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THE BIGGER PICTURE A generative model is a type of machine learning method that generates new infor-
mation from learning patterns from existing data. Generative models are accelerating the search for drug
compounds with desired properties. However, the efficiency of these models in exploring the vast chemical
space is typically limited by the molecules used during model training. In addition, identifying molecules that
simultaneously have ideal properties is also a challenge. We propose a ‘‘multi-objective optimization
approach,’’ a method that effectively biases a given generative model toward optimized molecules given
an arbitrary number of properties. Improving molecule-generation models is essential to the development
of drug discovery and molecule optimization schemes.
SUMMARY
Molecular design based on generative models, such as variational autoencoders (VAEs), has become
increasingly popular in recent years due to its efficiency for exploring high-dimensional molecular space
to identify molecules with desired properties. While the efficacy of the initial model strongly depends on
the training data, the sampling efficiency of the model for suggesting novel molecules with enhanced prop-
erties can be further enhanced via latent space optimization (LSO). In this paper, we propose a multi-objec-
tive LSO method that can significantly enhance the performance of generative molecular design (GMD). The
proposedmethod adopts an iterative weighted retraining approach, where the respective weights of themol-
ecules in the training data are determined by their Pareto efficiency. We demonstrate that our multi-objective
GMD LSOmethod can significantly improve the performance of GMD for jointly optimizingmultiplemolecular
properties.
INTRODUCTION

The development of quantitative structure-activity relationship

(QSAR)1 models has accelerated the drug design process. How-

ever, designing molecules with the desired drug properties

through direct optimization over the chemical space remains

challenging due to the high dimensionality of the domain. While

drug discovery based on high-throughput screening (HTS) sys-

tems2 has been shown to be highly useful, the computational

cost needed for screening a huge candidate pool is formidable.

In addition, the design and operation of computational HTS pipe-

lines have traditionally relied on expert intuition and various heu-

ristics, resulting in suboptimal performance.3,4 Furthermore,

should one wish to consider drug candidates beyond the pool

of known drugs and drug-like molecules, expanding the pool
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faces the same challenges of molecular design in high-dimen-

sional chemical space. As drug discovery involves consideration

and optimization of multiple properties, which may conflict with

one another, this multi-objective optimization aspect further ex-

acerbates the aforementioned design challenges.

Recent advances in deep generativemodels provide promising

alternatives to conventional computational approaches for drug

discovery, which may be able to effectively address many of

these challenges. A representative example is the work by

Gómez-Bombarelli et al.,5 in which they propose the use of a vari-

ational autoencoder (VAE) to convert the input molecules, origi-

nally represented by simplified molecular-input line-entry system

(SMILES) strings, into a continuous lower-dimensional represen-

tation in a latent space. This approach effectivelymapsmolecules

in the original chemical space, which is high dimensional and
ber 11, 2024 ª 2024 The Author(s). Published by Elsevier Inc. 1
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discrete, to a latent space, which is low dimensional and contin-

uous, thereby enabling efficient numerical optimization in the

latent space in pursuit of molecules with enhanced target attri-

butes. In this study,5 a Gaussian process (GP) was used to model

and optimize the property predictor in the latent space, whichwas

shown to significantly outperform molecular optimization in the

original chemical space using a genetic algorithm (GA) as well

as a randomized search in the latent space.Winter et al.6 adopted

particle swarm optimization (PSO), instead of Bayesian optimiza-

tion (BO), aiming at further improving the computational efficiency

for multi-objective molecular optimization, also in the latent

space. In this work, multiple properties of interest were jointly

optimized by defining a single-objective function through scalari-

zation via weighted combination of multiple property scores. As

noted in Gómez-Bombarelli et al.,5 the generative model may

not always suggest molecules with valid molecular structures,

whichmay degrade the overall efficiency of the generativemolec-

ular design (GMD) approach. Empirically, this phenomenon has

been shown to occur when data points representing the mole-

cules are sampled in regions of the latent space that are far

away from the region where the original training data were

located. To deal with this shortcoming, the search for an opti-

mized molecule with desirable attributes can be formulated as a

constrained BO problem,7 which has been shown to improve

the validity of the novel molecules produced by the generative

model. The junction-tree VAE (JT-VAE)8 tackles this issue by tak-

ing a two-phase approach. In the first phase, the JT-VAE gener-

ates a junction tree that represents the overall scaffold for a mo-

lecular graph, which specifies the relative arrangement of valid

subgraph structures learned from the training data. During the

second phase, subgraphs corresponding to chemical substruc-

tures are combined according to the junction tree to obtain the

final molecular graph. As a result, JT-VAE is capable of suggest-

ing novel molecules in the latent space that can be decoded into

legitimate molecules with a high chance. To explore the latent

space to produce novel molecules with targeted attributes, the

VAE may also be conditioned by the desired property values.

For example, Kang and Cho9 proposed a semisupervised VAE

(SSVAE), which simultaneously performs property prediction

andmolecular generation, resulting in a conditioning of the model

such that it suggests molecules in the latent space that are

centered around a desired range of properties.

In addition to the aforementioned schemes that perform mo-

lecular optimization in the latent space, another popular strategy

is to first train a generative network to model the input data dis-

tribution, which is followed by fine-tuning the model via rein-

forcement learning (RL) to meet the design criteria. The work

by Olivecrona et al.10 proposed a fine-tuning approach that facil-

itates the generation of high-scoringmolecules without deviating

away from the original input data distribution. Shi et al.11 applied

an RL-based policy to fine-tune a generative network model for

molecular graphs. In the objective-reinforced generative adver-

sarial network (ORGAN)12 framework, the reward for generating

molecules with better properties is assimilated into the loss func-

tion to guide the latent space distribution during model training.

To reduce the potential bias in the generative network that may

arise from the training dataset, Zhou et al.13 proposed molecule

deep Q networks (MolDQNs). In this work, the molecular gener-

ation problem was formulated as a Markov decision process
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(MDP), and a deep Q network (DQN)14 was used to find the

optimal design policy for the given MDP. The allowable actions

in the MDP were dictated by relevant domain knowledge (i.e.,

chemical reactions) to ensure the validity of the generated mole-

cule. To jointly optimize multiple molecular attributes, MolDQN

also resorted to scalarization by defining a single-objective func-

tion based on a weighted combination of multiple property

scores.

Like other data-driven models, the initial capability of the

generative molecular models to suggest novel molecules will

be determined—at least to a certain extent—by the training

data. In fact, the generated molecules are likely to reside in a

chemical space similar to that of the molecules in the original

training set, which may make it challenging to design new candi-

date molecules whose target attributes significantly exceed

those of the original molecules—regardless of whether we

perform molecular optimization in the latent space5,8,9 or adopt

a fine-tuning strategy.10–13 To mitigate this issue, a number of

recent efforts aimed to improve the generative models by incor-

porating additional training data, generated either from experi-

ments or from simulations, where the goal was to ensure that

these models were primed to suggest novel molecules with

enhanced target properties that went beyond the initial mole-

cules. Yang et al.15 proposed an iterative retraining approach

to improve the quality of the molecules sampled from the latent

space of the generative model. In this approach, they pre-train

the generative model jointly with a property predictor. The

trained model is used to generate novel molecules from which

a small batch of molecules with the best properties is selected

using the predictor and added to the training dataset. The

extended dataset is subsequently used for retraining to update

the latent space to make it more amenable to producing better

molecules with improved properties. A similar effort from Iova-

nac et al.16 utilizes the grammar VAE,17 jointly trained with a

linear predictor network to sample new molecules along the

latent dimension corresponding to the targeted property region.

The new molecules go through further screening to be used with

the training dataset to retrain the generative model iteratively. In

Liu et al.,18 the generator in a generative adversarial network

(GAN) is iteratively updated under a chance-constrained optimi-

zation framework. They employ a validity function to guide the

optimization of the property value within the region of grammat-

ically correct input sequences or legitimate structures. A recent

work by Tripp et al.19 proposed a weighted retraining approach

to reshape the latent space of a VAE to make it more sampling

efficient for producing novel molecules with improved proper-

ties. For this purpose, the weights assigned to the data points

in the training dataset are determined by the rank of the corre-

sponding molecules according to the objective function that

evaluates the property of interest. Another recent iterative

approach20 applies a GA along with domain knowledge to

generate a new set of potentially improved candidates from

the initial training data. The property values of these candidates

are validated by high-throughput experiments or simulations. A

deep neural network (DNN) property predictor is then retrained

using a larger dataset augmented by the candidates generated

by a GA. In contrast to the generative approaches,15,16,18,19 the

candidates produced by a GA generally remain closer to the

training data. As a result, the predictions from the DNN remain
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relatively reliable, but the novelty of the produced candidates

tends to be limited. In addition, the (computational) cost of the

experiments or simulations to assess the property of the novel

candidates can be a significant burden when the candidate

pool gets larger.

In drug discovery applications, potential drug candidates al-

ways have to simultaneously meet multiple design criteria. For

example, in addition to their capability to intervene in a specific

biomolecular target or mechanism, potential drug molecules

are assessed based on various physiochemical properties that

contribute to their bioavailability. In the generative molecule

design schemes discussed above, multi-objective optimization

is typically handled via scalarization, which turns the problem

into a simpler single-objective optimization problem. However,

the weights for combining the multiple objective functions are

often selected by the designer in an ad hocmanner, despite their

importance in guiding the multi-objective optimization process.

This may potentially lead to suboptimal results, as the optimiza-

tion process may be unintentionally dominated by a few objec-

tive functions, resulting in emphasizing certain attributes while

ignoring others. Various other approaches have also been pro-

posed to address multiple design criteria, a notable example of

which is RationaleRL, recently proposed by Jin et al.21 In this

work, a policy gradient is applied to fine-tune a VAE for gener-

ating molecules from incomplete subgraphs that correspond to

multi-property rationales. RationaleRL utilizes a property predic-

tor to extract the subgraph rationale for each of the multiple

target properties. From the set of extracted single-property ratio-

nales, RationaleRL identifies the combined subgraph that meets

the multiple property constraints and then uses the fine-tuned

generative model to complete the molecular graph for the com-

bined subgraph. However, a practical limitation of this approach

is that the number of training samples that satisfy all properties of

interest may be scarce, which is exacerbated as the number of

target design criteria increases. Markov molecular sampling

(MARS)22 was proposed to address themulti-objective drug-dis-

covery problem by formulating the molecular design process as

an iterative graph-editing process. For this purpose, MARS de-

fines the target distribution by combining the scoring functions

of multiple properties and adopts Markov chain Monte Carlo

(MCMC) sampling to identify high-scoringmolecular candidates.

However, as the target distribution is obtained by taking either

the sum or the product of the multiple scoring functions, it faces

similar shortcomings compared with other scalarization-based

approaches discussed earlier. To generate molecules with mul-

tiple target properties, Feng et al.23 utilized a Langevin diffusion

process as a stochastic generator of latent embeddings within a

pre-trained autoencoder model. This stochastic generator, pri-

marily governed by reference molecules selected based on mul-

tiple properties of interest, can be seen as an alternative to other

optimization strategies in latent space.

In this paper, we propose a novel multi-objective latent space

optimization (MO-LSO) scheme that can effectively address the

aforementioned limitations of existing generative models for mo-

lecular design—specifically, their limited capability for extrapola-

tion in a multi-objective fashion beyond the molecular property

space seen during training. We extend the weighted retraining

framework recently proposed in Tripp et al.19 to equip it with

the inherent capability to enhance the efficiency of sampling
novel molecules in the latent space that simultaneously improves

multiple target properties. This is achieved by ranking the mole-

cules based on their Pareto optimality through non-dominated

sorting (NDS), where the rankings are used both for generating

improved molecules based on multiple design criteria to

augment the training data and for determining the weights of

the molecules in the (augmented) training set based on the rela-

tive importance. Our proposed MO-LSO scheme can naturally

balance the trade-offs among multiple properties without any

ad hoc scalarization that may potentially bias the optimization re-

sults. Furthermore, as the molecules are assessed based on

their Pareto efficiency, our MO-LSO scheme scales very well

computationally as the number of design criteria increases

(empirically demonstrated up to three objectives in this study),

and it is naturally equipped with the capability to handle the opti-

mization of properties that may be highly correlated (or even

redundant) or conflict with one another. We show that our pro-

posed MO-LSO scheme can effectively shift the latent space

representation of the molecules based on multiple design

criteria, thereby substantially enhancing the sampling efficiency

of the generative model for suggesting novel molecules that

simultaneously improve multiple properties. Furthermore, by

applying it to the design of dopamine receptor D2 (DRD2) inhib-

itors, we also demonstrate through in silico analysis that the

generative model optimized by the proposed MO-LSO scheme

is able to produce highly promising molecules that outperform

known DRD2-inhibitory molecules.

RESULTS

Overview of the proposed method and the
experimental setup
Figure 1 provides an overview of our proposedMO-LSO scheme

for GMD. Given an initial training dataset of molecules, we rank

the molecules based on the multiple molecular properties of in-

terest using the Pareto ranking scheme described in Equation 1.

A detailed description of the algorithm for multi-objective ranking

of the molecules can be found in the experimental methods. To

fine-tune the generative model’s latent space to make it more

sampling efficient for desirable molecules, the molecules in the

dataset are weighted according to Equation 2, where higher-

ranked molecules are assigned with larger weights, while

lower-ranked molecules are assigned with smaller weights. Re-

training the generative model based on this weighted dataset

biases the model toward higher-ranked molecules with more

desirable properties, thereby making the latent space of the re-

trained model more amenable to suggesting novel molecules

that are likely to be highly ranked based on the Pareto ranking

scheme. After retraining the baseline model using the weighted

dataset for a single epoch, we explore the latent space to search

for new molecules that can potentially improve upon the mole-

cules in the dataset in terms of the multiple target properties.

While various multi-objective optimization schemes may be

adopted for this purpose, we considered two potential ap-

proaches in this study: (1) random sampling and selection of

the top-ranked molecules and (2) single-objective BO (SOBO).

In the first approach, we generated 250 random molecules, of

which we selected the top 50 (based on Pareto ranking). In the

second approach, we used SOBO24 to generate 50 molecules,
Patterns 5, 101042, October 11, 2024 3



Figure 1. Overview of the proposed multi-

objective latent space optimization scheme

The initial JT-VAE model is trained based on the

original training dataset (step 1). The weights of the

molecules in the dataset are adjusted according to

their Pareto front ranking based on the properties of

interest. Desirable molecules with a higher ranking

are assigned larger weights, while molecules with a

lower ranking are assigned smaller weights. The JT-

VAE is retrained based on the reweighted dataset

(step 2). The retrained model is used to suggest

novel molecules with enhanced properties by

sampling or optimization in the latent space (step 3).

Top molecules are selected and used to augment

the current training dataset (step 4). Steps 2–4 may

be repeated for iterative retraining of the genera-

tive model.
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of which the unique molecules were selected. To evaluate and

rank the novel molecules, the latent points were first decoded

into the original molecular space, where their properties were as-

sessed. The selected top novel molecules were then used to

form a ‘‘candidate dataset’’ that could be used to augment the

training dataset at hand, potentially pushing the current Pareto

frontier and further improving the sampling efficiency of the cur-

rent model for improved molecules.

Before the next retraining iteration, we create an updated

training set by combining the selected top candidates with

10% of the initial dataset, which consisted of randomly selected

molecules. The random down-selection of the molecules in the

initial training data mainly aims at reducing the computational

cost needed for shifting the latent space toward desirable direc-

tions within fewer iterations. The updated training set is then

used for the weighted retraining of the generative model, which

is subsequently used for identifying a new set of desirable mole-

cules to be appended to the candidate dataset. This iterative re-

training cycle—new candidate generation based on the current

model, augmentation of the candidate set and creation of a

new training set that integrates the additional candidates, re-

ranking of the molecules, and performing another weighted re-

training of themodel—can be repeated until either the generated

molecules meet the desired multi-objective criteria and

converge in terms of themolecular properties or the total training

cost (computation or time) reaches a pre-specified budget. We

further describe the iterative retraining procedure in later sub-

sections based on specific molecular optimization scenarios.

In this study, we considered the pairwise optimization of the

following molecular properties: (1) water-octanol partition coeffi-
4 Patterns 5, 101042, October 11, 2024
cient (logP), (2) synthetic accessibility

score (SAS), (3) natural product-likeness

score (NP score),25 and (4) the probability

of inhibition against DRD2.26 We aimed to

maximize logP, NP score, and DRD2 inhi-

bition property. On the other hand, we

aimed to minimize SAS, as a lower SAS in-

dicates better synthesizability of a given

molecule. For the computation of logP

and SAS, the RDKit package27 was used.

We adopted the method in Ertl et al.25 for
assessing the NP score. The probability of inhibition against

DRD2was estimated by using amachine learning (ML) surrogate

model, whose details are given in the experimental methods.

Weighted retraining via Pareto front rank effectively
shifts the latent space for multiple objectives
As the baseline model, we used the pre-trained JT-VAE shared

by Tripp et al.19 and applied the proposed multi-objective

weighted retraining scheme. Initially, we used the complete

ZINC dataset28 for weighted training of the baseline model,

where the dataset was split into training (218,969 molecules)

and validation (24,333 molecules) sets as in Tripp et al.19 After

each weighted retraining step, 250 new molecules were

randomly sampled, of which the top r = 50 candidates were

selected based on the Pareto front rank. The selected top candi-

dates were used in the subsequent retraining stages. For details,

please see the experimental methods.

Figure 2 shows the evolution of the property distribution of

the generated molecules as we iterate the weighted retraining

cycles. Each plot shows the distributional changes over multiple

iterations for a specific value of k, the hyperparameter that deter-

mines how the rankings translate into the weights. Results are

shown for optimizing the latent space of the JT-VAE for

enhancing the property pair (logP, SAS). Here we retrained the

baseline model 10 times for several different values of k ranging

from 0.1 to 10� 6. Based on a givenmodel at a specific iteration in

the retraining cycle, we collected 1; 000 molecules randomly

sampled from the latent space to plot the distribution of the mo-

lecular property of interest. The x axis refers to the property dis-

tribution after the i-th iterative weighted retraining, where ‘‘train’’



Figure 2. Evolution of the property distribution of the generated molecules due to latent space optimization via iterative weighted retraining

The plots show how the property distribution changes as a result of weighted retraining of the JT-VAE based on the proposed multi-objective latent space

optimization scheme. The latent space of the JT-VAEwas optimized to suggestmolecules with larger logP and smaller SAS. Results are shown for different values

(legend continued on next page)
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corresponds to the property distribution of the molecules in the

initial ZINC dataset. Furthermore, iteration 0 corresponds to

the property distribution of the molecules sampled from the

latent space of the baseline model (without any weighted retrain-

ing). These distributions are shown as a reference to show the

relative improvement of the molecular property of interest as a

result of the weighted retraining procedure.

As can be seen in Figure 2, the logP distribution of the mole-

cules sampled from the latent space tends to shift upward, as

desired, as the retraining cycles proceed. Similarly, the SAS

values tend to decrease, as desired, indicating that iterative re-

training generally improves the overall synthesizability of the

molecules suggested by the JT-VAE. As discussed in the exper-

imental methods, a smaller k places a greater emphasis on

higher-scoring molecules. We can see its impact on the

weighted retraining results in Figure 2, where using a smaller k

leads to a more rapid and more pronounced shift of the property

distribution. However, the use of a smaller k value makes

the overall retraining process dominated by a smaller set of

high-scoring molecules, which may have an impact on the over-

all diversity of the generated molecules and skew the property

distribution of the molecules. For example, using k = 10� 5 or

k = 10� 6 results in bimodal (or multi-modal) property distribu-

tions after several iterations of weighted retraining, reflecting

this phenomenon. Here, themodel learns the latent spacemainly

based on a limited number of high-scoring molecules at the Par-

eto front. Consequently, the molecules sampled in the learned

latent space become clustered around those high-ranking mole-

cules, which may limit the diversity of the molecules generated

by the retrained model.

Table S1 shows the average property values for the molecules

in the training data, molecules generated using the initial model

(based on 1; 000 randomly generatedmolecules), andmolecules

generated by the retrained model (again based on 1;000

randomly molecules) for different values of k. In addition, we

evaluated the structural diversity (Table S1) of the molecules

generated by different versions of JT-VAE models, to assess

the ability of a given model to learn, represent, and sample

from a wider chemical space.

The diversity was measured in terms of the average structural

distance (based on extended connectivity fingerprint [ECFC4])

over all pairs in a given set of molecules. For smaller values of

k, we observe that the structural diversity is reduced as ex-

pected. As mentioned earlier, using a smaller k assigns relatively

higher weights to a smaller group of high-ranking molecules,

which has the effect of making the model ‘‘see’’ this small group

of molecules more frequently while retraining. Consequently, the

model learns the latent space representation of the chemical

space mainly based on these select molecules, which may

make the molecules sampled from the learned latent space

bear higher similarity to one another.

To further demonstrate the effectiveness of our proposed

approach MO-LSO, we performed additional experiments for

simultaneous optimization of two or three molecular properties
of k, which determines the sensitivity of the weight to ranking. In each graph, the fi

the initial training dataset. The subsequent violin plots show the property distribu

corresponds to the original JT-VAE without any retraining). The results clearly sh

downward during the iterative retraining process, as desired.
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and compared the results against the scalarization baseline of

Tripp et al.19 and a Markov molecular sampling scheme for

multi-objective drug discovery, called MARS.22 Specifically,

the latter approach involves training a molecular generative

model from scratch targeting multiple properties of interest,

whereas our approach starts with a generative model that is

trained in a self-supervised fashion without the molecular prop-

erty values of the training samples. However, through iterative

retraining via our approach, the generative model succeeds in

outperforming MARS for quite a few property combinations

(Table S6). Furthermore, we investigated the impact of retraining

on the JT-VAE’s molecule reconstruction performance. The re-

sults obtained from these experiments are summarized and dis-

cussed in the supplemental information.

Multi-objective latent space optimization effectively
recovers sampling efficiency for incomplete dataset
Next, we investigated the ability of the weighted retraining

scheme to propose high-scoring molecules when such mole-

cules are absent in the training dataset. For this purpose, we first

removed the top 20% molecules—selected based on their Par-

eto front rank—from the training data that are used to train the

baseline model.19 Since the original baseline model has seen

the complete dataset during its training, for each property pair,

we trained a separate baseline model based on the reduced da-

taset that does not contain the top 20%molecules with the high-

est Pareto front rank for the given property pair. In all cases, a

learning rate of 0.0007 was used with a batch size of 32 for 30

epochs for model training. The scatterplots in Figure 3 show

the progression of the two properties logP and SAS, where the

latent space of the JT-VAE is optimized for the given property

pair with k = 10� 5. In each plot, we also show the hypervolume

of the property space that is dominated by the Pareto front. The

hypervolume is computed with respect to the average property

values of the molecules in the complete training dataset. The

top row of Figure 3 shows the evolution of the Pareto front

when the complete dataset was used. On the other hand, the

bottom row in Figure 3 shows the trends for the reduced dataset,

which does not contain the top 20% molecules. As can be seen

in the bottom row of Figure 3, although the initial dataset does

not contain many molecules with logP greater than 4 and SAS

lower than 2, the iterative multi-objective weighted retraining still

manages to effectively push the latent space toward a desirable

region that contains high-scoring molecules, where the trends

are similar to the case when the complete dataset is used. This

is also illustrated by the larger hypervolume achieved by the opti-

mized model compared to the initial pre-trained model in

both cases.

The capability of the proposed MO-LSO method to recover

high-performance molecules—despite the absence of such

molecules in the training data—is demonstrated even more

clearly when applied to the optimization of inhibitory molecules

for DRD2. In this experiment, we considered pairwise property

optimization of DRD2 inhibition along with one of the properties
rst violin plot (labeled ‘‘train’’) shows the property distribution of all molecules in

tion of 1,000 randomly sampled molecules after i-th iterative retraining (i = 0

ow that the distribution of logP is shifted upward, while that of SAS is shifted



Figure 3. Evolution of the Pareto front via latent space optimization of the generative model
The latent space of the JT-VAE has been jointly optimized to maximize logP and minimize SAS of the molecules suggested by the generative model. The

scatterplots show the (logP, SAS) distribution of the molecules in the initial training dataset (column 1), molecules sampled in the latent space of the baseline

model (column 2), andmolecules suggested by the optimized model after iteration 1 (column 3), iteration 5 (column 4), and iteration 10 (column 5). The plots in the

top row show the trends for the case when the complete training dataset was used, while the bottom row shows the trend when a reduced dataset was used. The

results show that the Pareto front gradually shifts toward the desired direction (i.e., bottom right for larger logP and smaller SAS) resulting in a larger hypervolume

(HV) of the Pareto-front-dominated property space in both cases.
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among logP, SAS, and NP score. As before, in each experiment

for a given property pair, we removed the top 20% molecules

from the training data based on the Pareto front rank. What

makes this experiment especially interesting is the fact that the

training dataset is highly imbalanced and contains a relatively

small number of inhibitory molecules against DRD2. As a result,

the removal of the top 20% molecules leaves virtually no active

DRD2 inhibitors in the training data. Moreover, since we train a

new baseline model with the reduced dataset, the trained model

does not initially possess any knowledge of inhibitory molecules

against DRD2. Consequently, the MO-LSO method needs to

guide the optimization of the latent space of the generative

model toward a completely unexplored region, making the opti-

mization task more challenging.

Figure 4 shows the results for the multi-objective weighted re-

training with k = 10� 6 for the property pair DRD2 and SAS. The
Figure 4. Transition of DRD2 and SAS toward optimum direction while

The first two scatterplots represent the training data and themolecules generated

from the learned model after the first, fifth, and tenth weighted retrainings for k

indicates the volume of the property space that is dominated by the Pareto fron

crease.
leftmost scatterplot shows the distribution of the training data af-

ter removing the top 20% molecules. The horizontal axis shows

the probability of inhibition (the higher the better) and the vertical

axis shows the SAS (a lower score corresponds to better synthe-

sizability). The second subplot (from the left) shows the property

distribution of 1;000 molecules randomly sampled in the latent

space of the baseline model. Next, the third, fourth, and fifth

(i.e., rightmost) subplots depict the property distribution of the

molecules after the first, fifth, and tenth weighted retraining cy-

cle, respectively. While the initial training data are lacking

DRD2-inhibitory molecules, we can see a relatively large number

of inhibitory molecules after the tenth weighted retraining. More-

over, the SAS distribution of the sampled molecules becomes

more skewed toward smaller values, as expected. We have

repeated similar experiments for two other property pairs,

(DRD2, logP) and (DRD2, NP score), which all showed similar
starting with no DRD2-active training samples

from the baselinemodel, respectively. In the rest of the jointplots, themolecules

= 10� 6 are shown in the objective space. The hypervolume (HV) in each plot

t. As we iterate the weighted retraining, the resulting hypervolume tends to in-
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A B Figure 5. Molecular structure and SMILES of

two generated compounds with predicted

DRD2 activity

Both compounds A and B show the lowest docking

energy among the pool of molecules that we

generated by considering the DRD2 activity as one

of the objectives. The weighted retraining frame-

work starts from the initial training dataset that does

not contain any active molecules.
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trends. Details of these simulation results can be found in

Table S2.

In silico analysis of the designed DRD2 inhibitors
Given the long history of structure-based rational design, the

use of methods that are structurally unaware to design ‘‘active’’

molecules can be quite disconcerting. However, the use of

support vector machine (SVM) model training with thousands

of active and inactive compounds that sample the available

contacts in the pocket seems to have encoded the space

well enough that, while the method is not structurally aware,

the information required is implicitly available. Potentially of

more value is removing the inherent bias in what an ‘‘active

should look like’’ seen when working with computational and

medicinal chemists. In this study, tossing out the concept of

what a hit should look like and taking a data-driven generative

approach for molecular design led to some strange-looking

molecules that have attractive properties and, by multiple mea-

sures of in silico modeling (docking, molecular mechanics

generalized Born surface area [MM-GBSA], and long-duration

molecular dynamics [MD]), were superior to known DRD2 inhib-

itors. For example, one of the designed compounds, CC(CNC

1CC(C2CC2)N(C2CC2)C1)c1cccc(F)c1 (which we refer to as

‘‘compound A’’), has energies � 3:43 kcal=mol lower than the

crystal ligand by docking and � 3:78 with MM-GBSA. Further-

more, MD simulations showed stable, unstrained interactions

over the length of the simulation.

An MD system was created using Dibenzyl 3,5-pyridinedicar-

boxylate (DPPC) for the membrane, TIP4PEW water, and physio-

logical levels ofNaCl. Following 100psofminimization, the system

was run using Desmond and the OPLS4 force field at 310:15K for

15 and 100 ns to evaluate themovement and ligand pose stability.

For docking, Glide grids were created from the system at time

14.98 ns as well as from the original crystal structure, and all resi-

dues within 5�A of the ligand were set to allow rotation. Glide XP

wasused for docking since,while computationally very expensive,

the sampling and pose minimization seem to best replicate the

crystal position of the native ligand.

The generated novel molecules with predicted DRD2 activity

were prepared using Ligprep in Schrodinger 2021.3, with the

molecules enumerated around chiral centers in a pH range of

7:4±2:0. The crystal structure of 6CM4 was prepared with the

protein preparation tool in Schrodinger 2021.3 at a pH of 7.4.

The generated ligands were docked along with 667 inactive

bait compounds as well as two non-reverse agonist DRD2 li-

gands as controls due to the possibility that the risperidone

bound structure would not be favorable to the docking of tradi-
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tional antagonists. This concern was unfounded, since both

domperidone and L-741626 were able to achieve low-energy

poses. From the docking, two compounds—compound A

(shown in Figure 5A) and another compound, which we refer to

as compound B (shown in Figure 5B)—achieved the lowest en-

ergies of any compound, including the crystal ligand. MD simu-

lations using the same parameters as before were run for 15 ns

on compounds A and B to evaluate whether the confirmations

predicted were stable (was the compound ejected from the

pocket) and if relevant contacts were maintained. In addition,

the Schrodinger prime MM-GBSA calculations were carried

out on all compounds/poses with docking scores the same as

or equal to the lowest scoring pose of the crystal ligand.

While in silico results do not often translate into activity in vivo,

they are often used to select what molecules get made and

their priority for testing, so the results of this effort and the

computational chemistry evaluation produced ‘‘high-priority

compounds’’ that are very different from the native ligand and

the molecules on the market. This ability to explore in silico

vast amounts of novel chemistry space while still generating

compounds with desirable properties is likely to lead to the types

of cost and time reductions in discovery that have been prom-

ised by the AI/ML community. The actual compounds predicted

have desirable properties (Figure 6 shows the properties for

compound A as predicted by SwissADME29). In addition, the

binding of compound A (Figure 7A) shows the typical aromatic

interaction between W386 and the ligand, in this case, the six-

membered ring on the ligand, as well as the potential for salt

bridges from the ligand Ns to the Os on D114. Of more interest

is the two cyclopropane groups, which allow the compounds

to have hydrophobic interactions with the largely hydrophobic

mouth of the pocket, which includes residues 389, 392, 184,

189, 416, 412, etc. (Figure 7B), without having undesirable steric

effects that bulkier ring systems may present. The potential des-

olvation effects from these residues, while still allowing for the

protein to have a closed confirmation, have the potential to allow

the compounds to be selective and active at low concentrations.

As previously mentioned, this molecular series would not

have been ranked high by computational or medicinal chemists

based on how they looked, but once the poses were reviewed

and the ease of the synthetic routes evaluated, it is generally

agreed that the series is a high priority. For illustrative purpose,

we performed the ADMET analysis for the top candidate for

DRD2. In practice, if one desires to select the optimal candidate

leads for the properties of interest, a more comprehensive

screening like the one performed in Feng et al.23 may be

required.



Figure 6. Properties of a top molecule predicted by the optimized

generative model

The properties of a top molecule (compound A) suggested by the JT-VAE,

whose latent space was optimized by the proposedmethod. Six parameters—

POLAR (polarity), INSOLU (insolubility), INSATU (instauration), FLEX (rotable

bond flexibility), LIPO (lipophilicity), and SIZE (molecular weight)—are shown.

We can see that the suggested compound is within the colored zone, which

corresponds to the physiochemical space suitable for oral bioavailability.29
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Molecule optimization and selection via Bayesian
optimization can enhance latent space optimization
results
In previous sections, we generated novel molecules through

random sampling in the latent space of the trained generative

model, from which the top molecules were selected to augment

the training data for the next cycle of weighted retraining.

Although we adopted random sampling to demonstrate how

the proposed multi-objective weighted retraining can enhance

the sampling efficiency of the generative model for multiple

target molecular properties, the overall efficacy of the GMD

can be further improved by leveraging more sophisticated opti-

mization techniques—such as BO, GAs, and PSO6—to optimize

the molecules in the latent space. To demonstrate this, we uti-

lized BO to optimize molecules in the latent space of the gener-

ative model for logP and SAS. A single-objective function was

defined through scalarization, where logP (to be maximized)

was penalized by SAS (to be minimized) after standardizing

both values based on the mean and standard deviation of the

respective values in the initial dataset. Based on the expected

improvement acquisition function, we generated 50 molecules,

and only unique samples were added to the training dataset.

Compared to the random generation strategy, the BO approach

is computationally expensive, since it requires training the GP

surrogate model as well as optimizing the acquisition function.

However, the BO approach is more sample efficient, as it re-

quires fewer property predictions to find the best data points

to augment the training dataset. On the other hand, the

random-generation approach requires a larger number of evalu-

ations (250 in our case) to select the best 50 candidates for data

augmentation.
Figure 8 shows the results for k = 10� 3. As shown in the top

row, iterative weighted retraining with data augmentation

through random sampling continues to shift the latent space

distribution toward the desired direction, although not signifi-

cantly, even after the 10th iteration. On the other hand, data

augmentation through BO shifts the latent space distribution

much more effectively, as can be seen in the bottom row of

Figure 8. This is especially dramatic for logP, as after the 10th

iterative retraining, the retrained generative model is capable of

generating molecules with remarkably higher logP compared

to those in the original training data. The candidate molecules

suggested by the generative model tend to be somewhat biased

toward the higher logP region with slightly higher SAS, which

is likely an artifact due to the use of SOBO in this experiment,

where the objective function was defined as a linear combination

of logP and SAS. This may be addressed through different

scalarization or the use of multi-objective BO (MOBO). Nonethe-

less, the example in Figure 8 clearly shows the potential

advantage of utilizing BO (or other advanced optimization

schemes) for effective molecular optimization in the latent

space and thereby more effectively enhance the sampling effi-

ciency of the generative model through the proposed MO-LSO

approach.

DISCUSSION

The presented framework for multi-objective optimization illus-

trates the potential of weighted retraining in bringing the mole-

cule-generation model into the expected multi-dimensional-

objective region. The JT-VAE model’s latent space is optimized

for different pairs of molecular properties, and the effects of

ranks are studied. We have found that the weight formulation

from the ranks dictates a trade-off between the diversity and

the shifts of the property distribution in the latent space. To verify

the strength of our approach, similar experiments were repeated

with relatively poor training data. Even starting with no DRD2-

active molecules, weighted retrained models still managed to

configure its latent space for the active region. These outcomes

are more pronounced given the fact that random selection from

the latent space is used to propose the candidate molecules for

retraining stages. To speed up the reshaping of the latent space,

the BO is shown to be promising.

The ranking scheme of our framework is contingent on the

robust property predictors. How well these surrogate models

can tackle the unexplored chemical space is critical. Even if

these models are less accurate, the retrained latent space can

still be the exploration field for further screening. Given a reliable

and fast approximate mapping from a molecule to its property

value, the weighted retraining approach can optimize the latent

space jointly for more practical properties that are responsible

for a higher attrition rate of proposed drugs. With the availability

of surrogate models like protein-ligand binding score30 and inhi-

bition of bile salt export pump,31 our approach can optimize the

latent space in producing candidate drugs that are most likely to

be active against a specific target without causing possible dam-

age to patients. In terms of computational cost, retraining the

generative network multiple times may be slightly expensive

for a larger network compared to the one we have used. Howev-

er, with the application of distributed training,32 the training time
Patterns 5, 101042, October 11, 2024 9



Figure 7. Binding pose of compound A in the

DRD2 structure

(A) The ball-and-stick representation shown high-

lights how the compound fits the broader pocket.

(B) The space-fill model highlights the interaction

between cyclopropanes and the hydrophobic

mouth of the receptor.
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can be significantly mitigated. Moreover, we have seen a

decreasing trend in the diversity of the molecules of the latent

space with an increase in the shift of the property distribution.

A diversity-oriented candidate selection strategy could be a bet-

ter answer to this issue.

As shown in Figure 8, the latent space optimization outcomes

can be enhanced by adopting more effective sampling strate-

gies in the latent space that can identify and suggest novel mol-

ecules with more desirable properties. In this study, this was

demonstrated by replacing the random sampling scheme with

BO. In fact, it may be possible to further improve the GMD

through the proposed MO-LSO scheme by incorporating

more sophisticated optimization techniques that can effectively

explore the unknown landscape of the multiple-objective

functions under immense uncertainties. Optimal experimental

design (OED)33–36 and active learning37–39 techniques that build

on objective-based uncertainty quantification (objective-UQ)

based on MOCU (mean objective cost of uncertainty)40,41

may provide practical solutions for such ‘‘uncertainty-aware’’

sampling in the latent space. These are topics of our ongoing

investigation.
Figure 8. Effect of Bayesian optimization on the progression of the mo

The first and second rows represent the scatterplots for random selection and Bay

the training data and themolecules from the baseline model and retrainedmodel a

in hypervolume (HV) for the Bayesian optimization strategy shows its effectivene
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EXPERIMENTAL PROCEDURES

Resource availability

Lead contact

Byung-Jun Yoon is the lead contact for this study and can be reached at

bjyoon@ece.tamu.edu.

Materials availability

This study did not generate any physical materials.

Data and code availability

The specific training and validation split of the ZINC dataset provided in

https://github.com/cambridge-mlg/weighted-retraining was used in this

work for retraining JT-VAE. The source code of the proposedMO-LSOmethod

can be downloaded from https://github.com/nafizabeer/GMD-MO-LSO and

Zenodo.42

Generative molecular design using the junction-tree variational

autoencoder

In this study, we have used the JT-VAE for investigating the MO-LSO of deep

generative models for GMD. While various deep generative models with latent

spacemolecular representation have been proposed to date, JT-VAE is widely

known for its high reconstruction accuracy when decoding latent samples into

the original molecular space. Compared to other VAE models, where novel

molecules sampled in the latent space often fail to decode into legitimate mol-

ecules, JT-VAE effectively addresses this issue by decomposing molecular
del in the objective space

esian optimization strategy, respectively. In each row, the objective space is for

fter the first, fifth, and tenth weighted retrainings for k = 10� 3. Higher increase

ss over random selection.

mailto:bjyoon@ece.tamu.edu
https://github.com/cambridge-mlg/weighted-retraining
https://github.com/nafizabeer/GMD-MO-LSO


Algorithm 1. Find the Pareto front by identifying the set of non-dominated data points

Require: N data points with their objective scores

Initialize P0 = f1;2;3;.;Ng 8 Set of non-dominated points, P0

and i)1

while i% jP0j do
Initialize k)0

for (each j˛P0^jsi) do

if (xðjÞ does not dominate xðP
0ðiÞÞ in any objective score) then

P0)P0\fjg
else if j < i then

k)k + 1

end if

i)k + 1

end for

end while
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graphs into a junction tree of chemical substructures. To suggest novel mole-

cules, JT-VAE reconstructs the junction tree from the sampled latent embed-

ding and assembles the chemical substructures into a molecular graph.8 The

decoded tree structure serves as a scaffold guiding the generation of the mo-

lecular graph to reconstruct the molecule, resulting in a high fraction of valid

molecules. However, we note that the proposed MO-LSO scheme can be

applied to various other types of VAEs5,17 in a straightforward manner without

any modification.

Non-dominated sorting and Pareto ranking

In a multi-objective optimization problem, there may be no single solution that

is optimal in terms of every objective. In practice, different objectives may con-

flict with one another, where optimizing one objective may result in a subopti-

mal solution for one or more other objectives. The concept of Pareto optimality

provides an effective way of addressing this issue and is widely utilized in the

context of multi-objective optimization. Instead of finding the solution that op-

timizes a single objective, Pareto optimization aims to identify the Pareto

optimal set, which is defined as the collection of all solutions that are not domi-

nated by any other solution in the feasible solution space.43 Consider the prob-

lem of jointly optimizing K objective functions f1ðxÞ;/; fKðxÞ. Without loss of

generality, we assume that the goal is to maximize all K objective functions.

Let xi and xj be two points in the solution space. xi is said to dominate xj if

xi is as good as xj in terms of all K objectives (i.e., fkðxiÞR fkðxjÞ, ck = 1;

/; K) and if there is at least one objective such that xi outperforms xi (i.e.,

dk s.t. fkðxiÞ> fkðxjÞ). The Pareto optimal points x in the solution space form

the Pareto front (or Pareto frontier) in the objective space.

Considering all objectives simultaneously, all points in the Pareto front are

equivalent to one another, as no point is either more preferable or less prefer-

able than the others. As no point dominates any other point in the Pareto front,

these points in the Pareto front may be assigned the same ranking. The pro-

cess of finding the Pareto front is summarized in Algorithm 1. Once the Pareto

front is identified, we may remove these Pareto optimal points P1 from the da-

taset—i.e., ‘‘peel off’’ the first Pareto front—and move on to identify the next

Pareto front P2 in the remaining dataset. This process may be repeated until

all points in the dataset D are exhausted to find all possible Pareto optimal

sets P1; P2; P3; /; PS. Note that the sets P1;/;PS form a partition of D

such that P iXP j = B for isj and D = W
i
P i . This Pareto ranking process is
Algorithm 2. Pareto front ranking of data points

Require: N data points with their objective scores

Initialize P = f1;2;3;.;Ng, j = 1

while jPjs0 do

Step 1: Find the non-dominated set, P0 from P using Algorit

Step 2: Pj)P0, P)P\P0 and j)j + 1 8 Pj: j
th Pareto front

end while
summarized in Algorithm 2 and illustrated in Figure 9. Based on these results,

we may rank all data points such that all points in the j-th Pareto front are as-

signed the following ranking:

rankDðxÞ =
Xj� 1

i = 1

jP i j cx ˛ P j : (Equation 1)

Despite practical differences from Equation 1, it is worth noting that similar

multi-objective ranking schemes based on the concept of Pareto optimality

have been previously explored in different contexts. For example, the work

by Obayashi et al.44 adopted a similar ranking scheme for a multi-objective

GA (MOGA) to identify solutions within the population of GA solutions that

are nearly Pareto optimal.

Weighted retraining of generative models based on Pareto ranking

We adopt the ranking scheme in Equation 1 for weighted retraining of the

generative model (i.e., the JT-VAE in this study) to steer its latent space toward

a region that is more sampling-efficient for enhanced molecules with multiple

target properties.More specifically, we extend the weighted retraining scheme

in Tripp et al.19—originally designed for latent space optimization based on a

single objective—to enable flexible MO-LSO regardless of the number of ob-

jectives without any ad hoc scalarization of the objective function. We calcu-

late the weight for every data point x in the dataset D as follows:

wðx; k;DÞ =
1

kN+rankDðxÞ ; (Equation 2)

where this weightwðx; k;DÞ determines the influence of a given data point x on

the training loss. As a consequence, a more desirable molecule with a higher

Pareto ranking (i.e., a smaller rankDðxÞ) is assigned a larger weight wðx;k;DÞ,
thereby playing a more important role in retraining the generative model. k is

a hyperparameter that adjusts the influence of the rank on the computed

weight. A larger k makes the weight distribution more uniform, while a smaller

k assigns large weights to relatively fewer high-rank data points. N = jDj is the
cardinality of the training set D.

The iterative weighted retraining is performed as follows. We first start with

the initial training dataset,Dtrain = D0, and a null set,Dnew = B. We retrain the

model based on the given Dtrain after reweighting every data point (i.e.,
hm 1
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Figure 9. Illustration of the Pareto front ranking process

Suppose the main objective is to design novel molecules such that two target properties are jointly maximized. For weighted retraining of the generative model,

we first identify the Pareto optimal molecules that are located on the Pareto front of the current dataset. All molecules in this first Pareto front are ranked 1. Next,

these Pareto optimal molecules are removed from the dataset, after which we identify the second Pareto front among the remaining molecules. The Pareto

optimal molecules in the second Pareto front are ranked 2. The process of removing the Pareto optimal molecules in the current dataset and the identification of

the next Pareto front in the reduced dataset may be repeated until all molecules are ranked.

Table 1. Performance of the DRD2 activity classifier used in

this study

Dataset Accuracy AUC Precision Recall

Train 0.9998 0.9999 0.9969 1.0

Validation 0.9807 0.8745 0.9747 0.7498

Test 0.9842 0.9074 0.9770 0.8178

The classifier predicts whether a given molecule may be an effective in-

hibitor of DRD2 (‘‘active’’) or not (‘‘inactive’’).
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molecule) x˛Dtrain by wðx; k;DtrainÞ given by Equation 2. After the first

weighted retraining with Dtrain = D0, we randomly generate 250 molecules

from the latent space of this model and select the top 20% among the gener-

ated molecules, which are then added to the set Dnew. Next, we update the

training dataset by augmenting it with the selected new molecules:

Dtrain )D0WDnew; (Equation 3)

where D0 may be either the initial training dataset D0 in its entirety or a

randomly sampled subset to reduce computation. In this study, we used

D0 by randomly sampling 10% of the molecules in the initial training data

D0. In the next iteration, we can repeat the process by reweighting the mol-

ecules in Dtrain, retraining the generative model, sampling new molecules in

the latent space of the retrained model, and then selecting the top 20% mol-

ecules and adding them to Dnew. The weighted retraining cycle may be

repeated a pre-determined number of times or until a stopping criterion is

reached. In this study, we repeated the cycle for 10 iterations to investigate

the overall impact on enhancing the sampling efficiency of the generative

model for suggesting novel molecules that simultaneously improve multiple

target properties.

Molecular property predictors

In this study, we considered four different molecular properties for validating

the capability of the proposed MO-LSO scheme and assessing its perfor-

mance. The tested properties included the logP, synthesizability (SAS), NP

score, and inhibition of DRD2.

Partition coefficient

As a quantitative measure of lipophilicity, the octanol-water logP is one of the

standard properties for selecting potential drugs according to Lipinski’s ‘‘rule

of 5.’’45 We used the RDKit’s rdkit.Chem.Crippen46 module to get the calcu-

lated logP values from SMILES representation.

Synthetic accessibility score

The SAS of a molecule serves as a surrogate for quantifying the degree of dif-

ficulty in developing it. Although SAS does not account for the additional con-

straints the medicinal chemist may have in particular laboratory settings, e.g.,

restriction of using particular reagents, it is still useful in screening from a large

number of molecules for further evaluation. We obtained SASs of molecules in

our work from the RDKit-based implementation of SAS estimation method. In

addition to the fragment score and the complexity penalty as in the original

work,47 this implementation includes the score based on the molecular

symmetry.

Natural product-likeness score

Through the evolutionary selection process, natural products often contain

bioactive substructures that can be utilized in drugs.48 The NP score for a
12 Patterns 5, 101042, October 11, 2024
molecule quantifies how much similarity its substructure has with the natural

products. A higher score indicates that the molecular structure is more likely

within the natural product space. We used the implementation from Ertl

et al.,25 which aggregates the individual scores for all the fragments of a

molecule.

Inhibition of DRD2

DRD2 has a long history of being used as the target protein for antipsychotic

drugs.49 More recent research findings50–53 demonstrate the effectiveness

of DRD2-targeting drugs against a wide range of cancer cells. Thus, searching

for DRD2-inhibiting molecules provides us with an opportunity to showcase

our proposed approach in a practical drug-discovery-like scenario.

We used an ML surrogate model in Olivecrona et al.10 to predict the effi-

cacy of a given molecule in inhibiting the activity of DRD2. The surrogate

model for predicting the activity against the dopamine type 2 receptor

DRD2 is built as a binary SVM classifier with a radial basis function (g =

2� 6). The Morgan fingerprint, with radius 3 (FCFC6) computed by RDKit27

is used as the input feature for the SVM classifier. The probability of being

active predicted by this model for each molecule is treated as a property

to be maximized.

Since there is a class imbalance issue due to the smaller number of active

molecules, Olivecrona et al.10 split the active samples in such a way that the

structural similarity among the samples from the train and test/validation data-

set is less. We have used the same split dataset consisting of 7; 218 active and

100; 000 inactive molecules to train, test, and validate the SVMmodel in Scikit-

learn54 (version 0.23.2) with a regularization parameter C = 27. The overall

performance of the DRD2 activity classifier used in this study is summarized

in Table 1 for the training, validation, and test sets. Accuracy is defined as

the fraction of samples correctly classified to be active or inactive. AUC

denotes the area under the ROC (receiver operating characteristic) curve.

Precision shows the ratio between correctly classified active molecules and

all samples that are predicted to be active. Recall is the fraction of all active

samples that are correctly classified.
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SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.

patter.2024.101042.
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