2D and 3D groups; 3DS also showed
higher normalized collagen III expression compared to 3D group.

Mechanical characterization

After 15 days of culture, 3D static (3DC, 3DT) and stretched (3DSC,
3DST) constructs were characterized in terms of their mechanical
properties; no-cell (NC) and freshly seeded constructs at time zero
(T0, just after embedding) were used as controls to verify the stress–
strain behaviour of the PF matrix, revealing a very low elastic modulus
for pristine PF, while T0 showed a slightly higher modulus (Fig. S3).

The elastic modulus of the constructs grown in different condi-
tions was calculated for the initial linear portion of the stress–strain
curves (Fig. 5 and Table 1). Static culture groups (3DC and 3DT) had
almost the same modulus, while the stretched constructs treated with
TGF-b and AA (3DST) showed an increased elastic modulus com-
pared to the controls (3DSC). Nevertheless, it must be noticed that
although the treated and stretched (3DST) constructs presented a
higher elastic modulus (2.15 kPa compared to the initial 1.11 kPa), is
still distant from the native tendon modulus.

Discussion

The healing process of tendon is very slow and can be divided in three
distinct phases, each with its main actors. In the first stage (inflam-
matory phase), in addition to immune system cells and inflammatory
molecules, several growth factors are involved, including TGF-b. This

Fig. 4 Relative mRNA expression on artificial tendon-like tissue matrix components. Expression of COL1A1 (A) and COL3A1 (B) for adherent (2D),
3D static (3D) and 3D stretched (3DS) conditions, expressed as the ratio between treated (TGF-b/AA) and non-treated (control) groups. * P < 0.05;

** P < 0.01; ***P < 0.001.
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growth factor is also involved during the second (proliferative), and
the third (remodeling) phases [8]. Such a persistent presence reveals
a pivotal role of TGF-b in the healing process and in the formation of
new tendon tissue. Indeed, its importance in the induction and guid-
ance of tenogenic processes has been well documented: cultures of
human fibroblasts extracted from anterior cruciate ligament and
grown under mechanical stimulation are able to produce TGF-b,
which in turn stimulates the expression of genes typical of tendon
extracellular matrix such as type I and type III collagen. In fact, block-
ing the action of TGF-b with specific antibodies drastically inhibits the
expression of collagen genes [43]. Moreover, vacuum-based stretch-
ing induction on artificial structures containing avian flexor tendon
cells (Bioartificial Tissue, BAT), was shown to promote cell alignment
arrangement along strain direction with the maintenance of collagen
Type I and Type III expression in the engineered artificial tendon tis-
sue [44]. In this work a multipotent murine fibroblasts line, the 10T/2,
when properly stimulated may undertake various differentiation pro-
cesses such as osteogenesis, adipogenesis and chondrogenesis [45],
was chosen as a model to test the efficiency of the combined admin-
istration of TGF-b and AA in the stimulation of tenogenic fate, as pre-
viously documented [25]. The use of TGF-b on this cell line has been
shown to activate the tenogenic differentiation process [46]. How-
ever, in our experiments we observed that TGF-b and AA alone are
not able to significantly promote this differentiation destiny in 2D and
3D cultures. Instead, the synergic action of biochemical and mechani-
cal stimulation proved to be promote a remarkable enhancement of
the tenogenic process that led to the formation of an extracellular
matrix rich in type I collagen, properly oriented along the stretching
direction (Fig. 3K and L). As reported in the literature, the earliest
form of collagen to be produced in tendon healing process is type III
collagen, which has a maximum of production during the proliferative
phase, and which is then gradually replaced by type I collagen in the

terminal phase of the process, during the remodelling [8]. However,
type III collagen is weaker and is one of the causes of the increased
risk of new injuries following a first damage of tendon tissue [47]. In
human fibroblast cultures subjected to cyclic stretching, a scenario
compatible with the proliferative phase was observed, with a higher
mRNA expression of type III collagen, followed by type I collagen [43].
On the contrary, in our experiments an increased type I collagen
mRNA level compared to type III (Fig. 4) was observed, a result allow-
ing to speculate that our experimental model might mimic more clo-
sely the last phase of the healing process, resulting in formation of an
extracellular matrix more affine to the healthy tendon tissue than to
the tissue in the healing phase. This result is very promising as going
in the direction of engineered tissues possessing functional biome-
chanical features, similar to native tissues.

The data obtained from the constructs mechanical tests go in the
same direction, confirming that the construct treated with TGF-b/AA
and subjected to cyclic mechanical stretching (3DST) possesses the
highest elastic modulus value, which almost doubled that of the inter-
nal control (3DSC) (Table. 1). This result confirms that the synergistic
application of biochemical and mechanical stimuli is crucial for
obtaining a better engineered tissue with a higher degree of matrix
organization, conferring a higher elastic modulus and enhanced
endurance. In fact, the mechanical stimulation itself is able to pro-
mote alignment of collagen fibres and proper organization of the
extracellular matrix (Fig. 3I and J), while treatment with TGF-b/AA
promotes a higher expression of type I collagen and a lower expres-
sion of type III, resulting in the production of an abundant extracellu-
lar matrix typical of healthy tendon tissue.

Conclusions

In this work, we present an approach for producing artificial tissue
which is potentially relevant to tendon tissue engineering. Indeed, the
combined provision of biochemical and mechanical stimulation pro-
moted the expression and the production of an extracellular matrix
with a collagen balance very close to that of the native tendon tissue.
Furthermore, this extracellular matrix is also properly organized, with
compact type I collagen fibres arranged parallel to the stretching
direction, a feature that considerably increases the elastic modulus
and endurance of the matrix itself. This system is therefore a good
starting point for the fabrication of an engineered tendon tissue that

Fig. 5 Stress–strain curves. Stress–strain
curves of control (3DC) and treated (3DT)

groups for constructs after 15 days of
static culture (A) and of control (3DSC)

and treated (3DST) groups for constructs

under stretching (B).

Table 1 Elastic modulus

Sample Modulus (kPa)

3DC 1.37

3DT 1.18

3DSC 1.32

3DST 2.15
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could be further improved screening and selecting the optimal source
of tenogenic stem cells and increased conditioning times.
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