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The purpose of this study was to evaluate the applicator-guided volumetric-modulated 
arc therapy (AGVMAT) solution as an alternative to high-dose-rate brachytherapy 
(HDR-BRT) treatment of the vaginal vault in patients with gynecological cancer 
(GC). AGVMAT plans for 51 women were developed. The volumetric scans used for 
plans were obtained with an implanted CT-compatible vaginal cylinder which pro-
vides spatial registration and immobilization of the gynecologic organs. Dosimetric 
and radiobiological comparisons for planning target volume (PTV) and organs at risk 
(OARs) were performed by means of a dose-volume histogram (DVH), equivalent 
uniform dose (EUD), and local tumor control probability (LTCP). In addition, the 
integral dose and the overall delivery time, were evaluated. The HDR-BRT averages 
of EUD and minimum LTCP were significantly higher than those of AGVMAT. 
Doses for the OARs were comparable for the bladder and sigmoid, while, although 
HDR-BRT was able to better spare the bowel, AGVMAT provided a significant 
reduction of d2cc, d1cc, and dmax (p < 0.01) for the rectum. AGVMAT integral doses 
were higher than HDR-BRT with low values in both cases. Delivery times were 
about two or three times higher for HDR-BRT with respect to the single arc technique 
(AGVMAT1) and dual arc technique (AGVMAT2), respectively. The applicator-
guided volumetric-modulated arc therapy seems to have the potential of improving 
rectum avoidance. However, brachytherapy improves performance in terms of PTV 
coverage, as demonstrated by a greater EUD and better LTCP curves.
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I. IntroDuctIon

External beam radiotherapy (EBRT) of GC is generally used for patients with FIGO stage 
I-IVA to treat the original tumor site and the regional lymph nodes at high risk for microscopic 
invasion. HDR-BRT is performed to administer a high dose to unresected or residual primary 
tumor in the vaginal vault.(1,2,3) 
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The technical advantage of HDR-BRT is the steep dose falloff from the 192Ir source that is 
placed in the vagina applicator by a remote afterloader.

Pötter et al.(4) identified the values that have clinical relevance for the tolerance of the OARs, 
such as rectum, bladder, and sigmoid, while several other papers have been published which 
investigate intensity-modulated radiotherapy (IMRT) in combination or as an alternative to 
HDR-BRT.(5,6,7,8)

An original solution was introduced by Low et al.(9) and then by Wahab et al.(10) for deliver-
ing highly conformal dose distributions to cervical cancer (CC) tumors using external beam 
IMRT. This method, termed applicator-guided intensity-modulated radiation therapy (AGIMRT), 
uses an applicator placed in the vagina to provide spatial registration and immobilization of 
the gynecologic organs. In general, the main reason for the use of the applicator was to local-
ize the fornices, cervix, and uterus, as well as surrounding organs reproducibly positioned 
around the applicator. This was an attractive solution for institutions without the brachytherapy 
technology because AGIMRT is expected to produce similar outcomes to those obtained by 
brachytherapy. 

In the works of Low and Wahab and their colleagues, the brachytherapy was compared with 
IMRT and AGIMRT from the dosimetric point of view. AGIMRT seemed to have the capabil-
ity to reduce the doses to the rectum and bladder, while maintaining highly reproducible and 
accurate internal organ registration found with brachytherapy. However, in those papers, it was 
not clear whether the dose distributions obtained by AGIMRT on PTV would give the same 
therapeutic results of HDR-BRT.

In our previous work,(11) we investigated the benefits by using a solution similar to AGIMRT, 
exploiting the greater capacity for modulation of the dose obtained by volumetric-modulated 
arc therapy (VMAT) instead of conventional IMRT with fixed beams (this solution will be 
referred to as AGVMAT in this paper). The final goals were to produce similar or better dose 
distributions compared to HDR-BRT planning, and obtain therapeutic solutions in a delivery 
time comparable with those of HDR-BRT. 

As a result, the dose reduction to the rectum was confirmed, while a better PTV coverage 
was performed by HDR-BRT in terms of EUD. 

However, because EUD represents the biological averages of the values generated by cells 
exposed to different doses in a very small region of tissue (high gradients of doses), this paper 
aims to introduce an additional tool for analysis to support radiobiological data interpretation, 
and then determine if there is a real equivalence in terms of the therapeutic efficacy of tech-
niques. In particular, we calculated the local tumor control probability (LTCP) that permits 
an evaluation of the local reduction in TCP due to the possible spatial variation in tumor cell 
density in the small region which must be treated by radiation. 

Moreover, in this paper, we used a slightly more modified AGVMAT approach than that 
adopted in our previous study, using the CT images and contours of a larger cohort of patients, 
and adopting a different dose prescription. 

 
II. MAtErIALS AnD MEtHoDS

A.  Patient selection
From October 2008 to May 2011, 51 women aged over 18 (range 40–81, median 62 years) with 
histologically proven squamous cell carcinoma, adenocarcinoma, or adenosquamous carcinoma 
of the cervix and endometrium (endometrial cancer (EC)), were retrospectively selected. Of 
these, ten patients (19.6%) were affected by CC and 41 patients (80.4%) by EC. All patients 
were staged according to the FIGO definition, received hysterectomy, postoperative EBRT, 
and subsequently a vaginal vault HDR-BRT to reduce the risk of vault recurrence. The patient 
characteristics are shown in Table 1.
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B.  classical planning technique
A 3D conformal radiotherapy (3D CRT) plus HDR-BRT was performed for all patients 
selected.

3D CRT was planned on residual tumor (or surgical bed) plus pelvic lymph nodes with a 
total dose of 45–50.4 Gy (1.8 Gy/day); only 14 patients received 45 Gy. All 3D CRT plans were 
developed employing four 15 MV photon beams by a Varian Clinac 2100DX equipped with a 
120-leaf Millennium Multileaf Collimator (MLC) (Varian Medical Systems, Palo Alto, CA). 

The HDR-BRT boost of dose was prescribed for CTV defined as 0.5 cm around the vaginal 
dome cylinder for a length of 4 cm without margins (PTV = CTV).(3) HDR-BRT was performed 
one week after 3D CRT, delivering 6 Gy/week. The boost of dose was delivered with 4 or 3 frac-
tions (fr) to the patients receiving the prophylactic dose of 45 Gy and 50.4 Gy, respectively.

Treatment plans were developed by a treatment planning system (TPS) (Oncentra MasterPlan 
(v3.3); Nucletron BV, Veenendaal, The Netherlands), using a suitable diameter with a vaginal 
applicator to optimize the dose distribution and to reduce the mucosal dose. All patients were 
treated by a microSelectron v3 (Nucletron) that used a 192Ir source with air kerma strength of 
43190 cGy•cm2/h and an apparent source activity of 10.58 Ci at the time of calibration.

c.  AGVMAt plans
Theoretical AGVMAT plans were generated for all patients previously treated by HDR-BRT 
at our Institution. 

Similar to the HDR-BRT schedules, 3 or 4 fractions of 6 Gy/fr were planned by AGVMAT 
with an interval of one week after 3D CRT. 

The AGVMAT plans were developed by RapidArc technique (Varian Medical System, Palo 
Alto, CA) using volumetric scans with an implanted CT-compatible vaginal cylinder. The CTV 
was drawn with the same criterion adopted for HDR-BRT adding a minimal PTV margin. This 
is due, on the one hand, because the vaginal cylinder reproduced the same shape as the vaginal 
vault for each application, while it reduced the setup uncertainty by making the IGRT reposition-
ing of the vaginal vault clearly visible in the cone-beam CT images. Furthermore, the vaginal 
applicator was locked into the external immobilization device, reducing the potential intrafrac-
tional patient motion. Thus, based on the phantom simulation performed in our Institution, the 
margin between CTV and PTV as a uniform expansion of 2 mm in all directions was assumed. 
Overall, exploiting such reproducibility and accuracy, this approach was a pure technique of 

Table 1. Main descriptive data of the patient selection.

 Histology 

 EC 41 pts (80.4%)
 CC 10 pts (19.6%)

 Figo Stage 

 IB  11 pts (21.6%)
 IC 15 pts (29.4%)
 IIA 5 pts (9.8%)
 IIB 9 pts (17.6%)
 IIIA 11 pts (21.6%)

 EBRT Dose 

 45 Gy (25fr) 14 pts (27.4%)
 50.4 Gy (28fr) 37 pts (72.6%)

 HDR-BRT dose 

 4 βy 6 Gy 14 pts (27.4%)
 3 βy 6 Gy 37 pts (72.6%)
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external irradiation with some important advantages from brachytherapy. To obtain the exact 
level of dose modulation, the instantaneous dose rate (DR), the MLC leaves’ position, and the 
rotational speed of the gantry were continuously varied by the optimizer. Two different plans 
were developed: AGVMAT1, consisting of a single arc from 180.1° to 179.9° with clockwise 
rotation; and AGVMAT2, consisting of two coplanar arcs from 180.1° to 179.9° and from 
179.9° to 180.1° with clockwise and counterclockwise rotation, respectively. The application 
of two coplanar arcs is for the purpose of investigating the increase of the modulation factor 
during optimization.(12) To minimize the tongue-and-groove effect, the collimator was fixed at 
45° in AGVMAT1 and at 45° and 315° for each arc in AGVMAT2, respectively. Plans were 
optimized selecting a maximum DR of 600 MU/min and a maximum of 2000 MUs. 

D.  Evaluation tools
The AGVMAT dose distributions were compared against HDR-BRT at various levels by means 
of standard DVHs.

Because of the typical shape of dose distribution with radioactive seeds, characterized by a 
considerable falloff of dose with distance from the central position, the dose distributions with 
HDR-BRT and EBRT were very different. However, this effect was limited to the target shape, 
which is a ring with a thickness of only 0.5 cm around the vaginal applicator. 

HDR-BRT plans were normalized on the outer surface of the CTV (coinciding with the PTV 
in this case), while AGVMAT plans were normalized on the outer surfaces of the PTV. With 
this premise, we evaluated the mean and maximum doses for the PTV from DVH. 

Moreover, from the radiobiological point a view, a comparison of the surviving fraction S 
of cells in the tissue exposed to a total radiation dose D was introduced.(13) The cell survival 
probability is given by:

    
  (1)

where the biological effect of radiation effect E can be expressed as: 

  (2)

Here α and β are the parameters describing the intrinsic cell radiosensitivity, and d and n 
represent the dose per fraction and the number of fractions, respectively.

To take into account the dose heterogeneity, we previously calculated the survival fraction 
based on DVH using the following:

      
  (3)
 

where V0 is the PTV volume and Vj is the subvolume corresponding to dose bin Dj in the  
DVH. Each S(Dj) is obtained from Eq. (1) for different Dj.

Subsequently, to compare different dose distributions, an EUD evaluation was made.(14) The 
surviving fraction S, resulting from any dose delivery scheme, can be formulated as:

  (4)
 

where γ is the effective tumor cell repopulation rate (γ = ln2/Td, Td is the tumor cell doubling 
time).
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In this paper, we adopted a γ equal to 0.1 (Td ~ 6.6 days(15)).
From Eq. (2), the corresponding EUD that results in the surviving fraction S can be calcu-

lated by the following:(16,17)

  (5)
 

In these equations, it was implicitly assumed that the density of tumor clonogens is con-
stant throughout the tumor, thereby indicating with N = ρ × V the initial number of clonogens 
(ρ = constant density and V = volume). The tumor control probability (TCP) with clonogen 
proliferation is calculated from the cell surviving fraction S shown in Eq. (3) using the 
Poisson’s hypothesis:

  (6)

Most calculations of the biological effect of radiation on tumors assume the uniform clo-
nogenic cell density even if a nonuniform dose distribution is taken into account. In practice, 
tumors will almost certainly have a nonuniform clonogenic cell density. Therefore we used 
the concept of LTCP, introduced by Webb and Nahum,(18) to take into account a possible spa-
tial variation in tumor cell density ρ. Then, by means of LTCP curves, we evaluated the local 
reduction in TCP, depending on the spatial variation in tumor cell density and on the dose 
distributions from different techniques. 

Hence, in order to calculate the LTCP, the following expression for ρ was placed within 
the Eq. (6):

    
  (7)

Here r and ρ0 represent the distance and the clonogen density at cylinder surface, respec-
tively, while r0 defines the steepness of density decrease (Fig. 1(a)). Our hypothesis was that 
ρ decreased exponentially in the microscopic extension region with a very wide and clinically 
likely range of values, from 104 cells/cm3 to 107 cells/cm3,(19) to simulate different values of 
subclinical clonogens in the microscopic extension region and a residual of clonogens in the 
tumor bed, respectively. Likewise, various decay coefficients (r0 = 1 mm, 0.62 mm, 0.31 mm, 
and ∞) were adopted to simulate different shapes of density reduction along the distance from 
the surface of the vaginal applicator. The combinations of these parameters also include the 
simulation of suspected tumor cells beyond the CTV, which would require an expansion of 
CTV itself.

Fig. 1. Profiles of tumor cell density ρ(r) (cells/cm3) decreasing exponentially in the microscopic extension region with 
regard to r0 = 1 mm (black), r0 = 0.62 mm (gray), r0 = 0.31 mm (light gray), and ρ0 = 107 cells/cm3 (a) or ρ0 = 104 cells/
cm3 (b). Schematic dose profiles for HDR-BRT (gray) and AGVMAT (black) in the CTV region (c).
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LTCP dose responses for all the combinations of tumor cell density and decay coefficients 
were then studied. 

Doses at volumes 2 cc, 1 cc and minimum (dmax) were evaluated on DVHs for rectum, blad-
der, and sigmoid colon. Only dmax was assessed for bowel. In particular, the doses with a 2 cc 
volume were evaluated for direct comparison with the tolerance of doses given in the work 
of (GYN) GEC-ESTRO.(4) For patients who received EBRT with 25 fractions of 1.8 Gy (total 
45 Gy), tolerances of 4.4 Gy/fr (total 4 fractions) to 2 cc of rectum and sigmoid and 6.2 Gy/
fr to 2 cc of bladder, were adopted. For patients who received 28 fractions of 1.8 Gy/fr (total 
50.4 Gy), tolerances of 4.8 Gy/fr to 2 cc of rectum and sigmoid and 7.0 Gy/fr to 2 cc of bladder, 
were adopted.(20,21) These values were obtained transforming the tolerances given in the work 
of Pötter and colleagues, as equivalent dose delivered at 2 Gy/fr (EQD2),(22) after subtracting 
45 Gy or 50.4 Gy EQD2. Then, using the linear quadratic model, the remaining doses in 4 
and 3 fractions (using α/β = 3 Gy), were obtained. Differences between techniques of doses to 
bowel were directly compared by using of the DVH. 

Moreover, in order to compare the integral dose of radiation resulting from the different 
plan modalities, a structure was defined to evaluate the mean dose. For the delineation of this 
structure, we took into account a different extension, in the cranial–caudal direction, of the 
CT slices. To standardize the ROI in all cases analyzed, the structure coincided with the body 
until 6 cm from the vaginal vault in the cranial direction and 6 cm in the caudal direction with 
exclusion of the PTV volume.

Finally, the time needed to deliver the entire treatment by AGVMAT and the mean time 
needed by HDR-BRT were compared. For this purpose, we took into account the length of 
HDR-BRT treatment that depends on the discharged 192Ir source from the date of replacement 
thereof in the microSelectron v3. A source of 10 Ci (370 GBq) replaced four times a year has an 
activity at the end of the third month, which is the time of its replacement, of 4.3 Ci (159 GBq). 
Therefore, the same treatment delivered using a 192Ir source placed in the vaginal vault would 
last only 4–5 minutes in the early days after the replacement, while it would be 9–11 minutes 
after three months. 

E.  Statistical analysis
The standard Fisher test was made with a Bonferroni correction because of the comparison 
between groups. The p-values under 0.01 were assumed as significant, while p-values between 
0.01 and 0.05 were considered as a trend. All information about the statistical analysis can be 
found in Pearson et al.(23)
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III. rESuLtS 

Examples of dose distributions are shown in Fig. 2 for axial views. In particular, the cover-
age of the target volume for plans developed on CT of a representative patient can be seen. 
Representative DVHs for PTV, rectum, bladder, sigmoid, and bowel are shown in Fig. 3. 
However, similar dose distribution/DHVs were obtained for the other patients. 

The numerical findings in which averages were calculated for the 51 patients and errors 
indicate interpatient variability at 1 standard deviation level are reported in Table 2.

LTCP curves corresponding to different values of constant and exponential cell densities by 
varying ρ0 and r0 (without errors) are shown in Fig. 4.

Fig. 2. Dose distributions in axial view for the plans developed by (a) HDR-BRT, (b) AGVMAT1, and (c) AGVMAT2.

Fig. 3. Cumulative DVHs with different techniques for PTV, rectum, bladder, sigmoid, and bowel of a representative case.
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Table 2. Dosimetric and delivery time comparison between AGVMAT and HDR-BRT.

   BRT (a) AGVMAT1  (b) AGVMAT2 (c) p ≤ 0.01 p ≤ 0.05 p ≥ 0.05

 PTV dmean (Gy) 1024±252   560±10   568±10 ab, ac  bc
  dmax (Gy) 1721±228 619±22 625±19 ab,ac  bc 
  EUD (Gy) 970±234 822±28 827±24 ab,ac  bc 
  mLTCP1 0.54 0 0 ab, ac  bc 
  mLTCP2 0.92 0 0 ab,ac  bc 
  mLTCP3 1 0.63 0.61 ab,ac  bc 
  mLTCP4 1 0.95 0.98 ab,ac  bc 

 Rectum d2cc (Gy) 556±32 498±31 492±35 ab,ac  bc
  d1cc (Gy) 645±62 528±17 532±19 ab,ac  bc 
  dmax (Gy) 852±126 574±17 584±13 ab,ac bc  

 Sigmoid d2cc (Gy) 307±144 300±99 298±104   ab,ac,ac
  d1cc (Gy) 386±95 391±110 397±116   ab,ac,ac 
  dmax (Gy) 594±252 487±87 496±78  ab,ac bc  

 Bladder d2cc (Gy) 504±62 512±34 521±34   ab,ac,ac
  d1cc (Gy) 578±72 520±31 524±51  ab,ac bc 
  dmax (Gy) 594±124 514±36 519±48 ab,ac  bc 

 Bowel dmax (Gy) 165±45 356±92 362±94 ab,ac  bc

 Int. dose dmean (Gy) 42±13 60±12 65±12 ab,ac bc 

 T (min) 9.24±3.12 3.76±0.56 4.56±0.82 ab,ac,bc  

 TBRT/T 1 2.46 2.03   
 
 MU/Gy  251±33 304±52   

Statistical significance-of-comparison between pairs is indicated by-the corresponding pairs-of numbers.
BRT = (a); AGVMAT1 = (b); AGVMAT2 = (c); mLTCP = minimum value of local tumour control prob-
ability (r0 = 0.62 mm; mLTCP1,2,3,4 = mLTCP (ρ = 107/cm3, 106/cm3, 105/cm3, 104/cm3); Int. dose = Integral dose; 
T = average of delivery treatment time; TBRT/T =-ratio between HDR-BRT and average delivery treatment time;  
MU/Gy-=-number of monitor units per-gray.
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A.  target coverage
Averages from DVHs for maximum dose, mean dose and EUD on PTV (which is equal to CTV 
for HDR-BRT) are shown in Table 2. 

As expected, AGVMAT1 and AGVMAT2 provided a uniform dose distribution, whereas 
the HDR-BRT doses were much higher than the prescription through the target (Fig. 1(b)). For 
this reason, the EUD values of HDR-BRT were always higher than the AGVMAT. 

Also, the minimum values of LTCP obtained with HDR-BRT were significantly higher than 
those obtained with AGVMAT curves, being comparable only in the case of low steepness 
cell density (higher probability of tumor control). This means that, in all the clinical range of 
clonogen density analyzed, the therapeutic results of HDR-BRT could not be reproduced by 
the uniform dose distribution from AGVMAT without increasing the dose prescribed. In other 
words, this approach predicts a lower TCP employing AGVMAT rather than HDR-BRT, assum-
ing the same prescribed dose. An obvious explanation could be the high gradient generated using 
brachytherapy sources. However, a similar distribution should be obtained using AGVMAT, 
but with some limitations due to the increase of arc modulation and of MUs. 

Fig. 4. LTCP curves for HDR-BRT (gray) and AGVMAT (black) with constant ρ (row 1) and variable cell densities 
(rows 2, 3, and 4) with different values for r0 (similar curves were obtained with one or two arcs). Curves were calculated 
assuming ρ = 107 cells/cm3 (column 1) to simulate the clonogens residual in the tumor bed and ρ0 = 106, 105, and 104 
cells/cm3 (columns 2, 3, and 4, respectively) to simulate different values of subclinical clonogens in the microscopic 
extension region. The radius r = 0.5 cm represents the edge of the CTV. (LTCP values for distances larger than 3 cm are 
continuously equal to 1.) 
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B.  organs at risk
Table 2 shows the results from DVH analysis with important differences between plan methods 
for the OARs. In particular for the rectum, the AGVMAT doses of d2cc, d1cc and dmax were 
significantly reduced (p < 0.01) with respect to HDR-BRT. These results are expected to be 
clinically significant when compatible with the identical therapeutic results of CTV.(24) 

The sigmoid AGVMAT averages of d2cc and d1cc were comparable with those obtained by 
HDR-BRT, while no significant differences were found for maximum doses. However, these 
values were far from the dose tolerance.

The bladder averages of d2cc in HDR-BRT were lower than those obtained by AGVMAT, 
with a difference significant as trend. This trend was reversed in the case of d1cc and maximum 
doses, with a moderate statistical significance (p < 0.05). 

The averages of dmax for the bowel were significantly lower in HDR-BRT than AGVMAT.
The integral dose accumulated in the healthy tissue area surrounding the region of the vaginal 

vault was evaluated by extracting the average dose of the DVH considered as a surrogate of the 
integral dose itself. Although these mean doses were very low in both cases, due to the small 
volume of the vaginal vault, the AGVMAT mean doses were proportionally higher than those 
of HDR-BRT with considerable significance. 

c.  Monitor units and delivery time
The averages of MU/Gy were 251 ± 33 for AGVMAT1 with an average dose rate of DR = 
400 MU/min, corresponding to an expected average beam-on time of 3.76 ± 0.56 min per 
fraction of 6 Gy. In AGVMAT2, because of two arcs, the number of MU per Gy was higher 
than AGVMAT1 — MU/Gy = 304 ± 52, corresponding to an expected average beam with a 
time of 4.56 ± 0.82 min for each fractions of 6 Gy. Thus, the ratio of average BRT delivery 
time (TBRT) and AGVMAT beam-on time (T) was about two or three times higher  between 
AGVMAT1 and AGVMAT2 (Table 2).

 
IV. DIScuSSIon

Usually, the radiation therapy of the vaginal vault in patients affected by GC after hysterectomy 
consists of a combination of prophylactic external beam radiation and a brachytherapy boost 
with prescription at a distance of 0.5 cm from the vaginal cylinder surface. External beam and 
brachytherapy components of treatment are planned independently of each other. However, 
these treatment modalities have somewhat complementary strengths and weaknesses. 

External beam (i.e., by VMAT) produces a more homogeneous dose distribution, while 
brachytherapy avoids much of the geometric uncertainty characteristic of current external 
beam delivery techniques, such as intensity-modulated techniques. “Combining these two 
modalities provides new opportunities for improving well-established brachytherapy/external 
beam regimens, but also expands the possibilities for delivering more aggressive radiotherapy 
regimens to extended locoregional target volumes.”(25) 

Therefore, according to Williamson,(25) in this work we evaluated a combination of EBRT 
and BRT techniques — the applicator guided volumetric arc therapy technique — as an alter-
native to high-dose-rate brachytherapy, employing radiobiological and dosimetric tools of 
comparison.

Our results showed that the rectal strip included in the PTV was subjected to an increasing 
dose profile starting from the dose prescribed when planned by HDR-BRT, while, due to a more 
uniform PTV coverage, the same strip was subjected to a dose rather similar to the prescription 
dose, when planned by AGVMAT.

For this reason, the AGVMAT plans were able to keep the maximum dose on rectum lower 
than the HDR-BRT. This happened also because the vaginal cylinder used in the AGVMAT 
repositioning phase, had a double role: first, as an immobilization device which permitted a 
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 better reproducibility of plans; second, because being clearly visible in cone-beam CT, it reduced 
the interfraction setup errors.

On the other hand, while doses from AGVMAT or HDR-BRT were very similar for the 
bladder as well as for the sigmoid, of relevance, the HDR-BRT was able to reduce the doses to 
the bowel (brachytherapy is currently adopted as boost for bowel sparing). 

Also, the mean integral doses were comparable between techniques. This might be due to 
the small size of the vaginal vault notwithstanding the notable differences between techniques 
in terms of dose distribution — more similar to a dish with AGVMAT (because the coplanar-
ity of arcs), more spherical with HDR-BRT (because the radial distribution from the center of 
192Ir sources to the outside).(26) Hence, while low doses in larger volumes were observed using 
AGVMAT, high doses in small volumes and very low doses in larger volumes were obtained 
by HDR-BRT. However, whether “a lot to a little” or “a little to a lot” is better in terms of 
integral dose(27,7) remains a controversial issue as highlighted by Zaider et al.(27) and confirmed 
by Aydogan et al.,(7) and requires further investigation. Moreover, as was expected, a reduc-
tion in terms of beam-on time was obtained with AGVMAT with respect to HDR-BRT. This is 
certainly a positive point for the patients but could be critical, in terms of tumor control, when 
clonogenic cells with very short repopulation times are considered. 

It remains to be established whether the uniform dose on target obtained by AGVMAT would 
give the same therapeutic results as HDR-BRT. An initial evaluation was done by using the 
EUD that resulted significantly higher in HDR-BRT with respect to AGVMAT. However, the 
EUD represents an average of values generated by cells exposed to different doses, although 
on a biological basis. Therefore, to better investigate the actual equivalence in terms of thera-
peutic efficacy of techniques, a new tool of analysis has been introduced: the LTCP. The latter 
enables the evaluation of the local value of TCP taking into consideration the spatial variability 
of the clonogenic cell density, which is assumed to be constant in the target while decreasing 
exponentially in the microscopic extension region. 

Webb and Nahum(18) have stated that if the clonogenic cell density is constant throughout the 
tumor, a uniform dose distribution will produce the highest TCP for a fixed energy deposition. 
Our results showed a significantly higher LTCP in HDR-BRT than AGVMAT, while comparable 
values were found only in the case of low steepness cell density. In particular, with respect to 
the different values of constant clonogen density analyzed, lower values of LTCP were obtained 
based on the uniform dose distribution generated using AGVMAT rather than HDR-BRT. As 
the TCP increases with the prescribed dose, the same TCP (which is a surrogate of expected 
therapeutic results in terms of tumor control) of HDR-BRT could be obtained in AGVMAT, 
increasing the dose prescribed. Unfortunately, this could nullify the advantages obtained in 
terms of sparing for the rectum.

 
V. concLuSIonS

In this study, a dosimetric and radiobiological comparison between the applicator-guided 
volumetric-arc therapy and the high-dose-rate brachytherapy treatment of the vaginal vault 
was made for patients with GC. When the high reproducibility of positioning (due to the vagi-
nal applicator commonly used in brachytherapy) and an accurate internal organ registration 
were assumed, the applicator-guided volumetric-arc therapy seemed to have the potential for 
improving critical structure avoidance, as demonstrated by a reduced rectal dose. However, 
brachytherapy still performed better in terms of PTV coverage because of the greater EUD 
and better LTCP curves. 
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