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In the study of pediatric automatic bone age assessment (BAA) in clinical practice, the extraction of the object area in hand
radiographs is an important part, which directly affects the prediction accuracy of the BAA. But no perfect segmentation
solution has been found yet. This work is to develop an automatic hand radiograph segmentation method with high precision
and efficiency. We considered the hand segmentation task as a classification problem. The optimal segmentation threshold for
each image was regarded as the prediction target. We utilized the normalized histogram, mean value, and variance of each
image as input features to train the classification model, based on ensemble learning with multiple classifiers. 600 left-hand
radiographs with the bone age ranging from 1 to 18 years old were included in the dataset. Compared with traditional
segmentation methods and the state-of-the-art U-Net network, the proposed method performed better with a higher precision
and less computational load, achieving an average PSNR of 52.43 dB, SSIM of 0.97, DSC of 0.97, and JSI of 0.91, which is more
suitable in clinical application. Furthermore, the experimental results also verified that hand radiograph segmentation could
bring an average improvement for BAA performance of at least 13%.

1. Introduction

Automatic bone age assessment (BAA) based on the hand
radiographs is a crucial diagnostic technique to evaluate
the growth disorders and endocrine abnormalities for pedi-
atric and adolescent patients, usually performed by radiolog-
ical examination of the left hand and the wrist radiographs
to assess skeletal maturity in clinical [1–3]. The Greulich
and Pyle (G&P) method [4] and the Tanner-Whitehouse
(TW3) method [5] are two most widely used traditional
methods for bone age estimation. But both of them are
time-consuming and subjective. Therefore, the automatic
evaluation of bone age based on computing power and
machine learning techniques, especially the application of
deep Convolutional Neural Networks (CNNs), has been
studied and prompted the development of the BAA [6].

In the processing pipeline of automated BAA, image
preprocessing, segmentation, and normalization were shown

to be effective for improving the robustness and perfor-
mance of BAA models in the previous studies [7–10], and
the most important of which is hand bone segmentation
[11], which could seriously affect the prediction accuracy.
The hand bone segmentation could remove all extraneous
objects, such as radioactive markers, impurities, and noise,
and extract the whole hand. Medical image segmentation is
a necessary but a challenging problem in most image analy-
sis and classification problems. In the process of digital
radiograph acquisition, an intrinsic effect will be caused
when radiation intensities exposed unevenly on the exam-
ined subject [12, 13]. Owing to the influence of the uneven
radiation intensity and various man-made factors, most
hand radiographs have motion artifacts, noise, and asym-
metric illumination. The representative examples are shown
in Figure 1 that most images have low contrast and blurring
edge, which is complicated to extract the entire hand bone
region from the background.
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In the previous studies, the most widely utilized tradi-
tional segmentation techniques could be divided into the
following several kinds according to the different image char-
acteristics, thresholding, clustering, edge based, region based,
deformable models, and hybrid techniques [14–16], but these
methods frequently result in oversegmentation, especially the
distal phalanx. When dealing with large datasets, the robust-
ness limitations of traditional segmentation methods are
even more pronounced. Therefore, the deep learning tech-
niques were introduced to medical image segmentation
[17], and patch-based CNN pixel classification is one of
which the most popular segmentation methods [18]. LeNet-
5 network was the first published application of using
patch-based CNN to segment the hand and wrist [19]. In this
study, 1000 radiographs were classified into sample patches
to train the detection network. But because of patches’ over-
lap, the network was really time-consuming. The U-Net net-
work [20], which was originally proposed for medical image
segmentation and could be utilized for segmentation prob-
lems with limited amounts of data [21], was applied to pre-
dict hand masks [22]. Another network VGG-16 [23] was
integrated with U-Net as an encoder-decoder structure to
obtain hand mask [24]. However, U-Net network required
multiple trainings for binary image segmentation, and most
predicted label maps had false-positive regions assigned to
the hand class. Manual labor was needed to clean these masks
and trained the model again for six times. Deep CNNs have
been gradually devoted in medical image segmentation, but
they showed weak efficiency for automatic hand radiograph
segmentation in recent researches. Moreover, it was a great
amount of work to creating labels of the training datasets for
CNN. As a result, it is necessary to design a segmentation
method with low complexity and strong processing capability.

Aiming at the problems mentioned above, we proposed
utilizing a model to predict the optimal segmentation thresh-
old for hand mask segmentation, which was trained on mul-
ticlassifiers based on ensemble learning. We also compared
the proposed method with the representatively used tradi-
tional segmentation techniques and the U-Net network.

2. Materials and Methods

In this section, we described our approach for hand radio-
graph segmentation, and the whole procedure was illustrated
as Figure 2. The main idea of the proposed method consisted
of four stages: (1) image enhancement using the histogram
equalization, (2) label making of optimal segmentation

threshold, (3) a 2-level ensemble learning of classification
model training based on multiple classifiers, and (4) postpro-
cessing through region growing for clean hand masks.

2.1. Image Enhancement. Image enhancement is very essential
to improve the segmentation performance and robustness of
the image processing [25]. The histogram equalization
method is an efficient way to enhance the contrast and smooth
the histogram for hand radiographs [26, 27]. Generally, the
histogram with obvious double peaks is well suited to the
selection of image optimal threshold, while the rest of the his-
tograms are the opposite with several small peaks needed to be
processed to restore contrast, and the optimal thresh value
could be easily found to create hand mask in this way.

2.2. Label Making. The main steps to find the optimal seg-
mentation threshold can be summarized as below:

Step 1: Chose 40 values at the interval of 2 below average
to obtain binary image. The selection range of threshold
value could be increased to a limited extent if no correct value
was available.

Step 2: Selected the threshold value with the best segmen-
tation result as the training label. The optimal threshold
should meet the following two conditions: first, the back-
ground is completely separated from the palm, and more-
over, the details of hand masks are exquisite. Try to choose
the threshold with a larger value as the label, and as shown
in Figure 3, threshold value of 190 was marked as the label.
Especially, the selected optimal segmentation thresholds
were corrected by three people with professional background
without interference.

Step 3: Calculated the histogram, mean, and variance gray
value of each image as the feature and utilized the features
and labels as the training dataset.

Step 4: To eliminate the adverse effect caused by the
outliers. The training set was standardized by min-max
normalization.
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where Ii is the pixel value, f i is the feature, and li is
the label of each image. By this way, the deviation is
finally normalized to (0, 1).

(a) (b) (c) (d) (e) (f)

Figure 1: Different types of hand radiographs in the whole datasets, including (a) overexposure, (b) low contrast, (c) uneven radiation
intensity, (d) irrelevant bones, (e) frame attach to the bone marked by the radiologist, and (f) radioactive markers.
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Figure 4 shows the distribution of sample labels chosen
artificially from the training set. As can be seen, almost all
the optimal threshold values were limited in 150 and 200
after enhanced processing. This was to suggest that the
enhanced processing made the distribution of the labels more
uniform, which was able to be less susceptible to the impact
of imbalanced samples on model fitting.

2.3. Ensemble Learning Framework. Individual classifier may
not be able to learn more information, while ensemble learn-
ing can improve the performance of a single classifier by
combining them [28]. Ensemble learning is one of the most
useful strategies to improve generalization performance of
prediction model, with a core of training strategy for base
classifiers, such as bagging, boosting, and stacking [29]. Bag-
ging and boosting build the base learners from a single data-
set, having an impact on diversity, while stacking learning
method uses the multiple classifiers by taking the prediction
of the previous level as input variables for the next level
[30]. Therefore, stacking learning strategy is considered to
construct the ensemble learning framework for hand seg-

mentation. The simplified flow diagram of stacking algo-
rithm was shown in Figure 5.

To get a good ensemble, the base learners should be accu-
rate and diverse. It is generally recognized that the diversity
among base classifiers is important for improving generaliza-
tion performance in an ensemble of model. We examined the
ability of various classifiers, aiming to choose the most effec-
tive one as the base learner. The performance of each model
was evaluated by determining the root mean square error
(RMSE) between the predictions and labels, and the grid
search method was employed to optimize parameters; the
optimization details were shown as follows:

SVC(class_weight = ‘balanced’, degree =2, gamma =0.1,
kernel = ‘sigmoid’, max_iter = -1, random_state =5),

DecisionTreeClassifier(max_depth =3, max_features =
‘auto’, splitter = ‘best’),

RandomForestClassifier(max_features=‘auto’, n_estima-
tors=150, oob_score=True, max_depth=200),

ExtraTreesClassifier(class_weight = ‘balanced’, bootstrap
= True, max_features = ‘sqrt’, random_state =30, n_estima-
tors =100, oob_score = True),
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Figure 2: Procedure of engine to automatically segment hand bone image.

Threshold_186 Threshold_188 Threshold_190

Figure 3: The selection of the optimal segmentation threshold.
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Figure 4: Label distribution chosen artificially from the training set: (a) labels chosen from original images and (b) labels chosen from
enhanced images.
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Figure 5: The main idea of the stacking technology.
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GaussianNB(),
XGBClassifier(gamma=0, learning_rate=0.01, max_

depth=3, n_estimators=200, objective=‘multi:softmax’),
KNeighborsClassifier(n_neighbors =5, weights =

‘distance’),
BaggingClassifier(max_features=0.5, n_estimators=100,

oob_score=True, random_state=50),
GradientBoostingClassifier(learning_rate = 0.01, max_

features = ‘sqrt’, n_estimators =200, subsample = 0.6),
AdaBoostClassifier(learning_rate =0.1, n_estimators =50,

random_state =30).
The performance of each base classifier was shown in

Table 1.

RMSE =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
m
〠
m

i=1
yi − y∧ið Þ2:

s
ð2Þ

Considering the computing cost, we decided to select the
top five classifiers, RandomForest, ExtraTrees, Bagging, Ada-
Boost, and SVC as the base learner of the stacked model. To
increase the diversity of base classifiers, we applied 5-fold
cross validation in the training process, which was illustrated
in Figure 6.

Step 1: The training set was randomly divided into D1,
D2,⋯D5subsets with similar size. Defined �Di =D/Di as the
training set and Di as the testing set when base model train-
ing, where i = f1, 2, 3, 4, 5g and D = fD1,D2,D3,D4,D5g.
The whole testing set was denoted as T .

Step 2: Trained the model 1 by �D1and made a predic-
tion P11 byD1. Such operations were needed to be repeated
five times, and thus we could get a new training set of

P1 =
P11

⋮

P15

0
BB@

1
CCA.

Step 3: The whole testing set Twas predicted by the base
model 1 trained on �Di in every 5-fold cross validation andmade
a prediction T11, T12, T13, T14, T15, respectively. Thus, a new
testing set T1could be obtained in computing five predictions,

T1 =
T11

⋮

T15

0
BB@

1
CCA.

For the base model 2 to model 5, repeated steps 2 to steps
3 until the training set P2, P3, P4, P5 and testing set T2, T3,
T4, T5were achieved. Predictions provided by each base
model were combined into a new training set P = ðP1,⋯,
P5Þ and a new testing set T ′ = ðT1,⋯, T5Þ. Imported Pand
T ′to the second-level model and the labels remained the
same as original dataset.

The choice of second-level model is equally important,
and compared with other classifiers, Logistic regression is
the most often choice. For best performance, we also consid-
ered Softmax regression and the best performing base classi-
fier RandomForest shown in Table 1 to make a comparison,
and the results were shown in Table 2. From the chart, we
knew that the Softmax regression performed better with a

RMSE of 6.47 than the Logistic regression and the Random-
Forest. Therefore, Softmax regression was chosen as the
second-level model for the ensemble learning of stacking.

2.4. Postprocessing. There could appear to be false-positive
pixels in the hand label maps predicted by a stacker model,
so we extracted the hand area through region growing. The
center of the image was taken as the seed, and the growth
was stopped in the edge of the hand shape. As a result, a clean
mask could be created for the hand radiograph. The postpro-
cessing of the hand mask was shown in Figure 7.

2.5. Evaluation Metrics. The objective evaluation of the pro-
posed method mainly depends on a series of quantitative
parameters. Peak signal to noise ratio (PSNR) [31], structural
similarity (SSIM) [32], dice similarity coefficient (DSC), and
Jaccard similarity index (JSI) [33] were commonly used to
calculate the errors between the segmented images and the
ground truth. PSNR and SSIM are both image quality evalu-
ation indexes, while the DSC and JSI are segmentation accu-
racy assessment indexes.

PSNR can be computed using the equation as

PSNR = 10 ∗ log10
2552
MSE

� �
: ð3Þ

MSE is denoted as

MSE = 1
256 × 256〠

256

i=1
〠
256

j=1
S −Gð Þ2, ð4Þ

where S stands for segmented image and G for ground
truth of the segmented image.

SSIM measures the similarity of two images, is defined as

SSIM = 2μSμG + C1ð Þ 2σSG + C2ð Þ
μS

2 + μG
2 + C1ð Þ σS

2 + σG
2 + C2ð Þ , ð5Þ

whenre μS and σS
2 are the mean and the variance of the

segmented image, respectively. Likewise, μGand σG
2 are the

mean and the variance of the ground truth mask, respec-
tively. And σSG is the covariance of the predicted mask and

Table 1: The performance of each base classifier.

Classifiers RMSE

SVC 9.89

DecisionTree 11.14

RandomForest 8.40

ExtraTrees 8.63

GaussianNB 10.80

XGB 10.87

KNeighbors 18.67

Bagging 8.88

GradientBoosting 15.50

AdaBoost 9.37
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the ground truth mask. C1 and C2 are both constants to
retain the stability of numerator and denominator.

DSC is defined as

DSC = 2 S ∩ Gj j
S + Gj j : ð6Þ

JSI is given by equation

JSI = S ∩Gj j
S ∪Gj j : ð7Þ

Except the index PSNR, the range of value for other
metrics is 0 to 1, where 1 demonstrates the perfect seg-
mentation result.

3. Experiments and Results

A set of experiments implemented on hand radiograph
segmentation were designed to verify the effectiveness of
the proposed method. To ensure the fairness of the experi-
ments, the histogram equalization method was carried on
the training and testing datasets in all comparative methods.
All the experiments were performed on a CPU environment,
python3.6, and Tensorflow 1.11.0.

3.1. Datasets. In this study, a total of 600 hand radiographs
with the skeletal age ranging from 1 to 18 years old were
included into the whole dataset. We randomly selected 500
images as the training set and 100 images as the testing set.
These whole 600 hand masks ground truth images were
manually labeled by professional radiologists. The dataset
was all collected and anonymized from the radiology depart-
ment of Children’s Hospital Affiliated to Chongqing Medical
University.

3.2. Strategy Testing. To verify the effectiveness of 5 indepen-
dent ensemble classifiers with stacking, it is necessary to eval-
uate whether the number of multilevel models affects the
accuracy of the stacked model. Therefore, we designed sev-
eral experiments to measure prediction accuracy as well as
inference time under different ensemble classifiers for com-
parison. Each time, we selected the best performing classifiers
as the base learners for stacking when changing the ensemble
number, such as when the number was set as 2, the top two
classifiers, RandomForest and ExtraTrees were used as the
combination. When the ensemble number was set as 3,
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Figure 6: Ensemble learning using stacking technology based on 5-fold cross validation.

Table 2: Performance of stacked model based on different second-
level classifiers.

Second-level classifier RMSE

Logistic regression 8.82

Softmax regression 6.47

RandomForestClassifier 7.69
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Figure 7: The postprocessing of the hand mask.
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RandomForest, ExtraTrees, and Bagging classifiers were
selected as base learners and so on. The results are detailed
in Figure 8; we used RMSE to measure the prediction
accuracy.

As shown in Figure 8, the ability of model fitting accuracy
and inference time were greatly affected under different com-
ponent classifiers in an ensemble. With the increasing num-
ber of ensemble classifiers, the prediction accuracy was
significantly improved, but increased more slowly when the
number was greater than five, even became worse when the
number was approximate ten. Moreover, the inference time
became longer as the number of component classifiers
increased, especially when the number exceeded 5, and 35-
minute inference time for 5 ensemble classifiers was reason-
able compared to other configurations. Therefore, an ensem-
ble of 5 classifiers for optimal segmentation threshold
prediction based on stacking proposed in this research was
proved to be effective, either the model performance or com-
putational complexity.

3.3. Qualitative Analysis. To verify the effectiveness of the
proposed approach, we made a comparison about the perfor-
mance between the proposed method and three representa-
tive traditional segmentation approaches Otsu thresholding
[34], K-means clustering [35], and GrabCut [36] from previ-
ous researches, as well as the U-Net network, which is the
most common method for hand bone segmentation in deep

learning. We used an open source tool in deep learning
named Labelme to make the ground truth images of hand
radiographs, and each image took approximately 3 minutes
to delineate. U-Net was trained by binary_crossentropy loss
function with Adam optimizer. We used 500 images for
training the network with 20 epochs. The learning rate was
set as 1e-4, and each step used a batch size of 2 images.

The segmentation results were shown in Figure 9. As we
can see from Figure 9(a), the classical traditional segmenta-
tion algorithm, Otsu, K-means, and GrabCut had resulted
in undersegmentation of the phalanges, especially the Otsu
thresholding and K-means clustering. The hand masks pre-
dicted by the U-Net network, as shown in Figure 9(b), were
a little worse than our method, because some clean hand
masks could not be extracted by the label map predicted by
the network. Figure 9(c) demonstrated the effectiveness of
the proposed entire segmentation engine. The hand masks
could be separated by extracting the connected region
through region growing from black backgrounds by the pre-
dicted optimal threshold. We also cropped and resized the
segmented image appropriately to 512 × 512, as shown in
the last line. As a result, we were able to get a final segmented
hand radiographs using the generated clean hand mask.

3.4. Quantitative Analysis.As shown in Table 3, the proposed
method outperformed other three representative traditional
methods as well as the U-Net network on segmentation
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Figure 9: Continued.
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accuracy, achieving a DSC of 0.97 and JSI of 0.93. And the
SSIM, which was for image quality measurement, also
showed the best result with an average value of 0.97.
Although the PSNR of our method with an average value of
54.37 dB was slightly worse than the U-Net with the maxi-
mizing value of 55.92 dB, it is significantly better than the tra-
ditional methods, Otsu, K-means, and GrabCut with an
average value of 42.54, 41.62, and 46.87, respectively. Even
more important, in reference to time complexity, we could
see that U-Net network had offered the longest runtime of
3400 minutes of any other tests performing on a CPU envi-
ronment. Otsu algorithm showed the superiority in time
complexity of 8 minutes, while other index values were least
unsatisfactory. Consequently, our method with 20-minute
computing time was comparatively acceptable.

3.5. Impact of Hand Segmentation for BAA. To demonstrate
that the proposed hand segmentation method can improve
the accuracy of BAA, we chose the VGG16 as our training
model to make a comparison. This network was one of the
most common used models in the research of BAA. We
marked the bone ages of dataset of 500 total images in years;
hence, there were 19 classes overall. Due to the small dataset,
the pretrained weights from Imagenet were used to initialize
the weights and then the vgg16 was fine tuned with these

weights. We also used data augmentation including rotation,
translation, scaling, and shifting by keras 2.2.4. Softmax cross
entropy was applied as the loss function to optimize the
model with Adam optimizer. The training data contained
90% of the original dataset, while the validation set contained
the rest. The learning rate was set as 0.01, and each step used
a batch size of 2 images. The bone age assessment results
under different configurations are shown in Figure 10. As
can be seen from the diagram, compared with the BAA con-
structed by the original image, there was a performance
increase of average 13% in RMSE of the BAA based on the
segmented image; RMSE decreased from 2.12 years to 1.85
years, which suggested that the proposed hand segmentation
method could effectively improve the accuracy of the BAA. It
is believed that the accuracy improvement for BAA brought
by the hand segmentation will become more apparent with
more hand radiograph images.

4. Discussion

We have proposed an effective method which has good
adaptability and generalization for hand radiograph segmen-
tation in this paper. We find that (1) the proposed approach
outperforms commonly used traditional methods and a
state-of-the-art architecture U-Net on a small dataset, (2)
and hand segmentation can effectively improve the forecast
precision of bone age assessment. To this end, various exper-
iments were carried out to validate the effectiveness and prac-
ticability of our method.

From the strategy testing, as shown in Figure 8, greater
emphasis had been placed on the number of component clas-
sifiers for better executive speed and the generalization
capacity using ensemble learning. The predictive ability of
single model is not as strong as that of ensembles. When
the number of component classifier was set as 5, RMSE was
6.47, and when we increased the component number to 7,
the RMSE decreased from 6.47 to 6.39. While when the
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Figure 9: Hand segmentation performance based on different methods: (a) traditional segmentation method for hand segmentation, (b) the
U-Net network for hand segmentation, and (c) the proposed method for hand segmentation.

Table 3: Quantitative evaluation comparison of our proposed
method and other methods on 100 testing set.

Methods
PSNR
(dB)

SSIM DSC JSI
Time
(min)

Traditional
methods

Otsu 42.54 0.88 0.72 0.47 8

K-means 41.62 0.86 0.70 0.52 250

GrabCut 46.87 0.88 0.85 0.71 188

U-Net 55.92 0.95 0.88 0.68 3400

Our method 54.37 0.97 0.97 0.93 20
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ensemble number was set as 10, the RMSE increased to 6.51.
Therefore, there was a slow increasing of model performance
when the ensemble number was set more than 5, but a
decrease of RMSE when the number was set more than 7.
Generalization error and over fitting problem might be
caused by the excessive model ensemble. Moreover, the infer-
ence time was nearly 9 times when the number was set as 10
compared with 5 classifiers. Therefore, both the segmenta-
tion accuracy and execution speed should be taken into con-
sideration in an ensemble learning.

Figure 9 and Table 3 show the segmentation results
between the proposed method and other methods. The pro-
posed method performs better in hand bone segmentation
with robust and highest segmentation accuracy. With regard
to the traditional methods, though simple, the segmentation
accuracy was unsatisfactory. Compared with the U-Net net-
work, our method took the advantage of the segmentation
accuracy and the time complexity. The U-Net took 200
times computing time than ours on a CPU. As for the
impact of hand segmentation for BAA, it was obvious that
there was a better performance in RMSE with the overall
hand-segmented images, which suggested that the hand
image segmentation step was important for generalizability
of the BAA model.

In a word, the traditional segmentation methods with
weak robust and low precision have not been applicable for
hand mask segmentation. Although the U-Net has the
unstable performance in recognition of the edge of the hand
and a great deal of training time, it is still the most popular
technology in dealing with many segmentation tasks. How-
ever, deep learning lies in the massive and complicated task
to artificially annotate the ground truth images for model
training, and repeated training process is required to get bet-
ter prediction results from a small dataset. More impor-
tantly, deep neural networks require powerful operation
ability of the computer, like a GPU. By contrast, our method
can be trained in a small dataset and taken in a considerable
computational cost in CPU. No matter what the quality or
the accuracy of the segmented image, our method has
obtained the satisfactory results, which is superior to the tra-
ditional segmentation methods and the U-Net network in
deep learning obviously.

The study in this paper still has some limitations even if
the good segmentation results have been obtained. The input

features for multiple classifiers, normalized histogram, mean
value, and variance of each image can be made several opti-
mizations to improve the model fitting ability and mean-
while, boost efficiency. In addition, our experiments are
only conducted on hand radiographs, and different types of
images can be used to test the generalization ability of this
method. Otherwise, there are some special hand radiographs
with variable collimation configurations digitized from tradi-
tional film Digital Radiography (DR) could not be satisfied
segmented based on our method or deep learning. Therefore,
it will be the main topic of the research in future work.

5. Conclusions

In this work, we have proposed an automatic hand radio-
graph segmentation method based on ensemble learning
with multiclassifiers, which can effectively improve the over-
all performance for BAA. We converted the process of
searching for optimal threshold into a classification task.
Ensemble learning with 5-fold stacking strategy was utilized
to train the classification model. Demonstrated by the exper-
imental results and analysis, the proposed method greatly
contributed to improvements on the performance of optimal
segmentation threshold prediction, resulting in better accu-
racy for hand mask segmentation using a small dataset,
which was more effective in clinical application.

Data Availability

All hand radiographs used in this work are available from the
corresponding author on request.
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