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Abstract

Future land-use development has the potential to profoundly affect the health of aquatic

ecosystems in the coming decades. We developed regression models predicting the loss of

sensitive fish (R2 = 0.39) and macroinvertebrate (R2 = 0.64) taxa as a function of urban and

agricultural land uses and applied them to projected urbanization of the rapidly urbanizing

Piedmont ecoregion of the southeastern USA for 2030 and 2060. The regression models

are based on a 2014 investigation of water quality and ecology of 75 wadeable streams

across the region. Based on these projections, stream kilometers experiencing >50% loss

of sensitive fish and invertebrate taxa will nearly quadruple to 19,500 and 38,950 km by

2060 (16 and 32% of small stream kilometers in the region), respectively. Uncertainty was

assessed using the 20 and 80% probability of urbanization for the land-use projection model

and using the 95% confidence intervals for the regression models. Adverse effects on

stream health were linked to elevated concentrations of contaminants and nutrients, low dis-

solved oxygen, and streamflow alteration, all associated with urbanization. The results of

this analysis provide a warning of potential risks from future urbanization and perhaps some

guidance on how those risks might be mitigated.

Introduction

Worldwide, urban areas are growing rapidly, even in some regions where population growth

has slowed. In the USA, urbanized land increased at about twice the pace of the urban popula-

tion through the 1990s [1]; growth in urbanized land continues to outpace population growth

in the USA in recent decades [2]. Urban land use is projected to expand rapidly in the coming

decades in the Southeastern USA, especially the Piedmont region, which includes greater

Atlanta, Georgia, and Raleigh-Durham-Greensboro, North Carolina [3, 4]. Based on current
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rates of urbanization, urban land cover in this region is projected to nearly triple from 2009 to

2060, expanding from 17,800 km2 to 40,100–54,800 km2. Most of this expansion is expected to

be commercial and relatively low-density residential development, characterized as “urban

sprawl” [3]. What will the effects of this urbanization be on stream ecosystems?

The first step in evaluating the potential changes in stream ecosystems in response to

urbanization is to understand how urbanization affects ecosystems under current conditions.

Urbanization has long been recognized as having adverse effects on the chemistry, habitat, and

biology of streams, disrupting biological communities and causing loss of sensitive species [5–

11]. These effects may be related to increases in the number and concentration of contami-

nants in stormwater runoff, flashier high flows, higher water temperatures, and bank destabili-

zation and channelization [6]. Losses of biological diversity and changes in assemblage

composition in urban streams can be dramatic, impairing ecosystem functioning [5, 12–14]. A

recent assessment of water quality and ecology of streams across the Piedmont ecoregion pro-

vides the data and understanding needed to evaluate relations between urbanization and eco-

logical conditions in the region [15, 16].

Dietze [17] posed two fundamental questions for sustainability in the face of climate and

land-use change: “How are ecosystems and the services they provide going to change in the

future?” and “How do human decisions affect this trajectory?” Rapid urbanization is relevant

to both questions. Knowledge of the future extent of urbanization is needed by resource

managers, urban planners, and conservation organizations in order to plan for, and hopefully

mitigate any adverse effects on ecosystems. Urban-growth models are used to make these pro-

jections, although long-term land-use change is based on combinations of many human

actions and is therefore very difficult to predict [3]. Preferences and policies can alter the direc-

tion of urban growth, for example, the “smart growth” initiatives underway in many U.S. cities

that encourage high-density development in the urban center and discourage urban sprawl. It

is unclear, however, if these will substantially reduce the spatial extent of urban development

in a fast-growing region like the southeastern Piedmont in the U.S.

The objective of this study was to evaluate how projected changes in urban land use in the

Piedmont ecoregion might affect the biological condition of streams. Our hypothesis is that

because urbanization adversely affects the biological integrity of streams, expansion of urban

areas will result in a greater number of degraded stream kilometers. Models that link current

land use and instream biological condition were developed using data from the U.S. Geological

Survey (USGS) Southeast Stream Quality Assessment (SESQA) [15]. These models were

applied to projected land use for 2030 and 2060 [3] to predict corresponding changes in

instream biological condition. The results are interpreted in the context of statistical relations

between urban-associated instream stressors—contaminants, nutrients, flow alteration, and

habitat—and biological condition [16].

Materials and methods

In 2013, the USGS National Water Quality Assessment project (NAWQA) initiated the

Regional Stream Quality Assessment (RSQA) (https://webapps.usgs.gov/RSQA/#!/) to charac-

terize the physical, chemical, and biological condition of streams in five major regions of the

U.S. and to determine the effects of multiple physical and chemical stressors on associated bio-

logical communities [18]. In 2014, the RSQA assessed stream quality in the Piedmont ecore-

gion in the southeastern USA [15]. The Southeast Stream Quality Assessment (SESQA)

sampled 75 perennial wadeable streams across the Piedmont level 3 EPA ecoregion [19], an

area of about 166,000 km2 covering parts of five states and lying between the Appalachian

Mountains to the northwest and the coastal plain to the southeast. (Fig 1; S1 Table). Stream-
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sampling sites were selected to span a gradient in urban land use in relation to five major met-

ropolitan areas: Atlanta, GA; Greenville and Spartanburg, SC; Charlotte, NC; Raleigh, Dur-

ham, and Greensboro, NC; and Washington, DC (Fig 1). These are based on combined

statistical areas (CSAs) with the exception that Raleigh-Durham-Chapel Hill, NC, and Greens-

boro-Winston-Salem, NC, CSAs were combined. Water samples were collected weekly during

a 10-week (59 sites; April 7 to June 13, 2014) or 4-week (16 sites; May 13 to June 13, 2104)

index period and a wide range of chemicals and physicochemical properties were measured,

including nutrients, pesticides, pharmaceuticals, and dissolved oxygen. The sampling index

period culminated with collection of bed sediment for chemical analyses and toxicity testing

and with an ecological survey of habitat, algae, benthic macroinvertebrates, and fish at each

Fig 1. Piedmont ecoregion with Southeast Stream Quality Assessment (SESQA) sampling sites and related land

use.

https://doi.org/10.1371/journal.pone.0222714.g001
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site. Study methods are detailed in Journey et al. [15] and details regarding ecological data and

metrics are given in Waite et al. [16]. Full ecological data are available in [20] and ecological

and instream stressor metrics are available in [21]. Selected data and metrics also are provided

in Supporting Information.

Land-use projections

Terando et al. [3] simulated changes in urbanization in the Piedmont region on a decadal time

step from 2010 through 2060,.modeling the probability that a pixel (60-m pixel resolution)

would be urbanized at each time step. The authors classified existing urbanized areas using

data from the 2001 National Land Cover Dataset (NLCD) [22] and from local street network

information for the years 2000, 2006, 2008, and 2009 from the U.S. Census Bureau’s Topo-

graphically Integrated Geographic Encoding and Referencing (TIGER) dataset [23]. Using

road network data to assist in the urbanization classification allowed suburban-growth pattern

assessments that are more fine-grained and time-sensitive than NLCD ‘Developed’ land-cover

based approaches, which can over- and underestimate the low-density growth typical of the

Piedmont region [3]. Urbanization was modeled based on a “business as usual” scenario, in

which the net effect of growth is in line with that which has occurred in the past. The model

simulates patterns of urban expansion that are consistent with observations of past urban

growth and transportation networks. Natural and societal controls, such as topographic barri-

ers or regulatory restrictions, are specified in the model parameterization that reduce the likeli-

hood of urbanization.

Variations within urban development (e.g., commercial versus residential) were not mod-

eled, however, “total urban” in the Terando et al.[3] 2009 dataset (Urban2009) correlates very

highly (Spearman’s rho>0.92) to other measures of urbanization, including population den-

sity, road density, total urban from NLCD2011, and housing density (Table 1). For regions

such as the Southeast that depend heavily on cars, the geographic extent of urbanization

(which depends not only on population size but also on road networks and the location of

often far-flung industrial and commercial centers) may be as relevant to stream condition as

population density [3].

We used the National Land Cover Data 2011 (NLCD 2011) [24, 25] as the starting point for

our land-use mapping and analysis and combined it with the 2009-era urban mapping pro-

vided by Terando et al. [3]. This was done to create a full land-cover base that included non-

urban classes and upon which future urban expansion could be overlain. Pixels coded as urban

in the Terando et al. 2009 dataset were overlain on the NLCD 2011. Pixels from the NLCD that

were considered “urban” were those from the Low, Medium, and High Developed classes,

excluding the Developed open class [25]. Areas that were coded as urban in either dataset were

maintained using a new single urban class for the era 2009–2011 (hereafter, Urban2009). The

NCLD 2011 and Terando et al. 2009 urban datasets were very similar in their representation

of urbanization, with only minor areas of the original NLCD urban not already coded as urban

in Terando et al. 2009. All other classes from the NLCD 2011 (forest, agriculture, etc.) were

maintained. This merge of the Terando et al. 2009 urban and NLCD 2011 was termed the

NLCD2009m (“modified”). The SESQA watershed boundaries were used to calculate percent-

ages of land use for each of the 75 watersheds from the NLCD2009m, and the land use vari-

ables then were used to develop regression models of ecological metrics.

We applied our ecological models to land-use projections for 2030 and 2060, and, for those

years, followed Terando et al.’s lead [3] by identifying a pixel as urban at three probability lev-

els to represent uncertainty: a middle estimate (50% probability) and low (20%) and high

(80%) estimates. If the probability level is set high (80%), only areas very likely to be urban
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under the original modeling scenario are included (a more restrictive condition), whereas if

the probability level is set low (20%), areas are included as urban that are less likely to be so (a

less restrictive condition). Urban land-use projections for the 20, 50, and 80% probability levels

from Terando et al. [3] were applied to the NLCD2009m GIS layer in the same way that the

Urban2009 was created. This resulted in six GIS layers that together represent the middle

estimate and an uncertainty range for 2030 and 2060. Applying urban projections to the

NLCD2009m provided updated coverages for other land-use variables for regression models,

such as forest, cropland, and pasture. Two assumptions were made in creating these datasets:

(1) once a pixel becomes urban it remains urban in future years, and (2) other land-class pixels

do not change unless overlain with a new urban pixel (e.g., forest does not convert to cropland

or another non-urban class). The latter assumption might seem unwise in some regions, but in

the Piedmont, agricultural land use is relatively limited with mostly pasture lands and the pri-

mary land use change in recent decades has been conversion of forest and pasture to urban

[26, 27].

To model all stream reaches in the region, the NLCD2009m and the six future projections

were overlain on the National Hydrography Dataset Version 2 (NHDPlus) [28, 29] polygons

associated with all stream segments in the region. A buffer outside of the ecoregion boundary

was applied to ensure that streams with headwaters outside of the ecoregion were retained at

this step. Each polygon associated with an NHDPlus stream segment represents the land area

that drains directly to that segment; that polygon plus all polygons associated with upstream

segments thus constitute the total watershed that drains to the downstream end of the seg-

ment. For every segment in the Piedmont region, contributing polygons were “accumulated”

and their GIS characteristics were determined, providing the full watershed characteristics for

Table 1. Spearman’s rank correlation coefficients (rho) between Urban2009 and variables retained in BRT models of EPT-H and BIPTAX by Waite et al. (2019)

(left columns) and geospatial metrics retained in BRT models presented herein (right columns).

Variable1 Urban20092 Variable Urban20092

Biological metrics Geospatial

EPT-H -0.779 HousingDensity2010 0.958

BIPTAX -0.631 RoadDensity2014 0.919

Nutrients, DO, Temp PopulationDensity2010 0.956

Total Phosphorus 0.285 DevelopedLow2011 0.955

Total Nitrogen 0.397 DevelopedMed2011 0.905

Dissolved oxygen, minimum -0.332 DevelopedOpen2011 0.919

Habitat TotalUrban2011 0.972

Flow peak interval, mean -0.891 Forest 2011 -0.885

Pesticides in water Soil sand content -0.102

Number of pesticides det.—W 0.747 Base flow index -0.353

Fungicides—P 0.646 Dam density 2009 0.392

Insecticides -P 0.724

Fipronil and degradates—W 0.799

Sediment Contaminants

Total PAH TEC (oc) 0.626

1Unless noted, variables are medians for the last four weeks of sampling. For pesticides, P indicates variable is from POCIS integrative samplers and W indicates variable

is from discrete water samples. For sediment contaminants, (oc) indicates variable is normalized to organic carbon. Stressor metrics are given in [21]; geospatial variable

sources and definitions are provided in S3 Table.
2 Bold font indicates significance at p<0.05.

https://doi.org/10.1371/journal.pone.0222714.t001
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all stream segments [30]. Subsequently, segments that fell outside of the Piedmont boundary

(the buffered area) were removed to create Piedmont-specific model layers.

Ecological models were based on data from 75 relatively small wadeable streams, with mini-

mum, median, 95th, and maximum watershed areas of 5.3, 38, 223, and 491 km2, respectively.

To ensure that ecological models were applied only to streams similar in size to those streams

on which the models are based, all accumulated segments with a total watershed area of more

than 250 km2 were removed. The remaining watersheds comprise 123,200 km of stream

length, 95% of the total stream length in the Piedmont ecoregion (S2 Table).

Ecological modeling

Boosted Regression Tree (BRT) models were developed for three ecological metrics using a

wide variety of current geospatial data for the 75 SESQA stream sampling sites and followed

methods described by Waite et al. (2019). Briefly, regression trees fall in the classification and

regression-tree (CART) or decision-tree family of techniques [31]. BRT models advance sin-

gle-classification or regression trees by combining the results of sequentially fit regression

trees to reduce predictive error and improve overall performance [32, 33].

The BRT models were developed to evaluate current (2014) ecological conditions relative to

the range of geospatial data. Three ecological metrics were modeled using BRT: total macroin-

vertebrate richness (number of taxa) (RICH); richness of the three dominant sensitive aquatic

insect orders Ephemeroptera, Plecoptera, and Trichoptera, minus the less sensitive Hydropsy-

chidae (EPT-H); and richness of benthic invertivore fish as a percentage of all fish taxa (BIP-

TAX). Although not all of the more detailed geospatial variables are available for future

projections, they were used for current conditions to provide insight into those factors most

affecting stream ecology and determine whether urban land use can be reasonably approxi-

mated by the “total urban” variable available for projected years. Variables tested included var-

ious measures of urban development (e.g., housing density, road density and low, medium,

and high density urban development) and several landscape and hydrologic variables (e.g., soil

sand content, baseflow index). BRT models were run using the gbm library in R (version 3.4.3;

R Project for Statistical Computing, Vienna, Austria) and code from Elith [33]. Because this

code optimizes the number of trees run in each model, the number of trees varies for each

model. We reduced explanatory variables in each final BRT model by using a combination of

variable importance (VI) scores and evaluation of interactions and partial dependency

responses to minimize overfitting.

Only general land-use class variables are available for the 2030 and 2060 projections (e.g.,

urban, forest, pasture). Given the simplified list of variables available, we chose to use multiple

linear regression (MLR) models to project the ecological metrics based on forecasts of land

use. These projections rely on the assumption that we can substitute a spatial analysis (models

relating ecological condition to current land use) for a temporal change prediction. The under-

lying assumption is that the relations between land use and ecological responses will not

change in the future. The limitations of this assumption and other uncertainties are discussed

in the section “Projecting stream condition in response to land-use change”. For dependent

variables, two of the three ecological metrics used in BRT modeling were chosen to represent

the macroinvertebrate and fish communities: EPT-H and BIPTAX. EPT-H comprises taxa

within the orders mayflies, stoneflies, and caddisflies, many of which are considered to be

sensitive to environmental disturbance. Benthic invertivore fish are those classified by the EPA

as invertivores that prefer benthic habitats [34]. Benthic invertivore fish tend to be smaller

endemic species such as darters and sculpin. Twenty-three species of benthic invertivores were

found at SESQA sites, all at fewer than one-half of the sites, indicating that most of these
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species occur infrequently, and thus likely are endemic with small geographic ranges. The

southern U.S. contains a relatively large percentage of endemic fish species [35], and endemic

species are prone to extinction because of their limited geographic ranges and restricted habi-

tat requirements [35].

Potential independent variables for ecological forecasts were limited to land-use variables

projected as described above and two landscape factors, soil permeability and stream baseflow

index, that were thought to be important and that were assumed not to change substantially

over time. Land-use variables tested in regressions were percent of the watershed in the classes

urban (Urban2009), forest (sum of NLCD forest classes), agriculture (sum of NLCD cropland

and pasture classes), and wetlands. Assumptions underlying linear regression were examined

and reasonably met, as detailed in Supporting Information (S1 Text, Figures A and B in

S1 Text).

In addition to evaluations of relations to geospatial variables presented herein, the results

from Waite et al.[16] were used to indicate the instream habitat and chemical stressors most

likely to influence stream biological condition. Waite et al. developed BRT models for the two

metrics used here for land-use-change-based predictions—EPT-H and BIPTAX—and for

seven other biological community metrics. Those BRT models related biological community

metrics to instream stressors but did not evaluate relations to land use or other GIS variables.

Details on the BRT modeling approach are given in Waite et al. [16] and references therein.

Results and discussion

As of 2009, 46,700 km of small Piedmont streams (38% of all small streams in the region) had

more than 5% urban land use in their watershed and 9,760 km (8%) had more than 50% urban

land use. By 2060, 76,200 km of streams, or 62% of all small streams in the region, are expected

to have more than 5% urban land use in their watershed (S2 Table) according to the median-

probability (of urbanization) projection. The stream kilometers with more than 50% urban

land use in their watershed are expected to triple by 2060 to 31,300 km, representing 25% of all

stream kilometers (Fig 2), with an uncertainty range of 28,624 to 34,081 km (20 and 80% prob-

ability estimates). Urban land use of 50% corresponds to losses of almost one-half of sensitive

invertebrate (EPT-H) and one-third of benthic invertivore fish (BIPTAX) taxa (Fig 3). Under

Fig 2. Projected change in urban land use in the Piedmont ecoregion to 2060 (left) and resulting loss of

invertebrate (EPT-H) and fish (BIPTAX) taxa (right). Upper, middle, and lower lines for each threshold are 20, 50,

and 80% probability of land being urban, respectively. The length and percent of stream kilometers in the region

expected to lose>25% of taxa based on land-use change (solid lines); dashed lines represent the 95% confidence

interval of the regression.

https://doi.org/10.1371/journal.pone.0222714.g002
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the Terrando et al. [3] “business-as-usual” scenario (in which the net effect of growth is in line

with that which has occurred in the past), by 2060 the median projection of urban area is

expected to increase 165%, from 17,800 km2 to 47,500 km2, a regional increase roughly equiva-

lent to 4–6 times the current Atlanta metropolitan area. This represents an increase in urban

land-use coverage from about 10% to about 30% of the Piedmont ecoregion.

Current relations between land use and stream ecology

Correlations between urban land use (Urban2009, the total urban class in NLCD2009m)

and the sensitive invertebrate and fish metrics for the 75 SESQA sites are strong and highly

Fig 3. Relations between total urban land use in 2009 and biological metrics. Lines are based on a distance weighted

least squares fitting procedure.

https://doi.org/10.1371/journal.pone.0222714.g003

SE urbanization ecology forecasting

PLOS ONE | https://doi.org/10.1371/journal.pone.0222714 October 16, 2019 8 / 17

https://doi.org/10.1371/journal.pone.0222714.g003
https://doi.org/10.1371/journal.pone.0222714


significant (rho = 0.78 and 0.63, respectively, and p-valuesr<0.001) (Table 1; Fig 3). Substan-

tial losses of invertebrate species are indicated for the more urbanized streams: the least

urbanized sites (<5% Urban 2009) have a mean of 60 total taxa and the most urbanized sites

(>90% Urban2009) have a mean of 34 taxa. Relative losses for the sensitive invertebrates

(EPT-H) are even more pronounced, with means of 18 and 5.1 taxa for least urbanized and

the most urbanized sites, respectively (Fig 3). Many species occur frequently at less devel-

oped sites but are almost completely absent at more developed sites; these species include

mayflies (Isonychia, Caenis, Plauditus), a stonefly (Perlestra), and riffle beetles (Macronychus
glabratus, Oulimnius nitidulus) (S4 Table). Conversely, there are some species that occur at

most sites regardless of the land use setting, indicating a high level of tolerance to distur-

bance. Examples include Cheumatopysche, a tolerant caddisfly genus in the family Hydro-

psychidae and three relatively tolerant Dipterans (flies) (Polypedilum, Rheotanytarsus,
Simulium).

Relations between fish community metrics and urbanization generally are weaker than for

those for invertebrates. For example, the mean number of fish species at the least urbanized

sites is 14, and the mean number at the most urbanized sites is 10. The relative effects of urban-

ization on the benthic invertivores, however, are stronger. The number of benthic invertivore

species decreases from a mean of 3.1 at the least urbanized sites to a mean of 1.1 at the most

urbanized sites, representing a decrease from 25 to 10% of all fish, respectively. Fish species

present at only one or a few relatively unurbanized sites include Blue Ridge sculpin (Cottus
caeruleomentum), Alabama shiner (Cyprinella callistia), Lipstick darter (Etheostoma chuckwa-
chatte), and highfin shiner (Notropis altipinnis) (S5 Table). The limited ranges of some of these

species and their apparent sensitivity to development mean that widespread future develop-

ment could threaten them with extirpation in the Piedmont.

Boosted regression tree models were developed for three biological community metrics

(two invertebrate and one fish) in relation to various geospatial variables (Table 2). The models

performed relatively well, with cross-validation R2 of 0.47 to 0.63. The models were dominated

by several variables related to urban land use or forest (the approximate inverse of urban land

use). Urban2009 was included in the variables tested in these models; although it was included

in only one final model with a modest variable importance (VI), it correlates very strongly to

the other land use variables, such as HousingDensity2010, that are included in the BRT models

(Table 1). These models and the very strong correlations between Urban2009 and the impor-

tant land-use variables the models contain give us confidence that reasonable estimates of

future stream condition can be made based on the projection of total urban land use (i.e., pro-

jection of Urban2009).

Table 2. Comparison of explanatory variables for BRT models for macroinvertebrate and fish metrics for geospatial variables; variables are presented in descending

order of variable importance (VI) in each model. See S3 Table for variable sources and definitions.

Macroinvertebrate Macroinvertebrate Fish

Total Richness (RICH)

CV R2 0.63

VI Sensitive inverts (EPT-H)

CV R2 0.61

VI Benthic Invertivores (BIPTAX)

CV R2 0.47

VI

HousingDensity2010 54 HousingDensity2010 39 Forest2011 30

DevelopedLow2011 17 Forest2011 28 TotalUrban2011 28

Urban2009 16 RoadDensity2014 19 DevelopedMed2011 14

BaseFlowIndex 13 TotalUrban2011 15 DamDensity2009 11

Soil Sand Content 9

DevelopedOpen2011 8

https://doi.org/10.1371/journal.pone.0222714.t002
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Projecting stream condition in response to land-use change

One invertebrate (EPT-H) and one fish (BIPTAX) metric were selected to project biological

condition in 2030 and 2060 from forecast urban land-use change. These metrics had strong

relations to urban land-use indicators (Table 1; Fig 3) and they represent relatively sensitive

subsets of invertebrate and fish taxa. The first step was to develop MLR models to relate land-

use variables in the NLCD2009m layer to the invertebrate and fish metrics from the 2014

SESQA ecological surveys. NLCD2009m variables include Urban2009 and are consistent with

the variables available in the 2030 and 2060 land-use projections. The MLR model for inverte-

brates had two significant explanatory variables, Urban2009 and AgricultureTotal (sum of

cropland and pasture), and performed well with an adjusted R2 of 0.64. The regression model

for fish had only one significant variable, Urban2009, and a lower adjusted R2 of 0.39. The

intercept and independent variables in the models had p-values < 0.01. Residuals in both

models were normally distributed and did not show any bias in relation to the magnitude of

the predicted value (S1 Text).

The regression models for the invertebrate and fish metrics were applied to the current

(2009) and projected (2030 and 2060) land-use conditions for each NHD+ segment in the

Piedmont ecoregion that represented a watershed of 250 km2 or less. For 2030 and 2060, the

regression models were applied to land-use-projection scenarios that correspond to the 20, 50,

and 80% probability that pixels would be urban by the given date. Results for the median pro-

jection (50% probability of urban) are summarized for each of the 74,603 stream segments in

the region by stream kilometers based on quartiles of taxa loss for invertebrates and fish (Fig 4,

S6 Table).

The estimated biological condition of streams in the Piedmont ecoregion in 2009 indicates

relatively modest impacts of urbanization spatially in terms of species losses. The predicted

benthic invertivore fish and sensitive invertebrate taxa for each stream reach was compared to

the predicted metric for undeveloped sites, and stream reaches were summarized by quartiles

of “loss” of species. For example, the predicted invertebrate metric for a reach with no develop-

ment was 20.75, so a predicted metric between 10.38 and 15.56 had>25% but<50% loss rela-

tive to undeveloped. In 2009, 11% of streams in the region were estimated to have>25% losses

of benthic fish (S6 Table). Greater losses are estimated for sensitive invertebrates, with about

35% of streams estimated to have >25% losses and about 9% estimated to have>50% losses

relative to undeveloped streams. By 2030, 17% and 53% of stream kilometers are projected to

have>25% losses of benthic fish and sensitive invertebrate taxa, respectively. By 2060, about

33% of streams have>25% losses of the fish taxa and 61% have>25% losses of the invertebrate

taxa (Figs 2 and 4).

Projected declines in regional stream condition correspond to projected metropolitan

expansion and associated infilling of smaller communities along the transportation corridor

connecting the major cities. With increasing urbanization, fragmentation of urban “patches” is

expected to decrease, with urban areas becoming more connected and with fewer patches that

are larger. In contrast, agriculture and forested land cover types are expected to become more

fragmented [3]. The increasingly fragmented natural landscape would reduce habitat availabil-

ity, reduce or eliminate existing natural corridors, and hinder management actions that seek

to protect natural systems. By 2060, the Piedmont could have a new, completely connected

megalopolis extending from Raleigh, NC to Atlanta, GA (Fig 4), and this continuous urban

corridor will have a warmer climate due to both the effects of climate change and the urban

heat island. These changes in fragmentation of development, in addition to the overall greater

urban land cover, could put further pressure on sensitive invertebrate and fish species, espe-

cially those with limited ranges.
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There are three major areas of uncertainty in projecting ecological status in streams: uncer-

tainty in models that link ecological condition to land use under current conditions, uncer-

tainty in projecting future land use, and uncertainty in future patterns of chemical use and

other urban-related stressors. The uncertainty in the ecological models arises from several

Fig 4. Modeled stream condition for the Piedmont ecoregion for 2009, 2030, and 2060 for number of sensitive

invertebrate taxa (EPT-H) and benthic invertivore fish taxa (BIPTAX). Each map shows stream lines in the region

colored by the loss of the ecological metric relative to undeveloped sites. Pies show the overall distribution of the metric

by stream kilometers in each condition level. Major cities are labeled on the map in the upper left.

https://doi.org/10.1371/journal.pone.0222714.g004
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factors, including sampling variability and relatively large variation in metrics relative to

explanatory variables (e.g., scatter about the lines in Fig 3). Because of these uncertainties, it is

not uncommon for models to explain no more than 50–60% of the variance in an ecological

metric [36–39].

Uncertainty of the ecological predictions based on the regression models was evaluated by

applying the regression models at the upper and lower 95% confidence intervals then comput-

ing the numbers of stream kilometers falling in each quartile of taxa loss (Fig 2; dashed lines

for graph on the right). On this basis, the uncertainty about the prediction of 75,300 km with

>25% loss by 2060 of sensitive invertebrate taxa is from 63,600 to 91,000 km. For benthic fish

taxa, the uncertainty about the 2060 prediction of 39,200 km is from 31,700 to 50,600 km

(Fig 2).

The uncertainty in projecting future land use is very high because of the difficulty of pre-

dicting human actions on the landscape far into the future [40]. This uncertainty is not cap-

tured by the 20 and 80% uncertainty in projections modeled here because those projections

make the same assumptions as the median projection [3]. Factors, such as weather, that drive

internal human migration rates can change over time [41] and events such as technological

shocks could force changes to development patterns that would be nearly impossible to pre-

dict. The land-use change scenarios presented here therefore should not be viewed as a true

prediction of future outcomes [42] but rather as probable outcomes in the absence of funda-

mental changes to current development patterns. Even under this less restrictive predictive

framework based on the trajectory of regional urban growth, the uncertainty for individual

locations is high given the complexity of conditions that feed into the decision to develop any

particular parcel of land.

Although the methods used in Terando et al. [3] potentially provide a reasonable depiction

of suburbanization patterns in the Southeastern U.S., the thematic output of their land-use

projection model is coarse in its binary classification (urban or not urban) of future land

cover. The binary classification is an artifact of the nature of input urban datasets, as required

by the model. The thematic output might limit our ability to make meaningful inferences

about future impacts on stream biota, given that the consequences of urbanization will vary

with the intensity and nature of urban development [43]. Not only can the intensity and nature

of urban development vary within a discrete land-use class, other factors that can affect water

quality and ecology can vary, such as soil properties, slope, and channel modifications and

impoundments (e.g., [36, 37, 44, 45]). However, these limitations are partly addressed at the

watershed scale by representing the intensity of development as the percentage of the water-

shed that is urban, and, as seen here, a measure of “total” urban at the watershed scale corre-

lates strongly with ecological condition metrics and with several specific measures of urban

development intensity (e.g., HousingDensity2010, Table 1).

Yet a third area of uncertainty regards human behavior over time, for example, the continu-

ously evolving use of pesticides [46]. The many reasons behind this evolution include inven-

tion of new, more effective chemicals, concerns about effects on the environment, or pest

resistance to a particular chemical. As a result, the most commonly used pesticides have

changed from inorganic chemicals, such as copper(II)acetoarsenite, used prior to the 1940s, to

persistent organochlorine compounds, such as DDT, in the mid-20th century, to the phos-

phoorganic compounds introduced to replace DDT [47]. More recently, use of pyrethroids,

fipronil, and neonicotinoids has increased. Conversely, herbicides such as atrazine and 2,4-D

were introduced more than 60 years ago and continue to be heavily used [https://water.usgs.

gov/nawqa/pnsp/usage/maps/]. Therefore, although the forecast assumes that chemical use

will remain constant for the next 50 years, in reality the types of chemicals that will be used

and their toxicity to aquatic biota are not known.
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Associated with uncertainty in future land use is uncertainty regarding land-management

actions that might affect stream quality. Strategies to manage stormwater runoff, which alters

stream-water quality, quantity, temperature, and timing, continue to evolve. Expanded use of

green infrastructure, for example, that mimics natural habitats and absorbs excess water has

the potential to lessen the impacts of urban land use on stream quality.

Instream stressors and biology

In addition to other modeling uncertainties, there is uncertainty related to the projection of

ecological status based on projected land use. Urban land use, in itself, is not the direct stressor

that causes harm to organisms living in streams. Rather, ecological conditions are affected by

instream stressors that accompany urbanization, such as streamflow alteration and water-qual-

ity degradation. The multi-stressor approach taken by the RSQA studies improves our under-

standing of which instream stressors most strongly affect biological communities [16, 38, 39,

48] and might provide insight on how some of the effects of future urban development might

be mitigated. The BRT models developed for the SESQA by Waite et al. [16] relate instream

stressors to biological condition for algae, invertebrate, and fish communities in the Piedmont

ecoregion (Table 1; left columns). A BRT model was developed for three metrics for each type

of community, for a total of nine models, including models for EPT-H and BIPTAX. All nine

models indicated that contaminants were significant instream stressors—in each of the mod-

els, at least one of several contaminant metrics that represent eight different pesticide classes

or use groups (e.g., fungicides) and two metrics that represent sediment-associated contami-

nants were retained. Other explanatory variables retained in many models included flow alter-

ation, minimum daytime dissolved oxygen, and either total phosphorus or total nitrogen [16].

Implications of land-use change

Small streams are critical for freshwater biodiversity and for delivery of ecosystem services but

are largely excluded from water-management planning [49]. Under current urban land-use

practices, substantial chemical and hydrologic changes occur in small streams in response to

urbanization. These changes in Piedmont streams include increased pesticide and nutrient

concentrations in water; increased concentrations of PAHs, pesticides, and other hydrophobic

contaminants in sediment; flashier, less stable streamflow; lower dissolved oxygen; and higher

water temperatures [16]. Most of the stressors included in the nine BRT models of [16] and all

of the stressors included in models of EPT-H and BIPTAX (Table 1) are correlated to urban

land use. Some of these variables exhibit a relatively linear response to urbanization (e.g., Flow

Peak Intervals), whereas others have an exponential response with large increases occurring at

higher urban density (e.g., PAHs) (S1 Fig). Awareness of these relations and improved man-

agement of these stressors might help mitigate some of the adverse effects of future develop-

ment on stream health. Reducing contaminant loading, stabilizing flows, and improving

aquatic habitat might be achieved, for example, by reductions in chemical use and impervious

cover, preservation of riparian habitat, and implementation of green infrastructure and other

stormwater management actions.

There are numerous characteristics of urbanization, in addition to those stressors identified

by Waite et al. [16], that could be adversely affecting urban stream biota. Freshwater ecosys-

tems are sensitive to both land use and climate change [50–53] including in the Piedmont, as

reported by [52] and indicated by the inclusion of urban contaminants, streamflow alteration,

and temperature variables in the SESQA stressor models [16]. The SESQA sampling and anal-

ysis, however, did not consider a variety of other potential threats to freshwater biodiversity

such as harmful algal blooms, microplastic pollution, and engineered nanomaterials [54].
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Other potential stressors not measured in SESQA, such as perfluorinated compounds, or not

considered in the BRT models, such as non-native species also could be affecting Piedmont

stream ecosystems. Additionally, there were variables measured by SESQA but not retained in

the BRT models, such as bifenthrin in sediment, imidacloprid in water, and riparian-zone dis-

turbance, which have been shown to adversely affect biological communities in other regions

[18, 38, 48]. It is possible that the stressors retained in the BRT models obscured the effects of

these or other stressors. Nevertheless, the SESQA study is one of the most comprehensive stud-

ies to date to evaluate the effects of multiple stressors on ecology and in relation to the urban

landscape. The ecological forecasting analysis presented here provides a warning of potential

risks from ongoing and future urbanization and perhaps some guidance on how we might

begin to mitigate those risks.
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