organic compounds

14383 measured reflections

 $R_{\rm int} = 0.021$

11120 independent reflections

10728 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Levocetirizinium dipicrate

Jerry P. Jasinski,^a* Ray J. Butcher,^b M. S. Siddegowda,^c H. S. Yathirajan^c and A. R. Ramesha^d

^aDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA, ^bDepartment of Chemistry, Howard University, 525 College Street NW, Washington, DC 20059, USA, ^cDepartment of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India, and ^dRL Fine Chem., Bangalore 560 064, India

Correspondence e-mail: jjasinski@keene.edu

Received 29 October 2010; accepted 7 November 2010

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.122; data-to-parameter ratio = 10.5.

There are two cation-dianion pairs in the asymmetric unit of the title compound, $C_{21}H_{27}ClN_2O_3^{2+}\cdot 2C_6H_2N_3O_7^{-}$ {systematic name: 1-[2-(carboxymethoxy)ethyl]-4-[(*R*)-(4-chlorophenyl)phenylmethyl]piperazine-1,4-diium bis(2,4,6-trinitrophenolate)}. The piperazine group in the levocetirizinium cation is protonated at both N atoms. The acetyl end groups form $R_2^2(8)$ hydrogen-bonded motifs with adjacent cations. Each picrate anion interacts with the proponated N atom in the cation through a bifurcated N-H···O hydrogen bond, forming $R_1^2(6)$ ring motifs. Strong and weak intermolecular N-H···O and strong O-H···O hydrogen bonds, and weak π -ring and π - π stacking interactions [centroid-centroid distance = 3.7419 (14) Å] dominate the crystal packing, creating a three-dimensional supramolecular structure.

Related literature

For related background, see: Hair & Scott, (2006). For related structures, see: Jasinski *et al.* (2009, 2010*a*,*b*). For bond-length data, see: Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{array}{l} C_{21}H_{27}\text{CIN}_2\text{O}_3^{2+}\cdot\text{2C}_6\text{H}_2\text{N}_3\text{O}_7^{-}\\ M_r = 847.11\\ \text{Monoclinic, } P2_1\\ a = 11.2444 \ (1) \text{ Å}\\ b = 15.7720 \ (2) \text{ Å}\\ c = 20.6204 \ (2) \text{ Å}\\ \beta = 95.998 \ (1)^\circ \end{array}$

 $V = 3636.94 (7) \text{ Å}^{3}$ Z = 4 Cu K\alpha radiation $\mu = 1.74 \text{ mm}^{-1}$ T = 123 K 0.51 × 0.47 × 0.34 mm

Data collection

```
Oxford Diffraction Xcalibur Ruby
Gemini diffractometer
Absorption correction: multi-scan
(CrysAlis RED; Oxford
Diffraction, 2007)
T_{\rm min} = 0.533, T_{\rm max} = 1.000
```

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$ H-atom parameters constrained $wR(F^2) = 0.122$ $\Delta \rho_{max} = 0.96 \text{ e } \text{ Å}^{-3}$ S = 1.03 $\Delta \rho_{min} = -0.64 \text{ e } \text{ Å}^{-3}$ 11120 reflectionsAbsolute structure: Flack (1983),1063 parameters3692 Friedel pairs1 restraintFlack parameter: 0.058 (13)

Table 1

Hydrogen-bond geometry (Å, $^\circ).$

Cg5 is the centroid of the C6B-C11B ring.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O2A - H2AD \cdots O2B$	0.84	1.80	2.638 (4)	180
$N1A - H1AC \cdots O1D$	0.93	1.83	2.682 (3)	152
$N1A - H1AC \cdots O7D$	0.93	2.63	3.301 (3)	129
$N2A - H2AC \cdots O1C$	0.93	1.89	2.765 (3)	155
$N2A - H2AC \cdots O7C$	0.93	2.46	2.990 (3)	116
$O3B - H3BC \cdots O3A$	0.84	1.76	2.601 (4)	180
$N1B - H1BC \cdot \cdot \cdot O1E$	0.93	1.85	2.678 (3)	147
$N1B - H1BC \cdots O7E$	0.93	2.52	3.193 (3)	130
$N2B - H2BC \cdot \cdot \cdot O1F$	0.93	1.91	2.764 (3)	153
$N2B - H2BC \cdot \cdot \cdot O7F$	0.93	2.57	3.078 (4)	115
$C19B-H19C\cdots Cg5^{i}$	0.99	2.95	3.792 (4)	144

Symmetry code: (i) x + 1, y, z.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2007); cell refinement: *CrysAlis PRO* data reduction: *CrysAlis RED* (Oxford Diffraction, 2007); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

MSS thanks the University of Mysore (UOM) for research facilities and HSY thanks UOM for sabbatical leave. RJB acknowledges the NSF MRI program (grant No. CHE-0619278) for funds to purchase an X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: OM2375).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Hair, P. I. & Scott, L. J. (2006). Drugs, 66, 973-996.
- Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2009). Acta Cryst. E65, o1738–o1739.
- Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010a). Acta Cryst. E66, 0347–0348.
- Jasinski, J. P., Butcher, R. J., Hakim Al-Arique, Q. N. M., Yathirajan, H. S. & Narayana, B. (2010b). Acta Cryst. E66, 0411–0412.
- Oxford Diffraction (2007). CrysAlis PRO and CrysAlis RED Oxford Diffraction Ltd, Abingdon, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Acta Cryst. (2010). E66, o3167 [doi:10.1107/S1600536810045733]

Levocetirizinium dipicrate

J. P. Jasinski, R. J. Butcher, M. S. Siddegowda, H. S. Yathirajan and A. R. Ramesha

Comment

Levocetirizine (as levocetirizine dihydrochloride) is a third-generation non-sedative antihistamine, developed from the second-generation antihistamine cetirizine. Chemically, levocetirizine is the active enantiomer of cetirizine. It is the *L*-enantiomer of the cetirizine racemate. Levocetirizine works by blocking histamine receptors. It does not prevent the actual release of histamine from mast cells, but prevents it from binding to its receptors. This in turn prevents the release of other allergy chemicals and increased blood supply to the area, and provides relief from the typical symptoms of hayfever. Levocetirizine is called a non-sedating antihistamine as it does not enter the brain in significant amounts, and is therefore unlikely to cause drowsiness. A review on the use of levocetirizine in the management of allergic rhinitis and skin allergies is described (Hair & Scott, 2006).

Recently, the crystal structures of propiverine picrate (Jasinski *et al.*, 2009), imatinibium dipicrate (Jasinski *et al.*, 2010*b*) and chlorimipraminium picrate (Jasinski *et al.*, 2010*a*) have been reported. The present work reports the crystal structure of the salt, $C_{21}H_{27}ClN_2O_3^{2+}$. $2C_6H_2N_3O_7^{-}$, formed by the interaction between 2-[2-[4-[(*R*)-(4-chlorophenyl)-phenyl-methyl] piperazin-1-yl]ethoxy]acetic acid and 2,4,6-trinitrophenol in aqueous medium.

In the crystal structure of the title compound the 6-membered piperazine groups (N1A/C1A/C2A/N2A/C3A/C4A & N1B/C1B/C2B/N2B/C3B/C4B) in the levocetirizinium cation are protonated at both N atoms (Fig. 1) and adopt slightly distorted chair conformations with puckering parameters Q, θ and φ of 0.591 (3)A% & 0.583 (3) Å, 171.6 (3)° & 170.8 (3)°, and 353.0 (17)° & 358.2 (19)°, for molecules A & B respectively (Figs.1 & 2). For an ideal chair θ has a value of 0 or 180°. Bond distances (Allen *et al.*, 1987) and angles are in normal ranges . R_2^{1} (6) graph-set motifs are formed between piperazine N1A—H1AC and N2A—H2AC groups and the picrate anions labeled D and C (Fig. 1) and piperazine N1B—H1BC and N2B—H2BC groups and the picrate anions labeled E and F (Fig. 2) through bifurcated N—H…O hydrgen bonds (Table 1). The acetyl end groups form an R_2^{2} (8) hydrogen bonded motif with adjacent cations (Fig. 3). The dihedral angle between the mean planes of the anion benzene ring pairs is 31.9 (2)Å (C—D) and 37.9 (6)Å (E—F), respectively.

The mean plane of the two *o*-NO₂ groups in the two picrate anions are twisted by 15.8 (6)°, 53.7 (3)Å (ring C),25.9 (9) Å, 38.5 (1)Å (ring D), 24.5 (0) Å, 38.7 (2)Å (ring E) and 10.3 (3) Å, 56.9 (9)Å (ring F) with respect to the mean planes of the 6-membered benzene rings. The *p*-NO₂ groups in both picrate anions are nearly in the plane of the ring (torsion angles O4C/N2C/C4C/C3C = -8.8 (4)°; O4D/N2D/C4D/C3D = -175.8 (2)°; O4E/N2E/C4E/C3E = 2.6 (4)°; O4F/N2F/C4F/C3F = 3.4 (4)°;). An extensive array of strong and weak N—H···O and strong O—H···O intermolecular hydrogen bonds (Table 1), weak π -ring (Table 2) and π - π (Table 3) stacking interactions dominate crystal packing in the unit cell creating a 3-D supramulecular structure (Fig. 4).

Experimental

Levocetirizine (3.89 g, 0.01 mol) was dissolved in 20 ml of methanol and picric acid (2.4 g, 0.01 mol) was dissolved in 20 ml of methanol. Both the solutions were mixed and stirred in a beaker at room temperature for 1/2 half hour. The mixture was warmed for 10 min at 323 K & kept aside for two days at room temperature. The formed salt was filtered & dried in a vaccum desiccator over phosphorous pentoxide. The salt was recrystallized from dimethylsulphoxide by slow evaporation (m.p: 454–456 K).

Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with Atom—H lengths of 1.00, 0.95Å (CH), 0.99Å (CH₂), 0.93Å (NH), or 0.84Å (OH). Isotropic displacement parameters for these atoms were set to 1.2 times (NH), 1.2 (CH, CH₂) or 1.5 (OH) times U_{eq} of the parent atom.

Figures

Fig. 1. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate strong and weak N—H…O intermolecular hydrogen bonds

Fig. 2. Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids. Dashed lines indicate strong and weak N—H…O intermolecular hydrogen bonds

Fig. 3. Molecular structure of adjacent cations from the title compound showing the acetyl end groups forming an $R_2^2(8)$ hydrogen bonded motif.

Fig. 4. Packing diagram of the title compound viewed down the b axis. Dashed lines indicate

strong and weak intermolecular N—H···O and O—H···O hydrogen bond interactions creating a 3-D supramulecular structure.

1-[2-(Carboxymethoxy)ethyl]-4-[(*R*)-(4- chlorophenyl)phenylmethyl]piperazine-1,4-diium bis(2,4,6-trinitrophenolate)

Crystal data

 $C_{21}H_{27}CIN_2O_3^{2+} \cdot 2C_6H_2N_3O_7^{-}$ F(000) = 1752 $M_r = 847.11$ $D_x = 1.547 \text{ Mg m}^{-3}$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 11.2444 (1) Å b = 15.7720 (2) Å c = 20.6204 (2) Å $\beta = 95.998$ (1)° V = 3636.94 (7) Å³ Z = 4

Data collection

Oxford Diffraction Xcalibur Ruby Gemini diffractometer	11120 independent reflections
Radiation source: Enhance (Cu) X-ray Source	10728 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.021$
Detector resolution: 10.5081 pixels mm ⁻¹	$\theta_{\text{max}} = 74.1^{\circ}, \ \theta_{\text{min}} = 4.7^{\circ}$
ω scans	$h = -9 \rightarrow 13$
Absorption correction: multi-scan (CrysAlis RED; Oxford Diffraction, 2007)	$k = -19 \rightarrow 18$
$T_{\min} = 0.533, T_{\max} = 1.000$	$l = -25 \rightarrow 24$
14383 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.044$	H-atom parameters constrained
$wR(F^2) = 0.122$	$w = 1/[\sigma^2(F_o^2) + (0.0826P)^2 + 1.9759P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\rm max} < 0.001$
11120 reflections	$\Delta \rho_{max} = 0.96 \text{ e } \text{\AA}^{-3}$
1063 parameters	$\Delta \rho_{min} = -0.64 \text{ e } \text{\AA}^{-3}$
1 restraint	Absolute structure: Flack (1983), 3460 Friedel pairs
Primary atom site location: structure-invariant direct methods	Flack parameter: 0.058 (13)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Cu K α radiation, $\lambda = 1.54178$ Å

 $\theta = 4.7 - 73.9^{\circ}$

 $\mu = 1.74 \text{ mm}^{-1}$ T = 123 K

Block, yellow

 $0.51\times0.47\times0.34~mm$

Cell parameters from 12871 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cl1A	1.43159 (6)	-0.07506 (5)	0.46063 (4)	0.03707 (19)
01A	0.51357 (19)	0.14380 (15)	0.62287 (11)	0.0322 (5)
O2A	0.5911 (3)	0.2584 (2)	0.76889 (13)	0.0535 (7)
H2AD	0.6533	0.2854	0.7821	0.080*
O3A	0.6722 (2)	0.26091 (17)	0.67498 (11)	0.0385 (6)
N1A	0.95454 (18)	0.17016 (15)	0.53050 (10)	0.0155 (4)
H1AC	0.9645	0.1922	0.4896	0.019*
N2A	0.69680 (19)	0.15302 (15)	0.53729 (11)	0.0174 (4)
H2AC	0.7070	0.1310	0.5793	0.021*
C1A	0.8903 (2)	0.08603 (17)	0.52236 (12)	0.0178 (5)
H1AA	0.8923	0.0577	0.5653	0.021*
H1AB	0.9322	0.0491	0.4933	0.021*
C2A	0.7617 (2)	0.09740 (18)	0.49397 (12)	0.0181 (5)
H2AA	0.7593	0.1232	0.4501	0.022*
H2AB	0.7218	0.0414	0.4894	0.022*
C3A	0.7555 (2)	0.23808 (18)	0.53789 (13)	0.0194 (5)
НЗАА	0.7120	0.2781	0.5639	0.023*
НЗАВ	0.7521	0.2602	0.4928	0.023*
C4A	0.8845 (2)	0.23205 (17)	0.56680 (12)	0.0162 (5)
H4AA	0.9221	0.2887	0.5658	0.019*
H4AB	0.8872	0.2142	0.6130	0.019*
C5A	1.0771 (2)	0.15712 (18)	0.56848 (12)	0.0170 (5)
H5AA	1.0633	0.1349	0.6125	0.020*
C6A	1.1552 (2)	0.09331 (18)	0.53805 (13)	0.0187 (5)
C7A	1.2402 (2)	0.05136 (19)	0.58085 (14)	0.0236 (6)
H7AA	1.2406	0.0593	0.6265	0.028*
C8A	1.3239 (3)	-0.00169 (19)	0.55710 (15)	0.0267 (6)
H8AA	1.3825	-0.0295	0.5861	0.032*
C9A	1.3206 (2)	-0.01337 (18)	0.49055 (16)	0.0251 (6)
C10A	1.2349 (3)	0.0241 (2)	0.44723 (15)	0.0260 (6)
H10A	1.2321	0.0128	0.4018	0.031*
C11A	1.1524 (3)	0.07878 (19)	0.47100 (14)	0.0240 (6)
H11A	1.0941	0.1063	0.4416	0.029*
C12A	1.1408 (2)	0.24216 (18)	0.57884 (13)	0.0196 (5)
C13A	1.1565 (3)	0.2778 (2)	0.64133 (14)	0.0291 (7)
H13A	1.1260	0.2496	0.6768	0.035*
C14A	1.2168 (3)	0.3543 (3)	0.65159 (16)	0.0390 (8)
H14A	1.2260	0.3788	0.6939	0.047*
C15A	1.2637 (3)	0.3954 (2)	0.60031 (17)	0.0366 (8)
H15A	1.3063	0.4471	0.6075	0.044*
C16A	1.2474 (3)	0.3596 (2)	0.53822 (16)	0.0308 (7)
H16A	1.2787	0.3875	0.5029	0.037*
C17A	1.1863 (3)	0.28368 (19)	0.52730 (14)	0.0223 (6)
H17A	1.1754	0.2601	0.4847	0.027*
C18A	0.5646 (2)	0.1559 (2)	0.51504 (14)	0.0260 (6)

H18A	0.5514	0.1894	0.4743	0.031*
H18B	0.5353	0.0976	0.5053	0.031*
C19A	0.4949 (3)	0.1943 (2)	0.56542 (16)	0.0302 (7)
H19A	0.5221	0.2531	0.5749	0.036*
H19B	0.4088	0.1957	0.5494	0.036*
C20A	0.4897 (3)	0.1860 (3)	0.68060 (18)	0.0403 (8)
H20A	0.4714	0.1436	0.7135	0.048*
H20B	0.4187	0.2228	0.6712	0.048*
C21A	0.5937 (3)	0.2386 (2)	0.70758 (17)	0.0370 (8)
Cl1B	0.18104 (10)	0.10273 (6)	0.86966 (5)	0.0527 (3)
O1B	0.9688 (2)	0.43787 (17)	0.86713 (11)	0.0376 (5)
O2B	0.7870(2)	0.34294 (17)	0.80996 (12)	0.0391 (6)
O3B	0.8678 (3)	0.3414 (2)	0.71568 (13)	0.0575 (8)
H3BC	0.8046	0.3154	0.7025	0.086*
N1B	0.53581 (19)	0.41964 (16)	0.97035 (10)	0.0190 (4)
H1BC	0.5269	0.3949	1.0105	0.023*
N2B	0.7932 (2)	0.42637 (17)	0.95643 (11)	0.0224 (5)
H2BC	0.7814	0.4518	0.9156	0.027*
C1B	0.5976 (2)	0.35768 (18)	0.92903 (12)	0.0198 (5)
H1BA	0.5926	0.3792	0.8837	0.024*
H1BB	0.5549	0.3027	0.9282	0.024*
C2B	0.7275 (3)	0.34358 (19)	0.95376 (13)	0.0224 (6)
H2BA	0.7332	0.3180	0.9978	0.027*
H2BB	0.7642	0.3039	0.9244	0.027*
C3B	0.7382 (3)	0.4805 (2)	1.00382 (14)	0.0250 (6)
H3BA	0.7831	0.5344	1.0096	0.030*
H3BB	0.7433	0.4515	1.0466	0.030*
C4B	0.6090 (3)	0.49921 (18)	0.98106 (14)	0.0223 (6)
H4BA	0.5748	0.5349	1.0140	0.027*
H4BB	0.6047	0.5317	0.9398	0.027*
C5B	0.4118 (2)	0.43970 (19)	0.93531 (13)	0.0221 (6)
H5BA	0.4251	0.4663	0.8927	0.026*
C6B	0.3450 (2)	0.3572 (2)	0.91958 (13)	0.0233 (6)
C7B	0.3046 (3)	0.3084 (2)	0.96865 (15)	0.0263 (6)
H7BA	0.3131	0.3283	1.0124	0.032*
C8B	0.2515 (3)	0.2303 (2)	0.95391 (17)	0.0339 (7)
H8BA	0.2244	0.1961	0.9873	0.041*
C9B	0.2388 (3)	0.2028 (2)	0.88932 (17)	0.0365 (8)
C10B	0.2738 (4)	0.2517 (3)	0.84000 (16)	0.0408 (8)
H10B	0.2618	0.2328	0.7961	0.049*
C11B	0.3272 (3)	0.3296 (2)	0.85527 (16)	0.0343 (7)
H11B	0.3517	0.3643	0.8215	0.041*
C12B	0.3390 (3)	0.50213 (19)	0.97057 (15)	0.0244 (6)
C13B	0.3556 (3)	0.5196 (2)	1.03748 (15)	0.0292 (7)
H13B	0.4170	0.4916	1.0645	0.035*
C14B	0.2819 (3)	0.5781 (2)	1.06445 (18)	0.0353 (7)
H14B	0.2957	0.5916	1.1095	0.042*
C15B	0.1889 (3)	0.6167 (2)	1.0263 (2)	0.0417 (8)
H15B	0.1369	0.6548	1.0452	0.050*

C16B	0.1725 (3)	0.5990 (2)	0.9599 (2)	0.0427 (9)
H16B	0.1091	0.6255	0.9332	0.051*
C17B	0.2473 (3)	0.5434 (2)	0.93261 (17)	0.0338 (7)
H17B	0.2361	0.5331	0.8870	0.041*
C18B	0.9256 (3)	0.4166 (2)	0.97499 (15)	0.0327 (7)
H18C	0.9391	0.3790	1.0135	0.039*
H18D	0.9607	0.4727	0.9871	0.039*
C19B	0.9876 (3)	0.3799 (3)	0.91983 (19)	0.0396 (8)
H19C	1.0741	0.3730	0.9333	0.047*
H19D	0.9535	0.3238	0.9070	0.047*
C20B	0.9815 (4)	0.4014 (3)	0.80583 (19)	0.0483 (10)
H20C	1.0471	0.3593	0.8105	0.058*
H20D	1.0034	0.4461	0.7755	0.058*
C21B	0.8681 (4)	0.3587 (3)	0.77753 (17)	0.0415 (8)
O1C	0.79680 (19)	0.09712 (15)	0.65794 (10)	0.0274 (4)
O2C	1.0086 (3)	0.1450 (2)	0.73266 (12)	0.0616 (10)
O3C	0.9234 (3)	0.17726 (19)	0.81843 (16)	0.0577 (8)
O4C	0.8609 (2)	-0.11502 (16)	0.91389 (10)	0.0331 (5)
O5C	0.7121 (2)	-0.18315 (15)	0.86224 (11)	0.0313 (5)
O6C	0.56936 (19)	-0.10817 (17)	0.64531 (11)	0.0361 (6)
O7C	0.6664 (2)	-0.02135 (15)	0.59006 (10)	0.0309 (5)
N1C	0.9382 (3)	0.1313 (2)	0.77214 (14)	0.0401 (7)
N2C	0.7885 (2)	-0.12627 (17)	0.86580 (12)	0.0255 (5)
N3C	0.6489 (2)	-0.05485 (17)	0.64152 (11)	0.0224 (5)
C1C	0.7961 (2)	0.04300 (19)	0.70205 (13)	0.0205 (5)
C2C	0.8661 (3)	0.0537 (2)	0.76457 (14)	0.0254 (6)
C3C	0.8660 (3)	0.0012 (2)	0.81686 (14)	0.0249 (6)
H3CA	0.9145	0.0127	0.8564	0.030*
C4C	0.7922 (2)	-0.0702 (2)	0.81035 (13)	0.0223 (6)
C5C	0.7203 (2)	-0.08658 (19)	0.75341 (13)	0.0212 (5)
H5CA	0.6686	-0.1344	0.7505	0.025*
C6C	0.7240 (2)	-0.03285 (19)	0.70048 (13)	0.0207 (6)
O1D	0.93928 (19)	0.18889 (14)	0.40063 (9)	0.0249 (4)
O2D	0.9747 (3)	0.05081 (17)	0.32418 (14)	0.0548 (8)
O3D	0.8281 (2)	0.05186 (16)	0.24704 (12)	0.0424 (6)
O4D	0.8374 (2)	0.30033 (16)	0.11042 (10)	0.0309 (5)
O5D	0.8824 (2)	0.42219 (16)	0.15462 (11)	0.0380 (5)
O6D	1.0061 (3)	0.44020 (16)	0.38295 (13)	0.0443 (6)
O7D	0.9339 (2)	0.34861 (17)	0.44645 (10)	0.0364 (5)
N1D	0.8989 (3)	0.08785 (16)	0.28649 (12)	0.0285 (6)
N2D	0.8686 (2)	0.34472 (17)	0.15838 (11)	0.0231 (5)
N3D	0.9598 (2)	0.37156 (16)	0.39307 (12)	0.0241 (5)
C1D	0.9264 (2)	0.22591 (18)	0.34697 (12)	0.0160 (5)
C2D	0.9020 (2)	0.18040 (18)	0.28569 (13)	0.0198 (5)
C3D	0.8806 (2)	0.21806 (19)	0.22587 (12)	0.0179 (5)
H3DA	0.8595	0.1850	0.1879	0.022*
C4D	0.8903 (2)	0.30535 (18)	0.22165 (13)	0.0180 (5)
C5D	0.9179 (2)	0.35465 (18)	0.27694 (13)	0.0186 (5)
H5DA	0.9264	0.4143	0.2733	0.022*

C6D	0.9327 (2)	0.31620 (18)	0.33673 (13)	0.0184 (5)
O1E	0.5620(2)	0.39892 (13)	1.09998 (9)	0.0253 (4)
O2E	0.5266 (3)	0.53058 (18)	1.18380 (13)	0.0507 (7)
O3E	0.6761 (3)	0.52363 (18)	1.25888 (13)	0.0496 (7)
O4E	0.6578 (2)	0.2660 (2)	1.38424 (11)	0.0452 (7)
O5E	0.6351 (2)	0.14505 (19)	1.33419 (12)	0.0447 (7)
O6E	0.4915 (4)	0.14663 (19)	1.10720 (15)	0.0659 (10)
O7E	0.5555 (2)	0.24316 (15)	1.04664 (10)	0.0331 (5)
N1E	0.6011 (3)	0.49029 (19)	1.21902 (13)	0.0342 (6)
N2E	0.6358 (2)	0.2233 (2)	1.33420 (13)	0.0336 (7)
N3E	0.5367 (2)	0.21628 (17)	1.09969 (13)	0.0277 (5)
C1E	0.5733 (2)	0.35792 (19)	1.15211 (13)	0.0194 (5)
C2E	0.5990 (2)	0.39845 (19)	1.21537 (14)	0.0218 (6)
C3E	0.6207 (2)	0.3559 (2)	1.27318 (13)	0.0248 (6)
H3EA	0.6411	0.3861	1.3127	0.030*
C4E	0.6126 (2)	0.2685 (2)	1.27344 (14)	0.0259 (6)
C5E	0.5844 (2)	0.2231 (2)	1.21629 (14)	0.0239 (6)
H5EA	0.5775	0.1631	1.2172	0.029*
C6E	0.5666 (2)	0.26696 (19)	1.15802 (13)	0.0195 (5)
O1F	0.68330 (18)	0.50280 (14)	0.84530 (10)	0.0261 (4)
O2F	0.4523 (2)	0.4860 (2)	0.77442 (12)	0.0477 (7)
O3F	0.5271 (3)	0.4344 (2)	0.69206 (16)	0.0716 (10)
O4F	0.6482 (2)	0.71341 (16)	0.58982 (10)	0.0324 (5)
O5F	0.79813 (19)	0.77792 (16)	0.64310 (10)	0.0305 (5)
O6F	0.92948 (19)	0.69978 (19)	0.86099 (11)	0.0389 (6)
O7F	0.8319 (2)	0.61047 (17)	0.91374 (10)	0.0344 (5)
N1F	0.5248 (2)	0.48557 (18)	0.73525 (12)	0.0302 (6)
N2F	0.7192 (2)	0.72331 (17)	0.63870 (11)	0.0230 (5)
N3F	0.8502 (2)	0.64698 (18)	0.86315 (11)	0.0251 (5)
C1F	0.6912 (2)	0.55608 (19)	0.80234 (13)	0.0201 (5)
C2F	0.6167 (2)	0.55174 (19)	0.74045 (13)	0.0219 (6)
C3F	0.6259 (2)	0.6021 (2)	0.68762 (13)	0.0210 (5)
H3FA	0.5766	0.5930	0.6480	0.025*
C4F	0.7102 (2)	0.66759 (19)	0.69346 (13)	0.0204 (5)
C5F	0.7830 (2)	0.6799 (2)	0.75121 (13)	0.0219 (6)
H5FA	0.8398	0.7246	0.7546	0.026*
C6F	0.7730 (2)	0.6275 (2)	0.80350 (13)	0.0220 (6)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cl1A	0.0230 (3)	0.0272 (3)	0.0621 (5)	0.0041 (3)	0.0098 (3)	-0.0105 (3)
O1A	0.0289 (11)	0.0372 (12)	0.0308 (11)	-0.0023 (9)	0.0039 (9)	0.0049 (10)
O2A	0.0541 (16)	0.069 (2)	0.0402 (14)	-0.0227 (15)	0.0193 (12)	-0.0114 (14)
O3A	0.0374 (13)	0.0474 (14)	0.0326 (12)	-0.0101 (11)	0.0119 (10)	-0.0043 (11)
N1A	0.0137 (9)	0.0221 (11)	0.0104 (9)	0.0022 (9)	0.0003 (8)	0.0029 (8)
N2A	0.0118 (9)	0.0228 (11)	0.0170 (10)	-0.0004 (8)	-0.0011 (8)	0.0052 (9)
C1A	0.0172 (12)	0.0205 (13)	0.0155 (11)	0.0013 (10)	0.0005 (9)	0.0004 (10)

C2A	0.0178 (12)	0.0230 (13)	0.0124 (11)	0.0008 (10)	-0.0029 (9)	0.0004 (10)
C3A	0.0174 (12)	0.0214 (14)	0.0196 (12)	0.0036 (10)	0.0023 (10)	0.0030 (11)
C4A	0.0138 (11)	0.0211 (13)	0.0140 (11)	0.0000 (10)	0.0030 (9)	-0.0025 (10)
C5A	0.0150 (11)	0.0236 (13)	0.0122 (11)	0.0026 (10)	0.0003 (9)	0.0030 (10)
C6A	0.0138 (11)	0.0215 (13)	0.0204 (12)	0.0013 (10)	0.0001 (10)	0.0044 (11)
C7A	0.0225 (13)	0.0262 (14)	0.0206 (13)	-0.0008 (11)	-0.0046 (10)	0.0059 (11)
C8A	0.0188 (13)	0.0245 (15)	0.0352 (16)	0.0037 (11)	-0.0048 (11)	0.0078 (13)
C9A	0.0147 (12)	0.0172 (13)	0.0445 (17)	0.0031 (10)	0.0091 (11)	-0.0003 (12)
C10A	0.0275 (14)	0.0285 (15)	0.0230 (14)	0.0031 (12)	0.0078 (11)	0.0018 (12)
C11A	0.0214 (13)	0.0271 (15)	0.0235 (13)	0.0081 (11)	0.0027 (11)	0.0065 (12)
C12A	0.0122 (11)	0.0267 (14)	0.0194 (12)	0.0003 (10)	-0.0008 (9)	0.0016 (11)
C13A	0.0307 (15)	0.0394 (18)	0.0164 (13)	-0.0086 (13)	-0.0012 (11)	0.0021 (12)
C14A	0.047 (2)	0.043 (2)	0.0244 (15)	-0.0132 (16)	-0.0075 (13)	-0.0055 (15)
C15A	0.0389 (18)	0.0336 (17)	0.0357 (17)	-0.0098 (14)	-0.0045 (14)	0.0048 (14)
C16A	0.0283 (15)	0.0328 (17)	0.0316 (15)	-0.0017 (13)	0.0046 (12)	0.0107 (14)
C17A	0.0217 (13)	0.0237 (14)	0.0215 (13)	0.0043 (11)	0.0019 (10)	0.0002 (11)
C18A	0.0127 (12)	0.0367 (16)	0.0267 (14)	-0.0022 (11)	-0.0072 (10)	0.0072 (13)
C19A	0.0143 (12)	0.0363 (17)	0.0397 (17)	0.0017 (11)	0.0021 (11)	0.0104 (14)
C20A	0.0407 (18)	0.045 (2)	0.0373 (18)	-0.0047 (16)	0.0161 (15)	-0.0020 (16)
C21A	0.0402 (18)	0.0380 (19)	0.0339 (17)	0.0000 (15)	0.0097 (14)	0.0020 (15)
Cl1B	0.0762 (7)	0.0329 (4)	0.0430 (5)	-0.0139 (4)	-0.0218 (4)	0.0062 (4)
O1B	0.0362 (12)	0.0415 (14)	0.0356 (12)	-0.0070 (10)	0.0058 (10)	-0.0004 (11)
O2B	0.0378 (12)	0.0464 (14)	0.0349 (12)	-0.0041 (11)	0.0125 (10)	-0.0074 (11)
O3B	0.0541 (16)	0.081 (2)	0.0408 (14)	-0.0284 (16)	0.0203 (12)	-0.0149 (15)
N1B	0.0194 (10)	0.0241 (11)	0.0129 (10)	-0.0010 (9)	-0.0013 (8)	0.0018 (9)
N2B	0.0213 (11)	0.0276 (12)	0.0166 (10)	-0.0040 (10)	-0.0060 (8)	0.0065 (10)
C1B	0.0229 (13)	0.0238 (13)	0.0121 (11)	-0.0016 (11)	-0.0008 (10)	0.0016 (10)
C2B	0.0225 (13)	0.0246 (14)	0.0192 (12)	-0.0029 (11)	-0.0022(10)	0.0031 (11)
C3B	0.0272 (14)	0.0265 (14)	0.0201 (13)	-0.0085 (12)	-0.0031 (11)	0.0027 (12)
C4B	0.0303 (15)	0.0195 (13)	0.0168 (12)	-0.0020(11)	0.0012 (10)	0.0028 (11)
C5B	0.0200 (12)	0.0309 (15)	0.0139 (12)	-0.0017 (11)	-0.0052(10)	0.0085 (11)
C6B	0.0196 (13)	0.0294 (15)	0.0194 (13)	0.0022 (11)	-0.0052(10)	0.0040 (12)
C7B	0.0237 (14)	0.0311 (15)	0.0232 (14)	0.0026 (12)	-0.0013(11)	0.0059 (12)
C8B	0.0373 (17)	0.0284 (16)	0.0348 (17)	-0.0031(14)	-0.0021(13)	0.0093 (14)
C9B	0.0387 (18)	0.0281 (16)	0.0386 (18)	-0.0073 (13)	-0.0152 (14)	0.0030 (14)
C10B	0.055 (2)	0.042 (2)	0.0224 (15)	-0.0088(17)	-0.0138(14)	-0.0012(15)
C11B	0.022(2)	0.0393(18)	0.0221(14)	-0.0101(15)	-0.0080(12)	0.0072(14)
C12B	0.0222(13)	0.0244 (14)	0.0268 (14)	-0.0006(11)	0.0034(11)	0.0000(12)
C13B	0.0222(15) 0.0307(15)	0.0326 (16)	0.0247(15)	0.0033 (13)	0.0051 (12)	0.0032(13)
C14B	0.0361(17)	0.0317(17)	0.0217(17)	0.0029 (14)	0.0129 (14)	0.0002(12)
C15B	0.0371(18)	0.0255 (16)	0.064(2)	0.0029(13)	0.0119(17)	0.0029(16)
C16B	0.0293(17)	0.0233(18) 0.0344(18)	0.067(2)	0.0030(15) 0.0083(15)	-0.0050(16)	0.0023(18)
C17B	0.0352 (17)	0.0322 (16)	0.0320 (16)	-0.0005(14)	-0.0057(13)	0.0085 (14)
C18B	0.0203 (13)	0.0451 (19)	0.0305 (15)	-0.0038(13)	-0.0087(12)	0.0066 (14)
C19B	0.0205 (14)	0.047 (2)	0.051 (2)	0.0004 (14)	0.0002 (14)	0.0025 (17)
C20B	0.048 (2)	0.057(3)	0.042(2)	-0.0171 (18)	0.0182(17)	-0.0066 (18)
C21B	0.050(2)	0.043 (2)	0.0324 (17)	-0.0087(17)	0.0099 (15)	-0.0010(15)
01C	0.0310(10)	0.0296 (11)	0.0221(17)	-0.0041(9)	-0.0035(8)	0.0087 (9)
02C	0.0673 (18)	0.088 (2)	0.0270(12)	-0.0519(18)	-0.0058(12)	0.0159(14)

O3C	0.0692 (19)	0.0376 (15)	0.0648 (19)	-0.0111 (14)	-0.0002(15)	-0.0087(14)
O4C	0.0332 (11)	0.0427 (13)	0.0207 (10)	-0.0072(10)	-0.0099 (8)	0.0117 (10)
05C	0.0292 (11)	0.0374 (12)	0.0267 (10)	-0.0088(9)	0.0004 (9)	0.0107 (10)
06C	0.0218 (10)	0.0573 (16)	0.0278 (11)	-0.0154(10)	-0.0049(8)	0.0090 (11)
07C	0.0406 (12)	0.0345 (12)	0.0165 (10)	-0.0071 (10)	-0.0020(8)	0.0073 (9)
N1C	0.0459 (17)	0.0417 (17)	0.0293 (14)	-0.0153(14)	-0.0128(12)	0.0133 (13)
N2C	0.0233 (11)	0.0312 (13)	0.0216 (12)	-0.0020(10)	0.0000 (9)	0.0068 (10)
N3C	0.0153 (10)	0.0310 (13)	0.0205 (11)	0.0015 (9)	0.0004 (9)	0.0040 (10)
CIC	0.0171 (12)	0.0275 (14)	0.0170 (12)	0.0016 (11)	0.0022 (10)	0.0032 (11)
C2C	0.0213 (13)	0.0305 (15)	0.0239 (14)	-0.0048(12)	0.0002 (11)	0.0070 (12)
C3C	0.0211 (13)	0.0322 (16)	0.0200 (13)	-0.0013(12)	-0.0050 (10)	0.0023 (12)
C4C	0.0201 (12)	0.0295 (15)	0.0173 (13)	-0.0002(11)	0.0017 (10)	0.0060 (12)
C5C	0.0177 (12)	0.0261 (14)	0.0198 (13)	0.0001 (11)	0.0019 (10)	0.0052(11)
C6C	0.0154 (12)	0.0303 (15)	0.0165 (12)	0.0031 (11)	0.0027 (10)	0.0029 (11)
01D	0.0319(11)	0.0273(11)	0.0150(9)	0.0069 (9)	-0.0009(8)	0.0046 (8)
02D	0.087 (2)	0.0286(13)	0.0426 (14)	0.0205(14)	-0.0201(14)	0.0040(12)
03D	0.0560(15)	0.0280(12)	0.0408(13)	-0.0048(11)	-0.0066(12)	-0.0063(11)
03D 04D	0.0300(13) 0.0341(11)	0.0200(12) 0.0426(13)	0.0150 (9)	0.0040 (10)	-0.0027(8)	0.0058 (9)
01D 05D	0.0511(11) 0.0449(13)	0.0120(12) 0.0324(12)	0.0130(0)	-0.0054(11)	-0.0027(0)	0.0000(0)
05D 06D	0.0595 (16)	0.0321(12) 0.0320(13)	0.0310(12) 0.0415(13)	-0.0186(12)	0.0030(10)	-0.0136(11)
07D	0.0393(10) 0.0487(14)	0.0320(13) 0.0398(13)	0.0205(10)	-0.0008(11)	0.0022 (9)	-0.0082(10)
N1D	0.0437(15)	0.0390(13)	0.0203(10)	0.0033 (11)	0.0022(9)	0.0002(10)
N2D	0.0457(15)	0.0193(13) 0.0327(13)	0.0210(12) 0.0197(11)	0.0018 (9)	0.0003 (9)	0.0007(10)
N3D	0.0104(11)	0.0327(13)	0.0197(11) 0.0225(12)	0.0018(9)	-0.0033(9)	-0.0054(10)
C1D	0.0227(11) 0.0131(11)	0.0200(13)	0.0223(12) 0.0127(11)	0.0014(10) 0.0025(10)	-0.0003(9)	0.0034(10)
C2D	0.0101(11) 0.0204(12)	0.0210(13)	0.0127(11) 0.0197(13)	0.0023(10) 0.0033(10)	0.0003(9)	0.0024(10)
C3D	0.0207(12)	0.0150(13)	0.0136(12)	0.0033(10)	-0.0006(9)	-0.0012(10)
C4D	0.0147(11)	0.0250(15)	0.0150(12) 0.0162(12)	0.0034(10) 0.0020(10)	-0.0002(9)	0.0012(10)
C5D	0.0117(11) 0.0124(11)	0.0239(11) 0.0199(13)	0.0102(12)	0.0020(10) 0.0015(10)	0.0002(9)	0.0007(11) 0.0059(11)
C6D	0.0124(11) 0.0125(11)	0.0199(13)	0.0231(13) 0.0194(13)	0.0015 (10)	-0.0003(9)	-0.0043(11)
01E	0.0123(11) 0.0384(11)	0.0223(13)	0.0117 (9)	0.0039 (9)	0.0000 (8)	0.0020 (8)
01E 02E	0.0587(11)	0.0251(11) 0.0368(14)	0.0117(0)	0.0039(3)	-0.0140(13)	-0.0115(12)
O2E O3E	0.0667(18)	0.0308(14)	0.0428(14) 0.0358(13)	-0.0032(13)	-0.0139(12)	-0.0175(12)
OJE OJE	0.0007(13)	0.0423(13)	0.0338(13)	0.0032(13)	-0.0002(9)	0.0173(12)
04E	0.0307(12)	0.061(2)	0.0105(11)	-0.0068(12)	-0.0052(10)	0.0123(12) 0.0312(13)
OSE OSE	0.0517(12) 0.112(3)	0.0382(16)	0.0390(15)	-0.0372(18)	0.0052(10)	-0.0060(13)
00E 07E	0.112(3)	0.0302(10)	0.0151 (9)	-0.0055(10)	-0.0006(9)	-0.0010(9)
N1E	0.0312(14)	0.0322(12)	0.0131(0)	0.0055(10)	-0.0033(11)	-0.0115(12)
N1E N2E	0.0437(10)	0.0542(15)	0.0232(13)	0.0009(12)	0.0055 (11)	0.0113(12)
N3E	0.0129(11) 0.0319(13)	0.003(2)	0.0231(13)	-0.0012(12)	-0.0010(9)	-0.0021(11)
CIE	0.0519(13)	0.0232(13)	0.0275(13)	0.0049(11)	0.0002 (9)	0.0021(11)
C1E C2E	0.0149(12)	0.0272(14)	0.0136(12)	0.0033(10)	0.0002(9)	-0.0028(11)
C2E	0.0138(12)	0.0208(13)	0.0100(13)	0.0040(10) 0.0033(12)	0.0014(10)	-0.0028(11)
C4E	0.0137(12)	0.0466(19)	0.0121(12) 0.0184(13)	0.0035(12) 0.0025(12)	0.0015(5)	0.0049(12)
C5E	0.0151(12)	0.0400(17)	0.0134(13)	-0.0023(12)	0.0023(10)	0.0110(13) 0.0093(12)
C6E	0.0154(12)	0.0302(13)	0.0230(14)	-0.0016(11)	0.0007(10)	0.0073(12)
O1F	0.013 + (12) 0.0262 (10)	0.0232(14) 0.0294(11)	0.0177(12)	0.0024 (8)	-0.0022(8)	0.0013(11)
01F	0.0202(10)	0.027 + (11) 0.0596 (18)	0.0217(10)	-0.024(0)	0.0022(0)	0.0074 (7)
021	0.0443 (14)	0.0550(10)	0.0400(14)	-0.0255(15)	0.0004(11)	-0.0029(13)
OBF	0.000 (2)	0.007 (2)	0.004 (2)	0.0302 (19)	0.01/0(1/)	0.0337(18)

O4F	0.0310 (11)	0.0461 (13)	0.0183 (10)	-0.0084 (10)	-0.0061 (8)	0.0079 (9)
O5F	0.0220 (10)	0.0427 (13)	0.0267 (10)	-0.0079 (9)	0.0027 (8)	0.0118 (10)
O6F	0.0215 (11)	0.0641 (17)	0.0295 (11)	-0.0136 (11)	-0.0049 (9)	0.0105 (12)
O7F	0.0427 (13)	0.0410 (13)	0.0178 (10)	-0.0085 (11)	-0.0045 (9)	0.0087 (10)
N1F	0.0380 (14)	0.0319 (14)	0.0192 (12)	-0.0092 (12)	-0.0045 (10)	0.0053 (11)
N2F	0.0176 (11)	0.0341 (13)	0.0176 (11)	-0.0002 (10)	0.0032 (9)	0.0041 (10)
N3F	0.0193 (11)	0.0366 (14)	0.0188 (11)	0.0008 (10)	-0.0008 (9)	0.0031 (11)
C1F	0.0178 (12)	0.0282 (14)	0.0150 (12)	0.0058 (11)	0.0053 (10)	0.0028 (11)
C2F	0.0218 (13)	0.0252 (14)	0.0189 (12)	-0.0002 (11)	0.0029 (10)	-0.0022 (11)
C3F	0.0194 (12)	0.0297 (14)	0.0137 (11)	0.0020 (11)	0.0011 (9)	0.0000 (11)
C4F	0.0142 (11)	0.0311 (15)	0.0162 (12)	0.0044 (11)	0.0037 (9)	0.0035 (11)
C5F	0.0143 (11)	0.0328 (15)	0.0189 (13)	0.0021 (11)	0.0034 (10)	0.0019 (12)
C6F	0.0145 (12)	0.0311 (15)	0.0202 (13)	0.0043 (11)	0.0003 (10)	0.0020 (12)

Geometric parameters (Å, °)

Cl1A—C9A	1.745 (3)	C11B—H11B	0.9500
O1A—C20A	1.413 (4)	C12B—C17B	1.389 (4)
O1A—C19A	1.425 (4)	C12B—C13B	1.400 (4)
O2A—C21A	1.306 (4)	C13B—C14B	1.394 (5)
O2A—H2AD	0.8400	C13B—H13B	0.9500
O3A—C21A	1.216 (4)	C14B—C15B	1.382 (5)
N1A—C4A	1.502 (3)	C14B—H14B	0.9500
N1A—C1A	1.512 (3)	C15B—C16B	1.390 (6)
N1A—C5A	1.526 (3)	C15B—H15B	0.9500
N1A—H1AC	0.9300	C16B—C17B	1.376 (5)
N2A—C3A	1.495 (4)	C16B—H16B	0.9500
N2A—C2A	1.495 (3)	C17B—H17B	0.9500
N2A—C18A	1.510 (3)	C18B—C19B	1.510 (5)
N2A—H2AC	0.9300	C18B—H18C	0.9900
C1A—C2A	1.513 (3)	C18B—H18D	0.9900
C1A—H1AA	0.9900	С19В—Н19С	0.9900
C1A—H1AB	0.9900	C19B—H19D	0.9900
C2A—H2AA	0.9900	C20B—C21B	1.505 (5)
C2A—H2AB	0.9900	C20B—H20C	0.9900
C3A—C4A	1.512 (3)	C20B—H20D	0.9900
СЗА—НЗАА	0.9900	O1C—C1C	1.248 (4)
СЗА—НЗАВ	0.9900	O2C—N1C	1.213 (4)
C4A—H4AA	0.9900	O3C—N1C	1.224 (4)
C4A—H4AB	0.9900	O4C—N2C	1.228 (3)
C5A—C6A	1.514 (4)	O5C—N2C	1.239 (3)
C5A—C12A	1.525 (4)	O6C—N3C	1.236 (3)
С5А—Н5АА	1.0000	O7C—N3C	1.220 (3)
С6А—С7А	1.398 (4)	N1C—C2C	1.467 (4)
C6A—C11A	1.399 (4)	N2C—C4C	1.449 (4)
C7A—C8A	1.386 (4)	N3C—C6C	1.448 (4)
С7А—Н7АА	0.9500	C1C—C6C	1.444 (4)
C8A—C9A	1.381 (5)	C1C—C2C	1.448 (4)
C8A—H8AA	0.9500	C2C—C3C	1.360 (4)

C9A—C10A	1.376 (4)	C3C—C4C	1.398 (4)
C10A—C11A	1.393 (4)	СЗС—НЗСА	0.9500
C10A—H10A	0.9500	C4C—C5C	1.378 (4)
C11A—H11A	0.9500	C5C—C6C	1.386 (4)
C12A—C17A	1.390 (4)	С5С—Н5СА	0.9500
C12A—C13A	1.400 (4)	O1D—C1D	1.246 (3)
C13A—C14A	1.390 (5)	O2D—N1D	1.238 (4)
C13A—H13A	0.9500	O3D—N1D	1.218 (4)
C14A—C15A	1.390 (5)	O4D—N2D	1.232 (3)
C14A—H14A	0.9500	O5D—N2D	1.235 (4)
C15A—C16A	1.394 (5)	O6D—N3D	1.228 (4)
C15A—H15A	0.9500	O7D—N3D	1.222 (3)
C16A—C17A	1.387 (5)	N1D—C2D	1.460 (4)
C16A—H16A	0.9500	N2D—C4D	1.443 (3)
C17A—H17A	0.9500	N3D—C6D	1.460 (4)
C18A—C19A	1.494 (4)	C1D—C6D	1.442 (4)
C18A—H18A	0.9900	C1D—C2D	1.454 (4)
C18A—H18B	0.9900	C2D—C3D	1.368 (4)
C19A—H19A	0.9900	C3D—C4D	1.384 (4)
C19A—H19B	0.9900	C3D—H3DA	0.9500
C20A—C21A	1.493 (5)	C4D—C5D	1.388 (4)
C20A—H20A	0.9900	C5D—C6D	1.368 (4)
C20A—H20B	0.9900	C5D—H5DA	0.9500
Cl1B—C9B	1.739 (3)	O1E—C1E	1.249 (3)
O1B—C20B	1.410 (4)	O2E—N1E	1.227 (4)
O1B—C19B	1.419 (4)	O3E—N1E	1.232 (4)
O2B—C21B	1.211 (4)	O4E—N2E	1.235 (4)
O3B—C21B	1.304 (4)	O5E—N2E	1.235 (4)
O3B—H3BC	0.8400	O6E—N3E	1.227 (4)
N1B—C4B	1.505 (4)	O7E—N3E	1.212 (3)
N1B—C1B	1.512 (4)	N1E—C2E	1.451 (4)
N1B—C5B	1.535 (3)	N2E—C4E	1.441 (4)
N1B—H1BC	0.9300	N3E—C6E	1.454 (4)
N2B—C3B	1.481 (4)	C1E—C6E	1.442 (4)
N2B—C2B	1.499 (4)	C1E—C2E	1.454 (4)
N2B—C18B	1.505 (4)	C2E—C3E	1.368 (4)
N2B—H2BC	0.9300	C3E—C4E	1.382 (5)
C1B—C2B	1.512 (4)	C3E—H3EA	0.9500
C1B—H1BA	0.9900	C4E—C5E	1.387 (5)
C1B—H1BB	0.9900	C5E—C6E	1.383 (4)
C2B—H2BA	0.9900	C5E—H5EA	0.9500
C2B—H2BB	0.9900	O1F—C1F	1.231 (4)
C3B—C4B	1.508 (4)	O2F—N1F	1.206 (4)
СЗВ—НЗВА	0.9900	O3F—N1F	1.205 (4)
C3B—H3BB	0.9900	O4F—N2F	1.228 (3)
C4B—H4BA	0.9900	O5F—N2F	1.233 (3)
C4B—H4BB	0.9900	O6F—N3F	1.224 (4)
C5B—C12B	1.514 (4)	O7F—N3F	1.228 (3)
C5B—C6B	1.520 (4)	N1F—C2F	1.465 (4)

C5B—H5BA	1.0000	N2F—C4F	1.443 (4)
C6B—C7B	1.386 (4)	N3F—C6F	1.462 (4)
C6B—C11B	1.390 (4)	C1F—C2F	1.453 (4)
C7B—C8B	1.388 (5)	C1F—C6F	1.453 (4)
С7В—Н7ВА	0.9500	C2F—C3F	1.361 (4)
C8B—C9B	1.394 (5)	C3F—C4F	1.399 (4)
C8B—H8BA	0.9500	C3F—H3FA	0.9500
C9B—C10B	1.367 (5)	C4F—C5F	1.386 (4)
C10B—C11B	1.388 (5)	C5F—C6F	1.372 (4)
C10B—H10B	0.9500	C5F—H5FA	0.9500
C20A—O1A—C19A	114.4 (3)	C10B—C9B—C11B	117.9 (3)
C21A—O2A—H2AD	109.5	C8B—C9B—C11B	120.2 (3)
C4A—N1A—C1A	110.86 (19)	C9B-C10B-C11B	118.8 (3)
C4A—N1A—C5A	108.93 (19)	C9B—C10B—H10B	120.6
C1A—N1A—C5A	109.52 (19)	C11B—C10B—H10B	120.6
C4A—N1A—H1AC	109.2	C10B—C11B—C6B	120.6 (3)
C1A—N1A—H1AC	109.2	C10B—C11B—H11B	119.7
C5A—N1A—H1AC	109.2	C6B—C11B—H11B	119.7
C3A—N2A—C2A	106.79 (19)	C17B—C12B—C13B	118.5 (3)
C3A—N2A—C18A	113.3 (2)	C17B—C12B—C5B	116.1 (3)
C2A—N2A—C18A	111.2 (2)	C13B—C12B—C5B	125.3 (3)
C3A—N2A—H2AC	108.5	C14B—C13B—C12B	120.0 (3)
C2A—N2A—H2AC	108.5	C14B—C13B—H13B	120.0
C18A—N2A—H2AC	108.5	C12B—C13B—H13B	120.0
N1A—C1A—C2A	111.4 (2)	C15B—C14B—C13B	120.7 (3)
N1A—C1A—H1AA	109.3	C15B—C14B—H14B	119.7
C2A—C1A—H1AA	109.3	C13B—C14B—H14B	119.7
N1A—C1A—H1AB	109.3	C14B—C15B—C16B	119.2 (3)
C2A—C1A—H1AB	109.3	C14B—C15B—H15B	120.4
H1AA—C1A—H1AB	108.0	C16B—C15B—H15B	120.4
N2A—C2A—C1A	110.2 (2)	C17B—C16B—C15B	120.5 (3)
N2A—C2A—H2AA	109.6	C17B—C16B—H16B	119.8
C1A—C2A—H2AA	109.6	C15B—C16B—H16B	119.8
N2A—C2A—H2AB	109.6	C16B—C17B—C12B	121.2 (3)
C1A—C2A—H2AB	109.6	C16B—C17B—H17B	119.4
H2AA—C2A—H2AB	108.1	C12B—C17B—H17B	119.4
N2A—C3A—C4A	110.6 (2)	N2B-C18B-C19B	111.7 (3)
N2A—C3A—H3AA	109.5	N2B-C18B-H18C	109.3
С4А—С3А—НЗАА	109.5	C19B—C18B—H18C	109.3
N2A—C3A—H3AB	109.5	N2B—C18B—H18D	109.3
С4А—С3А—НЗАВ	109.5	C19B—C18B—H18D	109.3
НЗАА—СЗА—НЗАВ	108.1	H18C—C18B—H18D	107.9
N1A—C4A—C3A	112.1 (2)	O1B-C19B-C18B	106.6 (3)
N1A—C4A—H4AA	109.2	O1B—C19B—H19C	110.4
СЗА—С4А—Н4АА	109.2	C18B—C19B—H19C	110.4
N1A—C4A—H4AB	109.2	O1B—C19B—H19D	110.4
СЗА—С4А—Н4АВ	109.2	C18B—C19B—H19D	110.4
Н4АА—С4А—Н4АВ	107.9	H19C—C19B—H19D	108.6
C6A—C5A—C12A	111.0 (2)	O1B—C20B—C21B	111.6 (3)

C6A—C5A—N1A	114.1 (2)	O1B—C20B—H20C	109.3
C12A—C5A—N1A	109.8 (2)	C21B—C20B—H20C	109.3
С6А—С5А—Н5АА	107.2	O1B-C20B-H20D	109.3
С12А—С5А—Н5АА	107.2	C21B—C20B—H20D	109.3
N1A—C5A—H5AA	107.2	H20C—C20B—H20D	108.0
C7A—C6A—C11A	119.3 (3)	O2B—C21B—O3B	124.9 (4)
C7A—C6A—C5A	116.2 (2)	O2B—C21B—C20B	122.3 (3)
C11A—C6A—C5A	124.4 (2)	O3B—C21B—C20B	112.8 (3)
C8A—C7A—C6A	120.5 (3)	O2C—N1C—O3C	124.7 (3)
С8А—С7А—Н7АА	119.8	O2C—N1C—C2C	118.0 (3)
С6А—С7А—Н7АА	119.8	O3C—N1C—C2C	117.3 (3)
C9A—C8A—C7A	118.9 (3)	O4C—N2C—O5C	123.3 (2)
С9А—С8А—Н8АА	120.6	O4C—N2C—C4C	118.6 (2)
С7А—С8А—Н8АА	120.6	O5C—N2C—C4C	118.1 (2)
C10A—C9A—C8A	122.1 (3)	O7C—N3C—O6C	122.2 (2)
C10A—C9A—Cl1A	119.2 (2)	O7C—N3C—C6C	119.6 (2)
C8A—C9A—Cl1A	118.7 (2)	O6C—N3C—C6C	118.2 (2)
C9A—C10A—C11A	118.9 (3)	O1C—C1C—C6C	126.6 (2)
C9A—C10A—H10A	120.5	01C—C1C—C2C	121.6 (3)
C11A—C10A—H10A	120.5	C6C—C1C—C2C	111.6 (2)
C10A—C11A—C6A	120.2 (3)	C3C—C2C—C1C	126.1 (3)
C10A—C11A—H11A	119.9	C3C—C2C—N1C	118.0 (3)
C6A—C11A—H11A	119.9	C1C—C2C—N1C	115.8 (3)
C17A—C12A—C13A	119.5 (3)	C2C—C3C—C4C	117.7 (3)
C17A—C12A—C5A	120.8 (2)	С2С—С3С—Н3СА	121.2
C13A—C12A—C5A	119.6 (2)	C4C—C3C—H3CA	121.2
C14A—C13A—C12A	120.1 (3)	C5C—C4C—C3C	121.5 (3)
C14A—C13A—H13A	119.9	C5C—C4C—N2C	119.7 (3)
C12A—C13A—H13A	119.9	C3C—C4C—N2C	118.8 (2)
C13A—C14A—C15A	120.4 (3)	C4C—C5C—C6C	119.6 (3)
C13A—C14A—H14A	119.8	C4C—C5C—H5CA	120.2
C15A—C14A—H14A	119.8	C6C—C5C—H5CA	120.2
C14A—C15A—C16A	119.1 (3)	C5C—C6C—C1C	123.5 (2)
C14A—C15A—H15A	120.4	C5C—C6C—N3C	116.9 (3)
C16A—C15A—H15A	120.4	C1C—C6C—N3C	119.6 (2)
C17A—C16A—C15A	120.9 (3)	O3D—N1D—O2D	123.9 (3)
C17A—C16A—H16A	119.5	O3D—N1D—C2D	118.2 (3)
C15A—C16A—H16A	119.5	O2D—N1D—C2D	117.6 (3)
C16A—C17A—C12A	119.9 (3)	O4D—N2D—O5D	122.6 (2)
С16А—С17А—Н17А	120.1	O4D—N2D—C4D	119.2 (3)
C12A—C17A—H17A	120.1	O5D—N2D—C4D	118.2 (3)
C19A—C18A—N2A	111.9 (2)	07D—N3D—06D	124.0 (3)
C19A—C18A—H18A	109.2	O7D—N3D—C6D	119.3 (3)
N2A—C18A—H18A	109.2	O6D—N3D—C6D	116.7 (2)
C19A—C18A—H18B	109.2	O1D—C1D—C6D	126.1 (2)
N2A—C18A—H18B	109.2	01D—C1D—C2D	122.3 (3)
H18A—C18A—H18B	107.9	C6D—C1D—C2D	111.6 (2)
O1A—C19A—C18A	108.0 (3)	C3D—C2D—C1D	124.7 (3)
O1A—C19A—H19A	110.1	C3D—C2D—N1D	116.3 (3)

C18A—C19A—H19A	110.1	C1D—C2D—N1D	119.1 (2)
O1A—C19A—H19B	110.1	C2D—C3D—C4D	118.8 (3)
C18A—C19A—H19B	110.1	C2D—C3D—H3DA	120.6
H19A—C19A—H19B	108.4	C4D—C3D—H3DA	120.6
O1A—C20A—C21A	111.4 (3)	C3D—C4D—C5D	121.2 (2)
O1A—C20A—H20A	109.3	C3D—C4D—N2D	118.5 (3)
C21A—C20A—H20A	109.3	C5D—C4D—N2D	120.3 (3)
O1A—C20A—H20B	109.3	C6D—C5D—C4D	119.2 (3)
C21A—C20A—H20B	109.3	C6D—C5D—H5DA	120.4
H20A—C20A—H20B	108.0	C4D—C5D—H5DA	120.4
O3A—C21A—O2A	123.8 (3)	C5D—C6D—C1D	124.5 (3)
O3A—C21A—C20A	122.7 (3)	C5D—C6D—N3D	116.6 (3)
O2A— $C21A$ — $C20A$	113.4 (3)	C1D— $C6D$ — $N3D$	118.9 (2)
C20B-01B-C19B	113.8 (3)	O2E - N1E - O3E	123.4 (3)
C21B—O3B—H3BC	109.5	O2E - N1E - C2E	118.7 (3)
C4B—N1B—C1B	110.2.(2)	O3E - N1E - C2E	117.8 (3)
C4B = N1B = C5B	110.2(2)	O5E - N2E - O4E	1231(3)
C1B = N1B = C5B	108.4(2)	O5E - N2E - C4E	119.6 (3)
C4B—N1B—H1BC	109.2	O4F - N2F - C4F	117.0(3)
C1B—N1B—H1BC	109.2	OTE - N3E - OEE	122.7(3)
C5B—N1B—H1BC	109.2	O7E - N3E - C6E	122.7(3) 120.5(2)
C3B = N2B = C2B	109.2	OFE N3E COE	120.3(2) 116.8(3)
C3B = N2B = C18B	1112(2)	O1F - C1F - C6F	125.9(3)
C2B = N2B = C18B	111.2(2) 113.0(2)	O1E - C1E - C2E	123.5(3) 122.5(3)
$C_{2B} = N_{2B} = H_{2B}$	108.6	C6E - C1E - C2E	122.5(3)
C2B_N2B_H2BC	108.6	C3E - C2E - N1E	111.0(2) 116.4(3)
C18B $N2B$ $H2BC$	108.6	C3E - C2E - C1E	1245(3)
N1B - C1B - C2B	112 9 (2)	$V_{1E} = C_{2E} = C_{1E}$	124.3(3)
NIB_CIB_HIBA	109.0	C2E - C3E - C4E	119.1(3)
C^{2B} C^{1B} H^{1BA}	109.0	C2E - C3E - C4E	120.4
NIR CIR HIRR	109.0	CAE C3E H3EA	120.4
C2R C1R H1RR	109.0	$C_{4E} = C_{3E} = M_{3EA}$	120.4
HIRA CIR HIRR	107.8	C3E C4E N2E	121.4(3) 110 4 (3)
N2R C2R C1R	107.8	CSE_C4E_N2E	119.4(3) 110.2(3)
N2B C2B H2BA	109.9 (2)	C6E C5E C4E	119.2(3)
12D - C2D - 112DA	109.7	CGE CSE HSEA	110.0 (3)
$ \begin{array}{c} C1D - C2D - D2DA \\ N2D - C2D - D2DD \\ \end{array} $	109.7	CAE CSE HSEA	120.7
N2D - C2D - H2DD	109.7	C4E—C5E—FIJEA	120.7
CID - C2D - II2DD	109.7	CSE_C6E_N2E	124.3(3)
$\frac{112DA}{C2D} \frac{C2D}{C4D}$	100.2	CIE CE NIE	110.5(3)
N2D = C2D = U2DA	111.5 (2)	CIE—COE—NSE	119.1(2)
$N_2D = C_3D = H_3DA$	109.4	O_{2F} NIF O_{2F}	124.3(3)
C4D—C3D—II3DA	109.4	$O_{2}F$ NIF $C_{2}F$	117.3(3)
$N_{2}D = C_{3}D = H_{3}DB$	109.4	$O_{2}r$ $N_{1}r$ $C_{2}r$	117.9(3)
	109.4	O4F = N2F = O4F	123.4(2)
NID CAD C2D	100.0	$O_{F} = N_{2}E = O_{F}$	110.2(2)
NID-C4D-C3D	112.1(2)	05r-112r-04r 06e 112e 07e	110.3(2)
$11D - C4D - \Pi4DA$ $C2D C4D U4DA$	109.2	OOF - NSF - O/F	122.3(2)
USD-U4B-H4BA	109.2	OTE NOT COT	118.9 (2)
IN I B-C4B-H4BB	109.2	U/r—N3F—C6F	118.6 (2)

C3B—C4B—H4BB	109.2	O1F—C1F—C2F	121.4 (3)
H4BA—C4B—H4BB	107.9	O1F—C1F—C6F	127.6 (3)
C12B—C5B—C6B	112.3 (2)	C2F—C1F—C6F	110.9 (2)
C12B—C5B—N1B	114.7 (2)	C3F—C2F—C1F	126.2 (3)
C6B—C5B—N1B	109.2 (2)	C3F—C2F—N1F	118.0 (2)
С12В—С5В—Н5ВА	106.7	C1F—C2F—N1F	115.8 (2)
С6В—С5В—Н5ВА	106.7	C2F—C3F—C4F	118.0 (2)
N1B—C5B—H5BA	106.7	C2F—C3F—H3FA	121.0
C7B—C6B—C11B	119.8 (3)	C4F—C3F—H3FA	121.0
C7B—C6B—C5B	120.8 (3)	C5F—C4F—C3F	120.7 (3)
C11B—C6B—C5B	119.4 (3)	C5F—C4F—N2F	120.3 (3)
C6B—C7B—C8B	120.0 (3)	C3F—C4F—N2F	119.0 (2)
С6В—С7В—Н7ВА	120.0	C6F—C5F—C4F	120.1 (3)
C8B—C7B—H7BA	120.0	C6F—C5F—H5FA	119.9
C7B—C8B—C9B	118.9 (3)	C4F—C5F—H5FA	119.9
С7В—С8В—Н8ВА	120.5	C5F—C6F—C1F	123.9 (3)
C9B—C8B—H8BA	120.5	C5F—C6F—N3F	116.4 (3)
C10B—C9B—C8B	121.8 (3)	C1F—C6F—N3F	119.7 (2)
C4A—N1A—C1A—C2A	51.3 (3)	N1C—C2C—C3C—C4C	176.6 (3)
C5A—N1A—C1A—C2A	171.5 (2)	C2C—C3C—C4C—C5C	-1.0 (4)
C3A—N2A—C2A—C1A	63.6 (3)	C2C—C3C—C4C—N2C	-178.7 (3)
C18A—N2A—C2A—C1A	-172.3 (2)	O4C—N2C—C4C—C5C	173.5 (3)
N1A—C1A—C2A—N2A	-59.0 (3)	O5C—N2C—C4C—C5C	-6.7 (4)
C2A—N2A—C3A—C4A	-62.8 (3)	O4C—N2C—C4C—C3C	-8.7 (4)
C18A—N2A—C3A—C4A	174.4 (2)	O5C—N2C—C4C—C3C	171.1 (3)
C1A—N1A—C4A—C3A	-50.6 (3)	C3C—C4C—C5C—C6C	2.3 (4)
C5A—N1A—C4A—C3A	-171.2 (2)	N2C-C4C-C5C-C6C	180.0 (3)
N2A—C3A—C4A—N1A	57.6 (3)	C4C—C5C—C6C—C1C	-2.8 (4)
C4A—N1A—C5A—C6A	177.9 (2)	C4C—C5C—C6C—N3C	178.3 (3)
C1A—N1A—C5A—C6A	56.5 (3)	O1C—C1C—C6C—C5C	-174.3 (3)
C4A—N1A—C5A—C12A	-56.7 (3)	C2C—C1C—C6C—C5C	2.0 (4)
C1A—N1A—C5A—C12A	-178.1 (2)	O1C—C1C—C6C—N3C	4.5 (4)
C12A—C5A—C6A—C7A	82.4 (3)	C2C-C1C-C6C-N3C	-179.2 (2)
N1A—C5A—C6A—C7A	-152.8 (2)	O7C—N3C—C6C—C5C	-164.6 (3)
C12A—C5A—C6A—C11A	-93.1 (3)	O6C—N3C—C6C—C5C	14.7 (4)
N1A-C5A-C6A-C11A	31.6 (4)	O7C—N3C—C6C—C1C	16.5 (4)
C11A—C6A—C7A—C8A	2.4 (4)	O6C—N3C—C6C—C1C	-164.2 (3)
C5A—C6A—C7A—C8A	-173.4 (3)	O1D—C1D—C2D—C3D	176.3 (3)
C6A—C7A—C8A—C9A	-1.0 (4)	C6D—C1D—C2D—C3D	-3.6 (4)
C7A-C8A-C9A-C10A	-1.8 (4)	O1D—C1D—C2D—N1D	-3.5 (4)
C7A—C8A—C9A—Cl1A	176.2 (2)	C6D—C1D—C2D—N1D	176.7 (3)
C8A—C9A—C10A—C11A	3.2 (5)	O3D—N1D—C2D—C3D	-34.6 (4)
Cl1A—C9A—C10A—C11A	-174.8 (2)	O2D—N1D—C2D—C3D	140.2 (3)
C9A—C10A—C11A—C6A	-1.7 (4)	O3D—N1D—C2D—C1D	145.1 (3)
C7A—C6A—C11A—C10A	-1.0 (4)	O2D—N1D—C2D—C1D	-40.0 (4)
C5A—C6A—C11A—C10A	174.4 (3)	C1D—C2D—C3D—C4D	4.6 (4)
C6A—C5A—C12A—C17A	54.8 (3)	N1D—C2D—C3D—C4D	-175.7 (3)
N1A—C5A—C12A—C17A	-72.3 (3)	C2D—C3D—C4D—C5D	-1.7 (4)
C6A—C5A—C12A—C13A	-123.5 (3)	C2D—C3D—C4D—N2D	179.5 (2)

N1A—C5A—C12A—C13A	109.4 (3)	O4D—N2D—C4D—C3D	3.0 (4)
C17A—C12A—C13A—C14A	0.3 (5)	O5D—N2D—C4D—C3D	-177.0 (3)
C5A—C12A—C13A—C14A	178.6 (3)	O4D—N2D—C4D—C5D	-175.8 (2)
C12A—C13A—C14A—C15A	-1.1 (5)	O5D—N2D—C4D—C5D	4.3 (4)
C13A—C14A—C15A—C16A	1.3 (6)	C3D-C4D-C5D-C6D	-1.7 (4)
C14A—C15A—C16A—C17A	-0.5 (5)	N2D-C4D-C5D-C6D	177.0 (2)
C15A—C16A—C17A—C12A	-0.3 (5)	C4DC5DC6DC1D	2.6 (4)
C13A—C12A—C17A—C16A	0.5 (4)	C4DC5DC6DN3D	-179.1 (2)
C5A—C12A—C17A—C16A	-177.8 (2)	O1D-C1D-C6D-C5D	-179.9 (2)
C3A—N2A—C18A—C19A	-72.7 (3)	C2DC1DC5D	-0.1 (4)
C2A—N2A—C18A—C19A	167.0 (2)	O1D-C1D-C6D-N3D	1.8 (4)
C20A—O1A—C19A—C18A	159.0 (3)	C2D-C1D-C6D-N3D	-178.4 (2)
N2A—C18A—C19A—O1A	-60.1 (3)	O7D—N3D—C6D—C5D	154.8 (3)
C19A—O1A—C20A—C21A	-82.5 (4)	O6D-N3D-C6D-C5D	-23.9 (4)
O1A—C20A—C21A—O3A	19.3 (5)	O7D—N3D—C6D—C1D	-26.8 (4)
O1A—C20A—C21A—O2A	-161.1 (3)	O6D-N3D-C6D-C1D	154.5 (3)
C4B—N1B—C1B—C2B	50.0 (3)	O2E—N1E—C2E—C3E	-140.4 (3)
C5B—N1B—C1B—C2B	171.3 (2)	O3E—N1E—C2E—C3E	37.7 (4)
C3B—N2B—C2B—C1B	62.5 (3)	O2E—N1E—C2E—C1E	39.0 (4)
C18B—N2B—C2B—C1B	-174.9 (2)	O3E—N1E—C2E—C1E	-143.0 (3)
N1B—C1B—C2B—N2B	-57.8 (3)	O1E—C1E—C2E—C3E	-175.0 (3)
C2B—N2B—C3B—C4B	-63.3 (3)	C6E—C1E—C2E—C3E	3.3 (4)
C18B—N2B—C3B—C4B	173.0 (2)	O1E—C1E—C2E—N1E	5.7 (4)
C1B—N1B—C4B—C3B	-49.4 (3)	C6E—C1E—C2E—N1E	-175.9 (3)
C5B—N1B—C4B—C3B	-169.4 (2)	N1E—C2E—C3E—C4E	176.0 (3)
N2B—C3B—C4B—N1B	58.2 (3)	C1E—C2E—C3E—C4E	-3.3 (4)
C4B—N1B—C5B—C12B	-58.4 (3)	C2E—C3E—C4E—C5E	0.8 (4)
C1B—N1B—C5B—C12B	-179.4 (2)	C2E—C3E—C4E—N2E	179.8 (2)
C4B—N1B—C5B—C6B	174.6 (2)	O5E—N2E—C4E—C3E	-176.0 (3)
C1B—N1B—C5B—C6B	53.6 (3)	O4E—N2E—C4E—C3E	2.6 (4)
C12B—C5B—C6B—C7B	-58.2 (3)	O5E—N2E—C4E—C5E	3.0 (4)
N1B-C5B-C6B-C7B	70.2 (3)	O4E—N2E—C4E—C5E	-178.3 (3)
C12B—C5B—C6B—C11B	123.4 (3)	C3E—C4E—C5E—C6E	1.3 (4)
N1B-C5B-C6B-C11B	-108.2 (3)	N2E—C4E—C5E—C6E	-177.7 (2)
C11B—C6B—C7B—C8B	3.0 (5)	C4E—C5E—C6E—C1E	-1.1 (4)
C5B—C6B—C7B—C8B	-175.3 (3)	C4E—C5E—C6E—N3E	-179.7 (2)
C6B—C7B—C8B—C9B	-0.7 (5)	O1E—C1E—C6E—C5E	177.2 (3)
C7B-C8B-C9B-C10B	-1.9 (5)	C2E—C1E—C6E—C5E	-1.1 (4)
C7B—C8B—C9B—Cl1B	176.1 (3)	O1E—C1E—C6E—N3E	-4.2 (4)
C8B—C9B—C10B—C11B	2.2 (6)	C2E—C1E—C6E—N3E	177.5 (2)
Cl1B—C9B—C10B—C11B	-175.9 (3)	O7E—N3E—C6E—C5E	-157.0 (3)
C9B—C10B—C11B—C6B	0.2 (6)	O6E—N3E—C6E—C5E	23.5 (4)
C7B—C6B—C11B—C10B	-2.8 (5)	O7E—N3E—C6E—C1E	24.3 (4)
C5B-C6B-C11B-C10B	175.6 (3)	O6E—N3E—C6E—C1E	-155.2 (3)
C6B—C5B—C12B—C17B	-75.6 (3)	O1F—C1F—C2F—C3F	-173.2 (3)
N1B-C5B-C12B-C17B	159.0 (3)	C6F—C1F—C2F—C3F	5.0 (4)
C6B—C5B—C12B—C13B	103.1 (3)	O1F—C1F—C2F—N1F	5.8 (4)
N1B-C5B-C12B-C13B	-22.3 (4)	C6F—C1F—C2F—N1F	-175.9 (2)
C17B—C12B—C13B—C14B	-0.8 (5)	O3F—N1F—C2F—C3F	57.0 (4)

C5B-C12B-C13B-C14B	-179.5 (3)	O2F—N1F—C2F—C3F	-123.1 (3)
C12B—C13B—C14B—C15B	2.8 (5)	O3F—N1F—C2F—C1F	-122.1 (3)
C13B—C14B—C15B—C16B	-2.6 (5)	O2F—N1F—C2F—C1F	57.7 (4)
C14B—C15B—C16B—C17B	0.4 (6)	C1F—C2F—C3F—C4F	-3.7 (4)
C15B—C16B—C17B—C12B	1.6 (6)	N1F—C2F—C3F—C4F	177.3 (3)
C13B—C12B—C17B—C16B	-1.4 (5)	C2F—C3F—C4F—C5F	0.8 (4)
C5B-C12B-C17B-C16B	177.4 (3)	C2F—C3F—C4F—N2F	-178.2 (2)
C3B—N2B—C18B—C19B	-166.4 (3)	O4F—N2F—C4F—C5F	-175.7 (3)
C2B-N2B-C18B-C19B	73.6 (3)	O5F—N2F—C4F—C5F	4.9 (4)
C20B-01B-C19B-C18B	-158.3 (3)	O4F—N2F—C4F—C3F	3.4 (4)
N2B-C18B-C19B-O1B	61.1 (4)	O5F—N2F—C4F—C3F	-176.1 (3)
C19B—O1B—C20B—C21B	84.1 (4)	C3F—C4F—C5F—C6F	0.1 (4)
O1B-C20B-C21B-O2B	-14.5 (6)	N2F—C4F—C5F—C6F	179.1 (2)
O1B—C20B—C21B—O3B	165.5 (4)	C4F—C5F—C6F—C1F	1.8 (4)
01C-C1C-C2C-C3C	175.9 (3)	C4F—C5F—C6F—N3F	-177.8 (3)
C6C—C1C—C2C—C3C	-0.7 (4)	O1F—C1F—C6F—C5F	174.2 (3)
01C-C1C-C2C-N1C	-0.6 (4)	C2F—C1F—C6F—C5F	-4.0 (4)
C6C—C1C—C2C—N1C	-177.2 (3)	O1F—C1F—C6F—N3F	-6.2 (4)
O2C—N1C—C2C—C3C	127.6 (3)	C2F—C1F—C6F—N3F	175.6 (2)
O3C—N1C—C2C—C3C	-51.8 (4)	O6F—N3F—C6F—C5F	-10.1 (4)
02C-N1C-C2C-C1C	-55.6 (4)	O7F—N3F—C6F—C5F	169.0 (3)
O3C—N1C—C2C—C1C	124.9 (3)	O6F—N3F—C6F—C1F	170.3 (3)
C1C—C2C—C3C—C4C	0.2 (5)	O7F—N3F—C6F—C1F	-10.6 (4)

Hydrogen-bond geometry (Å, °)

Cg5 is the centroid of the C6B–C11B ring.

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O2A—H2AD···O2B	0.84	1.80	2.638 (4)	180
N1A—H1AC…O1D	0.93	1.83	2.682 (3)	152
N1A—H1AC···O7D	0.93	2.63	3.301 (3)	129
N2A—H2AC···O1C	0.93	1.89	2.765 (3)	155
N2A—H2AC···O7C	0.93	2.46	2.990 (3)	116
O3B—H3BC···O3A	0.84	1.76	2.601 (4)	180
N1B—H1BC…O1E	0.93	1.85	2.678 (3)	147
N1B—H1BC···O7E	0.93	2.52	3.193 (3)	130
N2B—H2BC···O1F	0.93	1.91	2.764 (3)	153
N2B—H2BC···O7F	0.93	2.57	3.078 (4)	115
C19B—H19C···Cg5 ⁱ	0.99	2.95	3.792 (4)	144
Symmetry codes: (i) $x+1$, y , z .				

Table 2

$Cg \cdots Cg \pi$ stacking inte	ractions (Å)			
Cg8 is the centroid of ring C1D–C6D and Cg9 is the centroid of the ring C1E–C6E.				
	$CgX\cdots CgY$	CgX…Perp	CgY…Perp	
Cg8…Cg9 ⁱ	3.7419 (14)	3.2668 (9)	-3.3033 (9)	
Symmetry code: (i) x, y,-1+z.				

Fig. 2

Fig. 3

Fig. 4