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Purpose: The 2015 American College of Medical Genetics and
Genomics–Association for Molecular Pathology (ACMG–AMP)
guidelines were a major step toward establishing a common
framework for variant classification. In practice, however, several
aspects of the guidelines lack specificity, are subject to varied
interpretations, or fail to capture relevant aspects of clinical
molecular genetics. A simple implementation of the guidelines in
their current form is insufficient for consistent and comprehensive
variant classification.

Methods: We undertook an iterative process of refining the
ACMG–AMP guidelines. We used the guidelines to classify more
than 40,000 clinically observed variants, assessed the outcome, and
refined the classification criteria to capture exceptions and edge
cases. During this process, the criteria evolved through eight major
and minor revisions.

Results: Our implementation: (i) separated ambiguous ACMG–AMP
criteria into a set of discrete but related rules with refined weights;
(ii) grouped certain criteria to protect against the overcounting of
conceptually related evidence; and (iii) replaced the “clinical criteria”
style of the guidelines with additive, semiquantitative criteria.

Conclusion: Sherloc builds on the strong framework of 33 rules
established by the ACMG–AMP guidelines and introduces 108
detailed refinements, which support a more consistent and transparent
approach to variant classification.
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INTRODUCTION
Variant classification is the cornerstone of clinical molecular
genetic testing. The validity and utility of genetic testing
require that variant classifications be evidence-based, objec-
tive, and systematic.1–3 Clinical and medical geneticists must
be able to distinguish between established facts and reasonable
hypotheses and must understand the evidence and logic
underlying variant classifications.4 Pathogenicity evaluations
must be reproducible and protected from the personal and
professional biases that can be present in research labora-
tories, the investigative settings of diagnostic laboratories, and
clinicians’ urgent desire to make a diagnosis.
The 2015 American College of Medical Genetics and

Genomics–Association for Molecular Pathology (ACMG–
AMP) guidelines for the interpretation of sequence variants
were a major step toward establishing a shared framework for
variant classification.5 However, during the process of applying
the ACMG–AMP guidelines to the classification of thousands of
variants, we and other groups6 identified several areas in which
the guidelines lacked specificity or were subject to ambiguous or
contradictory interpretations. To address this, we developed and
validated Sherloc (semiquantitative, hierarchical evidence-based

rules for locus interpretation), a variant classification framework
that is an effective refinement of the ACMG–AMP criteria.
Sherloc addresses several key issues.

1. Certain ACMG–AMP rules conflate concepts that
should be considered separately. Sherloc expands overly
encumbered criteria into a set of discrete but related
rules and weights these rules separately.

2. Certain pairings of ACMG–AMP rules capture types of
evidence that contribute to the same basic argument, which
creates a “double counting” effect in which an argument is
overvalued by invoking the same basic observation more
than once. Sherloc groups evidence types into broader lines
of argument to prevent this inadvertent error.

3. The “clinical criteria” style of the ACMG–AMP guidelines
introduces difficulty in intuitively understanding the
cumulative strength of the evidence, and in appreciating
how much additional evidence is required to move to a
confident conclusion. Sherloc substitutes a categorical
framework and numerically weighted criteria to support a
more intuitive understanding of variant classification.
Consistent with the ACMG–AMP guidelines, Sherloc is
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a system for the evaluation of constitutional variants
within a Mendelian disease framework.

MATERIALS AND METHODS
Sherloc was developed through an iterative process using the
ACMG–AMP guidelines as a starting point. The ACMG–
AMP draft guidelines were released for member comment in
August 2013 and adopted for internal use at Invitae. A
working group was formed comprising American Board of
Medical Genetics and Genomics–certified laboratory direc-
tors, doctoral-level scientists, and American Board of Genetic
Counseling–certified genetic counselors with experience in
many clinical areas of diagnostic genetic testing, including
hereditary cancer, cardiology, neurology, and pediatric
genetics.
The working group interpreted variants observed during

diagnostic testing by using the implemented framework, and
identified variants for which (i) strict adherence to the
framework led to classifications at odds with the established
understanding of clinical significance, or (ii) uncertainty or
disagreement arose about the correct application of the rule
set. The working group met weekly to discuss these cases,
identify the underlying genetic issues, and refine the rules and
their valuations. This iterative process continued for more
than two years and through more than 40,000 unique variants
identified during clinical laboratory testing across more than
500 genes and conditions. The framework has developed
through many major and minor iterations. The rule set
described herein is Sherloc version 4.2. All interpreted
variants are routinely deposited into ClinVar.7

RESULTS
Our experience using the ACMG–AMP criteria was mixed.
The guidelines presented a logical framework for categorizing
and valuing evidence that generally matched the perspective
of our clinical staff, many of whom had participated in
ACMG–AMP surveys and discussions during guideline
development. However, the criteria left many aspects of
clinical molecular genetics undescribed and subject to
personal interpretation. We routinely encountered variants
that caused uncertainty about the appropriate rule usage,
which led to classification inconsistencies and debate.
Generally, discrepancies were due either to uncertainty about
how to categorize evidence that did not fit neatly into the
available rules, or subjectivity about when to count evidence
as strong or moderate.
To address these questions, we set out to describe every use-

case with explicit evidence criteria. When ambiguity arose, we
developed more granular rules to capture the necessary
complexity. For example, the ACMG–AMP guidelines con-
tain one caveat-laden rule (PVS1) capturing premature
termination codon (PTC) variants and no alternative criteria
for PTC variants that fail to fulfill all of the requirements,
even though a PTC that does not meet every usage note
criteria can have a predictably disruptive effect on a gene

product. To address this shortcoming, we established a set of
variably weighted criteria for PTCs (see “Variant type and the
expected consequence for gene products” below), in which the
value is modulated based on the location of the stop codon
relative to the pre–messenger RNA (mRNA) structure
(5′ truncations that lead to nonsense-mediated decay versus
3′ PTCs that yield translated, truncated proteins8) and the
molecular mechanism of disease for the gene (confirmed
versus unconfirmed loss-of-function (LOF) mechanism).
We recognized that the full complexity of clinical genetics

was unlikely to be captured prospectively, and expected that
regular iterations to Sherloc would be necessary. We therefore
designed Sherloc to support refinements that could maintain
backward compatibility. Over time, this approach expanded
the original set of 33 ACMG–AMP criteria to the 108 criteria
contained within Sherloc version 4.2. The iterative process
continues and is an essential part of laboratory process quality
improvement.

Evidence required for confident classifications
The ACMG–AMP framework assigns a strength level to each
evidence criterion and requires various combinations of
strong, moderate, and supporting evidence for a confident
classification. However, we regularly identified variants that
could be formally classified as likely pathogenic but seemed
insufficiently supported or, conversely, variants that could
formally be classified as variants of uncertain significance
despite persuasive evidence that was not handled well by the
ACMG–AMP framework.
For example, CDH1 c.1118C4T (p.Pro373Leu) is a variant

in a gene associated with hereditary diffuse gastric cancer and
lobular breast cancer.9 It is absent from the Exome
Aggregation Consortium (ExAC) database and is supported
by strong functional studies: in vitro functional characteriza-
tion shows that p.Pro373Leu impairs cell–cell adhesion
and leads to increased cellular motility and activation of
EGFR, mitogen-activated protein kinase, and Src kinase.10,11

Computational predictors recapitulate this conclusion. Clin-
ical observations, however, are inconclusive: the variant has
been found in affected and unaffected individuals in the same
family.12 A strict application of the ACMG–AMP rules should
yield a likely pathogenic classification: PS3 (well-established
functional studies) +PP3 (predicted deleterious) +PM2
(absent from population). However, without supporting
clinical observations, this conclusion seems premature,
particularly because PS3 and PP3 redundantly describe the
functional argument that the protein is disrupted.
Conversely, TTC8 c.459G4A (p.Thr153=) is a very rare

silent change (0.02% in ExAC) in a gene that can cause
Bardet–Biedl syndrome. Although not in the consensus +1/+2
splice site, it is located at the last nucleotide of the exon and is
predicted to disrupt normal splicing. It has been observed in
the homozygous state in three affected siblings in a single
family.13 A strict application of the ACMG–AMP rules yields
a variant of uncertain significance classification of PP1
(cosegregation with disease) +PP3 (computational evidence).
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In our assessment, however, the rules fail to capture relevant
sequence context and undervalue the clinical observations.
This variant has been observed in our laboratory in the
homozygous state in an unrelated affected individual and is
now classified as pathogenic.
Such examples suggested that the ACMG–AMP criteria

were not capturing certain qualitative considerations. There-
fore, we first posed a normative question: “What kind of
evidence, and how much, should be required for a pathogenic
classification?” We first recognized that there are two general
types of evidence: clinical and functional. Clinical evidence
describes the correlation of the variant with disease (or
absence of disease) in human populations, and includes
observations in affected and unaffected individuals and
families. Functional evidence describes the molecular con-
sequence of a variant on various gene products and includes
the results of molecular and cellular experiments, and
predictions about functional effects based on variant type or
complex computational algorithms. Clearly, clinical and
functional evidence are both important: a variant is
pathogenic if it disrupts a gene product in a way that leads
to human disease, and is benign if it has an effect that does
not lead to disease in humans. Although both clinical and
functional evidence are relevant, they have a hierarchical
relationship. Clinical data describe human disease directly,
whereas functional data are relevant to disease only to the
extent to which the measured property correlates with disease
physiology. Therefore, when a discrepancy or conflict arises
between clinical and functional observations, the clinical
observations should be considered more persuasive. Broadly
speaking, a variant should not be considered pathogenic if it is
present in a large percentage of healthy individuals (clinical
data), even if a measurable effect on protein function has been
observed in an experimental assay (functional data). Con-
versely, a variant should be considered pathogenic if it is
present in many affected individuals and has not been
observed in healthy individuals (clinical data), even if it is
predicted to be nondeleterious and has been demonstrated
to have no effect on a measured protein property (functional
data).
Examples of these kinds of conflicts include CDKN2A

c.9_32dup24 (p.Ala4_Pro11dup) and SCN5A c.3578G4A (p.
Arg1193Gln). CDKN2A c.9_32dup24 is an in-frame duplica-
tion predicted to have no effect on protein function and
demonstrated not to affect CDK4 or CDK6 binding.14–16

However, the variant has been identified in several individuals
affected with melanoma15,17,18 and has been shown to
segregate with disease (incomplete penetrance) in several
melanoma families.19–22 The abundance of positive clinical
evidence trumps the negative functional evidence. It is
possible that the effect on binding was mismeasured or that
CDK4/6 binding efficiency is not the relevant molecular
consequence of this variant. Conversely, SCN5A c.3578G4A
(p.Arg1193Gln) is a missense change in the voltage-gated
cardiac sodium channel. Pathogenicity seems to be supported
by functional evidence: the variant was demonstrated to

destabilize inactivation gating and to lead to a persistent
current in vitro.23 However, a glycine is present at the
equivalent position in the horse ortholog, and the variant is
present in more than 7% of the East Asian population, with 17
homozygotes reported in ExAC. The abundance of negative
clinical evidence outweighs the positive functional evidence.
This principle of the primacy of clinical evidence establishes

a framework for evidentiary thresholds: a rare variant
supported by nothing but functional evidence should be
classified as a variant of uncertain significance in the absence
of supporting clinical data linking the molecular dysfunction
to a clinical phenotype.

Assigning points to evidence types
In the ACMG–AMP system, the overall strength of the total
evidence set is evaluated in a manner analogous to the
familiar style of diagnostic clinical criteria. Evidence types are
roughly binned into one of four levels, and different
combinations of evidence from the bins suffice for a confident
classification. In practice, however, we have found that this
style of assessing an argument introduced obstacles to the
accuracy and flexibility of an evolving system. In many cases,
we needed to introduce more subtle gradations to the
evidence valuation than the four levels could support. We
also found that the combinatorial logic of the ACMG–AMP
criteria made it very difficult to predict the consequence of
introducing new criteria or changing the valuation of criteria.
Because there are different paths to a threshold, it was difficult
to understand intuitively how much more evidence might be
required for a confident classification.
We knew Sherloc would evolve, so we needed a weighting

system that provided more precision and flexibility. We
therefore established a semiquantitative system in which each
criterion is awarded a preset number of points on orthogonal
benign or pathogenic scales (i.e., 1B-5B or 1P-5P), which
reflect the value of the data type toward the overall
classification argument (Figure 1). Accumulated benign and
pathogenic evidence types are summed separately and
compared against preset thresholds. When substantial
evidence supports both pathogenic and benign conclusions,
that dichotomy may indicate low-penetrance variants, genetic
or environmental modifiers, or other ambiguity within the
Mendelian framework. For most variants supported by
evidence toward both poles, however, the clinical/functional
hierarchical framework described previously and the practical
approach described in Figure 5 provide guidance for
evaluating these apparent contradictions. Point thresholds
for likely benign and likely pathogenic classifications are
asymmetric (3B versus 4P), and reflect the fact that neutral
genetic variation is abundant and pathogenic variants are rare.
The burden of proof to reach a benign classification is
therefore lower.
The original translation of the ACMG–AMP guidelines into

a point system aimed simply to recapitulate conclusions
reached via the ACMG–AMP combinatorial scoring method.
The value of criteria has changed over time as the rule set was
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expanded and refined. The current rules and weights are
described throughout this paper and in Supplementary
Table S1 online. Although the criteria in Sherloc version 1
had a 1:1 mapping to the ACMG–AMP criteria, subsequent
versions diverged from that strict correlation. The derivation
history or closest mapping of Sherloc evidence criteria (EVs)
to ACMG–AMP criteria is presented in Supplementary
Table S1.
This approach (exhaustive criteria set, fixed point values,

and a consistent evaluation protocol) promotes consistency,
reproducibility, and efficiency among users. The same steps
are performed, the same weight is granted to each element of
an argument, and users are guided toward the correct
application of evidence types.

Clinical criteria
Clinical data include population frequency information and
observations of variants in well-characterized affected and
unaffected individuals and families. Sherloc contains sets of
evidence types to capture these data. Detailed knowledge
about the symptoms and phenotypes associated with each
condition, the penetrance and age at onset of features, and the

percentage of clinical cases accounted for by pathogenic
variants in known genes are essential prerequisites for using
these data effectively. The sections that follow describe the
original ACMG–AMP criteria, the derived Sherloc criteria,
and the evaluation process for each clinical data type.

Population data
Variant frequencies from large population data sets can
provide strong evidence that a variant is benign, or can reveal
that one is sufficiently rare to be considered a candidate for
pathogenicity. Most variants encountered during testing have
previously been observed at a frequency inconsistent with the
incidence of monogenic disease. With appropriate safeguards,
beginning variant evaluation with population data maximizes
accuracy and efficiency. The full set of frequency criteria are
shown in Figure 2.
The ACMG–AMP guidelines contain two benign rules and

two pathogenic rules to capture the impact of population
frequency on variant classification: BA1 (allele frequency
45%), BS1 (allele frequency 4 expected), PM2 (absent from
controls), and PS4 (higher prevalence in affected individuals
versus controls). We encountered a number of limitations to

Benign

Very high High

Clinical:population data

Functional:variant type

Functional:experimental studies

Clinical:clinical observations

Indirect and computational

Synonymous
non-conserved intron

Dominant: co-occurrence
in trans

Dominant: co-occurrence
phase unknown

Neutral
STRONG

Neutral
WEAK

All
neutral

All
deleterious

Disrupted
WEAK

Disrupted
STRONG

2 cases
1 family

4 cases
2 family

3+ families3 cases

Recessive:
in trans

Missense AG/GT
dinucleotide

Nonsense
frameshift

Absent from ExAC

5 B
a

b

3 B 4 P 5 P

Likely Likely PathogenicVariants of uncertain significance

Figure 1 Classification scoring thresholds and evidence categories. (a) Point score thresholds for pathogenic (P), likely pathogenic, variant of
uncertain significance, likely benign, and benign (B) classifications. Pathogenic and benign evidence is scored separately. Evidence in both directions can
suggest a non-Mendelian variant. (b) Five evidence categories in the order in which they are evaluated, and with the point value of select criteria
indicated. Clinical criteria include population data and clinical findings. Functional criteria include sequence observations, molecular studies, and indirect
and computational data. ExAC, Exome Aggregation Consortium.
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this approach related to the effective placement of frequency
thresholds, the known presence of pathogenic variants in
population data sets, and the quality and abundance of
population data.
While it is clear that a variant present in 5% of the

population cannot be a cause of a rare, monogenic disease,
this is also true for variants at much lower frequencies. The
ACMG–AMP framework suggests that frequency thresholds
be set based on a synthesis of disease prevalence, penetrance,
and percent attribution.5,24 This guidance is impractical,
primarily because accurate prevalence, penetrance, and gene
attribution numbers have not been established for most
disorders and can vary two- to tenfold even for well-studied
disorders, depending on the subpopulation and the total
number of unique pathogenic variants. Moreover, frequency
data are inherently quantitative. All other things being equal,
the likelihood that a variant is benign increases as its observed
frequency increases. A single threshold does not adequately
capture this variable likelihood of pathogenicity.

To address these issues, Sherloc captures five frequency
levels:

1. Absent in ExAC (1P)
2. “Within pathogenic range” (0.5P): low frequency, but

consistent with previously well-characterized pathogenic
variants

3. “Somewhat high” (1B): low frequency and inconsistent
with previously well-characterized pathogenic variants

4. “High” (3B): sufficiently common for a likely benign
classification without additional corroborating evidence

5. “Very high” (5B): sufficiently common for a benign
classification without additional corroborating evidence

To define the bottom four tiers quantitatively, we deve-
loped an empirical approach to establish the frequency
spectrum of pathogenic variants in the ExAC database.25

ExAC contains pathogenic variants, and their frequencies
can be characterized. Such analysis revealed that in a set of
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Low (≤0.1%)
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(<15,000 alleles
in ExAC,default

to 1 KG data set)

Figure 2 Population data: Sherloc criteria and decision tree. (a) A single evidence type criterion from the frequency set of criteria is chosen for
each variant. This decision tree guides users to the correct criterion based on the quality and abundance of the Exome Aggregation Consortium (ExAC)
data at the locus in question, the mode of inheritance of the gene, and the frequency of the variant in ExAC. Points and directionality (pathogenic
versus benign) are indicated in the far right column. (b) Decision tree for using observations of homozygotes in the ExAC database depending on the
severity, onset, and penetrance of the biallelic phenotype, and the number of homozygotes present. Loci flagged with data quality issues are excluded.
Solid orange color corresponds to pathogenic evidence, solid green corresponds to benign evidence, and solid grey corresponds to neutrally weighted
evidence. AD, autosomal dominant; AR, autosomal recessive.
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79 disease genes (39 dominant, 40 recessive, 1508 total
variants), 97.3% of pathogenic variants had an allele
frequency of less than 0.01%, and 94% were present at eight
alleles or fewer.
These observations are used cautiously to support frequency

thresholds that, although much more aggressive than the
ACMG–AMP recommended 5%, are still safely conservative.
For dominant genes, Sherloc incorporates thresholds of 0.5%,
0.1%, and 48 alleles for the “very high”, “high” and
“somewhat high” levels, respectively. For recessive genes, it
incorporates thresholds of 1%, 0.3%, and 48 alleles, respec-
tively. These cutoffs support the use of ethnic subpopulation
allele frequencies, which can be less precise due to smaller
sample sizes but are critical for identifying ethnicity-enriched
polymorphisms. When a gene is associated with more than
one inheritance pattern, an a priori gene-level decision is
made to use either the higher or the lower frequency
thresholds based on the severity and age at onset of the
monoallelic phenotype.
Variant frequencies can be elevated for founder mutations

and within mutational hotspots. As such, high-frequency
variants should not be classified as likely benign or benign
without a literature review. (For literature review, our
laboratory uses custom software, which combines direct
searches using Google and SETH/PubTator with indirect
reference reviews from the Human Gene Mutation Database,
Online Mendelian Inheritance in Man database, and ClinVar.
Manual search protocols could provide similar security.) The
frequency thresholds used for these criteria may change as
public data sets grow in size, but the concept and weighting
will probably remain the same.

Data quality
There are technical considerations for using aggregate
population data. For example, KCNQ1 c.1795-11803A4C is
absent from the ExAC exome data, which has weak coverage
of intronic regions, but is present at 32.3% in 1000 Genomes.
As this example illustrates, the absence of a variant from
ExAC does not always indicate that it is rare. At some loci,
smaller data sets, such as 1000 Genomes, may have more
relevant information, although the frequency may be less
reliable. Sherloc includes a second set of frequency criteria for
observations supported by fewer alleles. Certain loci in ExAC
are also troubled by data quality issues. An example is ATM
c.566G4A. This variant is present in ExAC at a frequency
sufficient to justify a likely benign classification; however, the
data are flagged as not passing the variant quality score
recalibration filter. Incidentally, the Exome Sequencing
Project and 1000 Genomes data do not report a variant at
this position. Frequency information at quality-flagged loci
should be used cautiously, if at all; Sherloc contains criteria to
formally capture these cases. Likewise, ExAC contains loci
with high-quality data but low total allele count. Low-
frequency observations may be unreliable at these loci due to
small sample sizes.

For all variants, a single “population” rule is selected based
on a simple decision tree that reflects these considerations
(Figure 2a).

Zygosity
Finally, we considered the zygosity of ExAC observations. For
example, RAD50 c.280A4C (p.Ile94Leu) has been observed
at a frequency of 0.7% in the south Asian population in ExAC,
a cohort that includes two homozygous observations. For
genes such as RAD50, in which biallelic pathogenic variants
are expected to be lethal or severe (Nijmegen breakage
syndrome26), observations of homozygous variants are strong
evidence that the variant is benign. Therefore, Sherloc
contains three rules of varying strength relating to observa-
tions of homozygotes in databases (Figure 2b).

Observations in well-characterized individuals
Individuals who are well characterized both phenotypically
and genotypically can support inferences that are more
powerful than those that can be drawn from discrete entries in
general databases. The ACMG–AMP criteria contain five
rules for capturing observations in well-characterized indivi-
duals: BS4 (nonsegregation with disease), BP2 (cis/trans with
a pathogenic variant), BP5 (case with an alternative cause),
PP1 (cosegregation with disease), and PP4 (individual’s
phenotype or family history is highly specific). Other
ACMG–AMP criteria, such as PM2 and PS6 (de novo
criteria) and many of the variant type criteria, depend
implicitly on an observation in an individual with a relevant
phenotype.
We identified three distinct classes of clinical observations

that should be considered separately: (i) variants in unaffected
individuals (suggests benign), (ii) variants in affected
individuals with an alternate cause of disease (also suggests
benign), and (iii) variants in affected individuals without an
alternate cause of disease (suggests pathogenic). Case report
criteria for each are described below. In general, these criteria
are additive: each unrelated observation is considered an
independent data point that further contributes to the
argument. The three classes of observations are depicted in
the case report root decision tree (Figure 3).

Observations of variants in affected individuals.
Using case report data accurately requires rigor regarding
the appreciation of variant frequency, the distinctiveness
of the phenotype, the relevance of the phenotype to the
gene in question, and the diagnostic yield of the genetic
test in patients with the observed phenotype (Supplementary
Figure S1).
Variant frequency is a primary concern in evaluations of the

relevance of positive case reports, and must be a preliminary
evaluation. Individual case reports should be considered as
possible evidence only if the variant is rare (absent from
ExAC or present within the “pathogenic range”). If the variant
is not rare, spurious case reports should be expected;
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segregation or case-control data are required to confirm the
relevance of any single observation.
Using the clinical phenotype of affected individuals

consistently and accurately proved challenging with the
ACMG–AMP criteria. The genes BRCA1, JAG1, and MYH7
demonstrate how observations of a rare variant in an affected
individual might contribute to an argument of variant
causality to different extents.
Pathogenic variants in BRCA1 strongly predispose to breast

cancer. However, isolated breast cancer is common, and
approximately 90% of cases have nongenetic etiologies.27,28

Most observations of BRCA1 variants in affected individuals,
therefore, must be coincidental, not causal, so the observation
of a variant in an isolated affected individual is not strong
evidence that the variant is pathogenic unless it is first
established that the individual’s disease is hereditary. Contrast
BRCA1 with JAG1, which causes Alagille syndrome, a rare
and clinically distinctive condition without known non-
genetic etiologies. For classically affected individuals who
meet clinical diagnostic criteria,29 the diagnostic yield for
the molecular test is greater than 95%.30 It is therefore
substantially more likely that a novel JAG1 variant in a
clinically distinct individual is causal. JAG1/Alagille syndrome
observations are therefore stronger evidence than BRCA1/
breast cancer observations. Between these two extremes lies
MYH7 and hypertrophic cardiomyopathy (HCM). Pathogenic
variants in MYH7 can lead to hypertrophic or dilated
cardiomyopathy, phenotypes that can have genetic origins
but can also have substantial nongenetic etiologies (up to
70%).31–33 Case reports of rare MYH7 variants in individuals
with HCM are cautiously considered evidence of pathogeni-
city, as a substantial likelihood remains that the combination

is coincidental. A cohort of affected individuals with the same
rare variant, however, becomes persuasive.
These examples demonstrate that the value of a clinical

observation should vary based on both the specificity of the
clinical phenotype and the diagnostic yield of the molecular
test for that phenotype. The higher the pretest probability that
a proband with a particular phenotype will have a particular
gene disruption, the greater the likelihood that an observed
variant in that gene or set of genes is the explanation for
disease. Conversely, the lower the yield of a test, the greater
the likelihood that the true etiology lies elsewhere and the
higher the likelihood that observed variants are coincidental.
To develop a consistent approach to determining the value

of clinical observations, we divided genes based on their
yield for particular phenotypes. If the diagnostic yield is
high (475%), isolated case reports may be considered very
significant, and finding a rare variant in a relatively small
number of classically affected probands will be sufficient for a
pathogenic classification. However, if the test accounts for less
than 75% of cases, case reports are relevant only to the extent
that the disease is first established to be hereditary based
on the nature of the phenotype or a pedigree analysis.
Furthermore, at least two unrelated case reports are required
to begin counting the observations as relevant data to protect
against circular reasoning in diagnostic testing. A cohort of
similarly affected individuals is generally required for a
pathogenic classification.
If the index proband is not a confirmed hereditary case, an

isolated case is not used as evidence, and segregation data are
required. Sherloc has three levels of segregation data to
capture the fact that additional families and higher LOD
scores quantitatively substantiate a classification argument
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cause of
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Low-
frequency

variant

High-
frequency

variant

Has an
alternate cause

of disease

Insufficient case
report. 0 (EV107)
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Use case report
decision tree #3

Use case report
decision tree #2

Use case report
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Observations in
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Figure 3 Root decision tree for clinical case report criteria. Case reports are divided into one of three types based on the affected status of the
proband, the relevance of the phenotype to the gene in question, and the presence of a known disease etiology. This root decision tree guides the
user to the correct detailed decision tree (Supplementary Figures S2–S4) based on these considerations. The variant frequency is an essential lens
through which to understand the relevance of case reports. The more frequent a variant is, the more likely it becomes that case reports are simply
coincidental.

Sherloc variant classification | NYKAMP et al ORIGINAL RESEARCH ARTICLE

GENETICS in MEDICINE | Volume 19 | Number 10 | October 2017 1111



(see Supplementary Information, Supplement 4:
“Quantifying segregation”). When asserting a correlation
between a positive genotype and a positive phenotype, the
genomic linkage of the observed variant to the causative
variant is a concern. Therefore, the value of a single family, no
matter how large, is capped to protect against this possibility;
other types of supporting evidence (functional data or
observations in unrelated, affected individuals or families)
are required for a confident classification.
It is important to predefine the distinct clinical features

required to count an observation as a relevant case. Accepted
clinical criteria, if they exist, should be used. Summary or
simplified condition information, such as that often deposited
in ClinVar or included on test requisition forms, may be
insufficient for case-based conclusions, and additional com-
munication may be required to capture necessary detail.
Sherloc contains a 0-point criterion, “Observed in patient with
nonspecific phenotype or insufficient genotype” (EV0107), to
acknowledge reports of poorly characterized individuals or
well-characterized individuals with nonspecific phenotypes.
Finally, the full genotype and variant inheritance can

provide additional support to a pathogenicity argument. Two
rare variants in trans in a recessive gene, or a hemizygous
variant in an affected male, can provide an additional level of
certainty that the case report is valuable. The observation that
a variant has arisen de novo in a relevant and established
disease gene is counted as strong evidence. Sherloc contains a
less heavily weighted criteria for capturing de novo variants in
candidate genes, an important consideration for exome
analysis, in which multiple de novo events are common.

Observations in affected individuals with an alternate
explanation for disease
Most Mendelian conditions are rare and explained by a single
genetic etiology. Therefore, when an affected individual has
an identified genetic etiology, additional variants in the same
or a different gene are less likely to be pathogenic. In certain
cases, co-occurrence observations of this sort can be used as
evidence that the additional variants are benign. Sherloc
contains four evidence types capturing these scenarios
(Supplementary Figure S2). Within the same gene, co-
occurrence applies only to variants in trans with pathogenic
variants; once an allele is disrupted, there is no selective
pressure preventing that allele from acquiring additional
variants that would be pathogenic in isolation. It also applies
only to variants causing dominantly inherited disease (or in
X-linked genes in male probands). Recessive carrier status is
no more or less likely in affected individuals.
Finally, this logic does not apply to relatively common

conditions with locus heterogeneity—that is, when there are
known case reports of affected individuals who inherit
pathogenic variants in related genes from both parents. For
example, up to 5% of individuals with a pathogenic HCM
variant also have a second pathogenic HCM variant in a
different gene34. The second variant cannot be presumed to be

benign, and co-occurrence evidence types are not applied for
HCM cases.

Observations in unaffected individuals
The observation of a variant in an unaffected individual,
which in a genetic context should lead to disease if it
were pathogenic, suggests that the variant may be benign
(Supplementary Figure S3). For example, CHARGE
syndrome is a dominant, highly penetrant, congenital
disease caused by pathogenic variants in CHD7.35 A CHD7
variant in an unaffected adult is therefore strong evidence that
the variant is benign. Likewise, biallelic pathogenic variants in
BRCA2 cause Fanconi anemia,36 and there is no difference in
the mutation spectrums of pathogenic variants that lead to
BRCA2-mediated Fanconi anemia versus hereditary breast
and ovarian cancer.37 A variant in trans with a pathogenic
BRCA2 variant in an individual without Fanconi anemia must
therefore be benign.
The strength of these assertions depends on the penetrance

and expressivity of a condition. Pathogenic variants in JAG1,
as described previously, cause Alagille syndrome, which has
highly variable expressivity and severity; some indivi-
duals reach childbearing age without recognizing that they
are affected.38 The observation of a JAG1 variant in an
“unaffected” individual is evidence only to the extent that the
individual has been phenotyped thoroughly and found to be
devoid of subtle features.
To address examples like these, Sherloc modulates “unaf-

fected case report” rules on inheritance, zygosity, and the
penetrance and age at onset of associated diseases. For genes
that lead to highly penetrant, early-onset diseases, even a
single observation in a well-characterized unaffected indivi-
dual can be strong evidence that a variant is benign; however,
for genes in which we might expect to see unaffected,
genotype-positive individuals, additional observations are
required.
The use of these evidence types must be based on the

confirmed absence of a particular phenotype. The fact that a
phenotype has not been mentioned in a test requisition
form or publication is insufficient evidence that it is
absent. Furthermore, the term “unaffected” is relative; these
rules also apply when the individual is affected by a disease
but is not affected by the disease associated with the gene in
question.
The ACMG–AMP criterion BS4 (lack of segregation) is

challenging to parse, as nonsegregation can refer two separate
phenomena that should be considered separately, and remain
challenging to quantify. Within the context of a family with
multiple individuals affected by a hereditary condition, the
variant is (i) present in an unaffected individual (genotype-
positive/phenotype-negative), or (ii) absent in an affected
individual (genotype-negative/phenotype-positive). Observa-
tions of genotype-positive/phenotype-negative individuals,
even in the context of a complex pedigree, are treated simply
as independent data points using the criteria described in
Supplementary Figure S3. Linkage to a causative variant is
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not a concern in the negative correlation, although the
concerns about penetrance and expressivity described above
are relevant. On the other hand, the absence of a variant in an
affected individual (genotype-negative/phenotype-positive) is
currently awarded 1 to 2 “miscellaneous benign points” based
on the specificity and rarity of the condition. EV criteria do
not yet exist and will be addressed more formally in future
versions; a method for objectively establishing symptom
specificity and phenocopy rates, and weighing this evidence
against other data is still being developed.

Functional criteria
Variant type and the expected consequence for gene
products
A variant is more likely to be pathogenic if it has a
consequence for a gene product (a transcript or protein, or
both) that is consistent with the disease mechanism of the
gene. The ACMG–AMP guidelines contain six rules related to
variant type: BP1 (missense variant in a gene with an LOF
mechanism), BP3 (in-frame indels in a repetitive region), BP7
(silent change with no predicted impact on splicing), PVS1
(null variant in an LOF gene), PM4 (in-frame indel in a
nonrepetitive region), and PP2 (missense variant in a gene in
which missense changes are rare). Sherloc expands these rules
to 27 criteria that address a more comprehensive set of variant
types, specify differences based on variant location in
the mRNA exonic structure, and incorporate assertions
about molecular mechanism (Supplementary Figure S5,
Supplementary Information: Supplement 1, “Variant
type”). A single variant type rule is applied to each variant.
In some cases (truncations, indels, and missense variants),
additional dependent rules incorporate information about
other nearby pathogenic variants. Missense changes and in-
frame deletions/insertions are given a weight of 0 points.
Variants that do not reliably affect protein sequence or
abundance (such as silent or some intronic variants) are
presumed more likely to be tolerated, and variants that exert a
more dramatic effect on protein sequence or abundance (such
as premature stops and splice junctions) are presumed more
likely to be deleterious.
The relevance of a null variant depends on the disease

mechanism of the gene, and ACMG–AMP and Sherloc both
give special weight to null mutations in LOF genes. An
objective approach to determining whether a disease mechan-
ism has been established as LOF is described in the
Supplementary Information (Supplement 2, “Establishing
loss of function as a mechanism”), and a cohort of three
unrelated affected individuals with null variants is typically
required to support this conclusion. Variant effect rules are
grouped and nonadditive.

Molecular, cellular, and animal experimental data
Experimental data can demonstrate an effect on certain
aspects of protein or RNA function, localization and
abundance but speak only indirectly to the question of
pathogenicity. Experimental data are persuasive to the extent

that the measured property is recapitulated in vivo and is
relevant to the disease mechanism of the gene. The ACMG–
AMP guidelines contain two rules capturing functional
studies: BS3 (well-established assay, no deleterious effect)
and PS3 (well-established assay, deleterious effect). However,
we found it challenging to address the evidence provided by
less-well-established functional assays, and found that the
value awarded to even well-established functional assays was
excessive, as we routinely encountered examples in which
experimental evidence was later overturned by contradictory
experimental evidence or by new population data. For
example, ACTN2 c.26A4G (p.Gln9Arg) is an actinin variant
observed in a number of patients with dilated cardiomyopathy
or HCM, or both.39,40 p.Gln9Arg expression in a skeletal
muscle cell line was significantly different from the equivalent
expression of a wild-type construct and failed to support
normal cellular morphological changes and protein
localization.39 However, the frequency of this variant in
ExAC is greater than 0.1%, which is inconsistent with
pathogenicity and high enough to cast substantial doubt on
the relevance of case reports.
Likewise, MLH1 c.794G4A (p.Arg265His) is a rare variant

observed in many individuals and families affected with
Lynch syndrome.41–43 At least two experimental studies have
reported cellular or molecular phenotypes attributed to this
variant: a mutator phenotype in S288c and SK1 cells,44 and
altered splicing in an ex vivo splicing assay.41 However,
subsequent functional studies demonstrated repeatedly that
this variant was mismatch-repair competent when transfected
into HEK-293 cells,45,46 did not alter β-galactosidase activities
in a yeast two-hybrid assay,47 and did not lead to a yeast
mutator phenotype.48 Furthermore, the variant has been
observed to co-occur with pathogenic MLH1 variants in
multiple families. The evidence justifies a likely benign
classification in both of these cases, despite initial functional
evidence demonstrating a deleterious effect.
Disagreement about the value of functional data is a major

source of classification discrepancies among genetics profes-
sionals. Clearly, the value of functional data depends on the
relevance of the measured property to the disease biology, the
quality of the experiment, the reproducibility of the result, and
the amount of measured change, although a consistent
evaluation of these considerations is challenging. To address
this complexity, Sherloc contains rules capturing varying
degrees of confidence, distinguishing splicing and protein effect
experiments, and capturing and discounting poorly performed
or inconclusive studies (Figure 4). Detailed guidelines for
distinguishing between strong and weak categorizations are
included in the Supplementary Information (Supplement 3,
“Experimental evidence”). Functional evidence types are
grouped and nonadditive. When multiple criteria are
appropriate, only the strongest is counted.

Patient biochemical data
A well-established, clinically validated assay that measures
enzyme activity or analyte abundance in a patient-derived
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sample is a special data type that straddles the boundary
between clinical phenotype and functional data. It is captured
here as functional data in recognition of the essential
quantitative objectivity of the data. These evidence types
augment the value of a case report when appropriate.
Newborn screen data are captured but not valued in
recognition of the high false-positive rate.

Computational predictors and conservation
Many computational tools exist to predict the effect of
missense changes on gene products. Although these tools are
useful in prioritizing variant lists in gene discovery exercises,
their clinical validity as predictors of disease is not well
established.49,50 Sherloc contains a series of weakly weighted
criteria to capture these observations (Supplementary
Figure S5). Splicing predictors, although also weakly
weighted, are used to indicate which silent or intronic
variants should be considered further.
The presence of an equivalent missense change in a

mammalian species is granted a special weight reflecting the
assumption that variation within a mammalian clade speaks
more directly to questions of mammalian physiology and is
therefore more relevant to human disease. Computational
predictor evidence types are nonadditive. They are also
grouped with, and superseded by, functional evidence criteria.
When multiple evidence types from this large group are used,
only the strongest is counted.

DISCUSSION
Sherloc is an implementation and refinement of the ACMG–
AMP variant classification guidelines and a robust method
for the consistent valuation of classification-related evidence.
Sherloc is a collection of specific, interdependent, and
consistently weighted evidence types supported by a set of
hierarchical decision trees.

Sherloc is built on a number of basic principles:

▪ Variant classification should be reproducible and audi-
table. When confronted with the same evidence, different
people should come to the same conclusions. Conclu-
sions should be derived directly from the consistent use
of evidence.

▪ Evidence classification should be specific. A single
evidence type should capture a single, well-defined
use-case, and every use-case should be captured by an
available evidence criterion. Ambiguities should be
addressed by iterative refinements to the system.

▪ Evidence should not be counted twice. Certain types of
evidence contribute to the same basic argument. The rule
set should contain dependencies to correct for double
counting.

▪ Some observations are additive. Certain arguments
become more persuasive when supported by additional
observations. Some evidence types can be invoked more
than once and are additive when invoked multiple times.

▪ Data types can be interrelated. Certain data types
meaningfully affect the significance of other data types.
The frequency of a variant, for example, changes our
expectations for and use of case reports and segregation
data.

▪ Clinical genetics can be more complicated than
Mendelian inheritance. Contradictory evidence may
exist, and the evidence supporting a variant classification
of benign or pathogenic should be considered separately.
When substantial evidence supports both conclusions,
that dichotomy may reflect complex, non-Mendelian
mechanisms, exceptionally low-penetrance variants, or
genetic modifiers or environmental effects, or may
otherwise be ambiguous within the Mendelian
framework.
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Figure 4 Functional data: Sherloc criteria and decision tree. Functional evidence is evaluated based on the type of experiment performed and the
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Efficient application of a complex rule set
Molecular genetics is complicated, and that complexity is
reflected in the Sherloc rule set. In practice, however, a simple
hierarchical approach to evidence types yields accurate and
thorough results quickly.
The most efficient process for variant classification moves

from the most powerful and simplest information to the least
powerful and most complex information. In practice, we
adopt a four-step process, which usually leads to the
invocation of three to five evidence types per variant. At
each step, we usually choose the single most appropriate
evidence type from a related collection of choices. The
hierarchical steps are as follows (see Figure 5):

1. Evaluate population data. This step identifies variants
that are too common to be causes of Mendelian disease
and provides the lens through which clinical case reports
must be evaluated.

2. Evaluate the expected effect of the variant on the gene
product(s) (variant type). This step identifies variants
strongly suspected to be pathogenic or benign and
contextualizes the functional data.

3. Evaluate clinical case reports for substantial positive or
negative evidence of enrichment in clinically affected
individuals.

4. Evaluate functional experiments and predictive data. In
most cases, functional data are consulted to confirm or
refute the argument that has been established by the
other data types.

Once substantial evidence exists for a confident classifica-
tion, the remaining steps can take the form of a scan for

potentially contradictory evidence. Software can support the
systematic efficiency of the evaluation process by providing a
user interface that supports accurate rule usage and the
automatic application of the discrete evidence types that
depend on digitally available data. Population data and
variant effect data are amenable to automatic classification,
but the evaluation of case reports and functional studies are
not. Novel variants unsupported by publications are highly
amenable to automatic precategorization. Any system has
limitations, however, and a purely software-generated classi-
fication cannot be considered a substitute for professional
evaluation.

Should variant classification guidelines be disease specific?
Sherloc presents a general framework for the evaluation of
evidence—an epistemological argument that simply addresses
the questions, “When can we say we know the effect of a
variant?,” “When do we merely suspect?,” and “How can we
tell the difference?” The accurate use of this framework
depends on specific knowledge of the molecular and clinical
aspects of particular genes. A well-supported understanding
of the disease mechanism associated with a gene should make
rules that depend on the molecular mechanism applicable or
inapplicable for variants in that gene. However, the weight
granted to the general argument (that the variant is
pathogenic because its mode of action is consistent with the
mode of action associated with pathogenic variants in that
gene) should be the same in all cases.
Specific knowledge about protein structure and function

can lead to conclusions that a particular amino acid residue
may be critical. This knowledge may be based on conserva-
tion, an understanding of protein domains, or knowledge
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Figure 5 Hierarchical approach to efficient variant research. Because a hierarchical relationship exists between evidence types, an ordered
approach to the evaluation of evidence can be very efficient. Evidence is evaluated starting with the simplest and potentially most powerful types and
working toward the most complicated and subtle types (i.e., from population data and variant type toward clinical data and functional/prediction data).
When sufficient evidence for a confident classification is identified, the remaining research can be focused on looking for contradictory evidence.
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about pairs of residues that bond to maintain a three-
dimensional protein structure. However, the weight granted
to the general argument—that a novel variant is pathogenic
because it disrupts an amino acid residue suspected to be
critical to the protein structure of a structural protein or the
protein function of a channel or enzyme—should be the same
in all cases.
Likewise, detailed knowledge about the phenotypes asso-

ciated with pathogenic variants in a gene should make rules
that depend on counting case reports relevant or irrelevant
when considering observations of individuals with variants
in that gene. However, the weight granted to the general
argument—that a variant is more likely to be pathogenic
when observed in an individual with a highly specific
phenotype—should be the same in all cases.

ACMG-AMP framework
The 2015 ACMG–AMP guidelines for variant classification
were a major step toward establishing the basic outlines of a
shared framework for variant classifications. The conclusion
of this paper is that the details of that framework can be
further refined, and such refinements will improve the
reproducibility and objectivity of variant classification across
individuals and laboratories. However, the core value of the
framework cannot be overstated: these guidelines help drive
consensus by providing a shared framework for documenting
the evidence considered in an evaluation, beginning the
process of valuing certain evidence types, and turning
professional disagreements about variant classifications into
meaningful discussions about clinical and scientific data. A
complex and nascent field, such as clinical genetics, will
uncover cases about which reasonable professionals come to
different conclusions. A shared language is the first require-
ment for achieving a common goal.

SUPPLEMENTARY MATERIAL
Supplementary material is linked to the online version of the
paper at http://www.nature.com/gim
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