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As a new type of “zero-dimensional” fluorescent carbon nanomaterials, carbon dots (CDs)
have some unique optical and chemical properties, they are being explored for a variety of
applications in bio-related fields, such as bioimaging, biosensors, and therapy. This review
mainly summarizes the recent progress of CDs in bioimaging. The overview of this review
can be roughly divided into two categories: (1) In vitro bioimaging based on CDs in different
cells and important organelles. (2) The distribution, imaging and application of CDs in mice
and zebrafish. In addition, this review also points out the potential advantages and future
development directions of CDs for bioimaging, which may promote the development of
CDs in the field of bioimaging.
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1 INTRODUCTION

Biological imaging covers many modalities, including X-ray, B-ultrasound, Computed tomography
(CT), Positron emission computed tomography (PET), Magnetic resonance imaging (MRI), and so
on (Li et al., 2019; Molkenova et al., 2019; Molkenova et al., 2020; Wen et al., 2020; Mulikova et al.,
2021; Olifirenko et al., 2021; Yi et al., 2022). Among them, fluorescence imaging technology plays an
important role in bioimaging due to its advantages of high sensitivity, easy observation and simple
instrument. At present, many fluorescent material have been used for biological imaging, such as
organic small molecules (Wu J. et al., 2021), nanomaterials (Deling Li et al., 2020), and so on. Since
carbon dots (CDs) were synthesized in 2004 (Xu et al., 2004), they have received extensive attention
in various fields as a new type of fluorescent probe. Because of their multicolor luminescence (Kailasa
et al., 2019; Jiao et al., 2020; Ghosh et al., 2021a; Ghosh et al., 2021b), tunable optical properties
(Wang et al., 2020a), superior chemical and photostability (Wang et al., 2020b; Rao et al., 2020), low
cytotoxicity and excellent biocompatibility (Huang et al., 2020; Kuang et al., 2020; Lin et al., 2021a;
Lin et al., 2021b; Mei et al., 2022), CDs are promising candidates bioimaging. Due to the easy
functionalization and good biocompatibility of the surface of CDs, they can also be used as an
effective tool for visual monitoring of biological processes (Sun et al., 2021; Vedhanayagam et al.,
2021; Huang et al., 2022). More importantly, the synthesis method of CDs is simple, environmentally
friendly, economical, and energy-saving, and their synthetic raw materials are widely sourced, green
and cheap. Therefore, a wide range of CDs preparationmethods and sources of rawmaterials provide
opportunities to achieve biological in vitro and in vivo imaging.
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FIGURE 1 | (A) Bioimaging of CDs and FA-CDs in cancer cells (Gudimella et al., 2021). (B) Flow cytometry profiles of MCF-7 cells and L929 cells treated with the
CDs-PEI-AS1411 for 12 h (Kong et al., 2020). (C) Mitotic cells stained by N-CDs visualizing chromosome aggregation through progression of mitosis’ prophase,
metaphase and anaphase, respectively (Zhang et al., 2020). (D)N-CDs internalization in live MDA-MB-231 cells. (Kaminari et al., 2021); (E) (a) Uptake and distribution of
WCDs in zebrafish embryos; (b) The distribution of WCDs in zebrafish larvae; (c) Fluorescence microscopy images of uptake of WCDs in zebrafish growth cycle
(Zonglin Liu et al., 2021). (F) (a)Confocal images of wild-type zebrafish showing the injection route, heart, blood stream, CNS and observation area (central canal of spinal
cord). (b) Accumulation of GluCDs-F in the CNS of zebrafish (Seven et al., 2021). (G) Representative infrared thermal images of tumor-bearing mice with intravenous
injection, intratumoral (i.t.) injection of CDs (50 μl, 20 mg/ml) and PBS (50 μl) into the tumor site under 808 nm laser irradiation and time course change in the relative
volume after treatment by using CDs and PBS (Li et al., 2019) (H) In vivo bio-distribution of PDA-CDs in both ischemia-reperfusion (IR)-AKI and healthy
mice.Representative fluorescence images (excitation: 410 nm, emission: 500 nm) of major organs from shammice (a) and IR-injured mice (b) at different times after
PDA-CDs intravenous injection (Gao et al., 2020).

Frontiers in Chemistry | www.frontiersin.org May 2022 | Volume 10 | Article 9054752

He et al. Bioimaging Based on Carbon Dots

https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


In recent years, several reviews have been summarized on
applications of CDs for neurological treatment, biosensors,
photocatalysis, bioimaging, and so on (Ashrafizadeh et al.,
2020; Younis et al., 2020; Kailasa and Koduru, 2022; Wang
and Lu, 2022; Ðorđević et al., 2022). At present, the review on
the bioimaging of CDs mostly focuses on the in vitro
bioimaging of CDs, such as imaging of cancer cells and
nerve cells, etc. In this review, we survey the latest research
on the application of CDs in the rapidly evolving bioimaging
field, especially in vitro bioimaging of important organelles
(nucleus, mitochondria) and in vivo bioimaging (mice,
zebrafish). This review aims to provide readers with the
latest, most exciting and influential research in this field.
What’s more, the opportunities and challenges of carbon
dots in bioimaging applications in the future are briefly
discussed. Eventually, we hope to provide some new ideas
for developing bioimaging based on CDs.

2 IN VITRO BIOIMAGING

CDs have shown excellent potential in the field of bioimaging due
to the CDs have good dispersibility, the ability to specifically bind
to target units, high near-infrared absorption and
photoluminescence efficiency, good chemical stability and
photostability (Bondon et al., 2020; Lin et al., 2020; Cardoso
Dos Santos et al., 2020; Wang et al., 2021). As known, Different
types of cells have different structures and morphologies, and
different cell membranes or cytoplasm contain different
biomarkers, leading to specific responses to foreign
nanoparticles. On this basis, CDs with special functions were
synthesized and used in biological imaging technology, which
also provided the possibility of applying CDs in vivo bioimaging,
which hope to promote the development of cell imaging
techniques.

2.1 Cell Bioimaging
2.1.1 Cancer Cells Bioimaging
Cancer is one of the greatest challenges facing humanity today,
and many people die from cancer every year, early diagnosis of
cancer and prevention of malignant tumors are extremely
important. Currently, CDs can penetrate a variety of cancer
cells, what’s more due to the stable optical properties and
excellent biocompatibility of CDs, cancer cells can be detected
by fluorescence imaging of CDs (Mchugh et al., 2018). Gudimella
et al. synthesis of fluorescent CDs from the citrus peel as a
renewable green resource, and then the CDs was conjugated
with folic acid (FA-CDs). As shown in Figure 1A, MCF-7 cells
treated with FA-CDs had brighter fluorescence emission than
MCF-7 cells treated with CDs, indicating that FA-CDs are a
remarkable material for cell imaging (Gudimella et al., 2021).
Different CDs can specifically recognize cancer cells by
interacting with groups on the surface of cancer cells.
However, cellular uptake of free CDs lacks selectivity, and the
same negative charge as the cell membrane may lead to inefficient
cellular internalization. Based on the modification of CDs with
the DNA aptamer AS1411 with polyimine (PEI) as the bridge.

Kong et al. developed a surface charge inversion nanosystem,
using the DNA aptamer AS1411 labeled CDs nanoparticle probe
for specifically targeted bioimaging of cancer cells (Figure 1B)
(Kong et al., 2020). In addition, Mahani et al. demonstrated the
selective targeting and imaging of hepatoma cells by fluorescent
CDs molecularly imprinted polymers (CDs-MIPs). The
overexpression of monosaccharides on cancer cells can act as
targeting molecules. On these cells, CDs-MIP specifically binds to
D-glucuronicacid (GlcA) and N-acetylneuraminicacid (NANA),
resulting in high-contrast images in cancer cells imaging (Mahani
et al., 2021).

2.1.2 Neural Cells Bioimaging
An in-depth and comprehensive understanding of the nature
and function of the nervous system can lead to more effective
treatment of brain diseases. Therefore, it is necessary to develop
a new brain bioimaging method to visualize the relationship
between brain structure, neuronal activity and neurochemistry.
Due to their excellent biocompatibility, stable fluorescence
properties of CDs can help to overcome current challenges in
neuroimaging. Pei et al. used lignin as the starting carbon source
to synthesize carbon quantum dots CDs by hydrothermal
method. The team explored the imaging of lignin CDs in
N27 cells (a rat neural cell line used as a model of
dopaminergic neurons). A large accumulation of CDs was
observed in the cytoplasm and nucleus, which indicated that
CDs have good permeability of cell membrane and other
intracellular organelle membranes. It could be applied to
biological imaging of brain cells in the future (Pei et al.,
2021). Besides. Wu et al. developed a novel two-photon
fluorescent probe M9, which consists of graphene oxide
(GO), red-emitting CDs, and azobenzene bound to DNA
(DNA-Azo). For in situ imaging of miR-9 in living neurons
and brain tissue of AD mice. It was found that the M9
fluorescent probe easily entered neuron cells and distributed
them in the cytoplasm of neuron cells. These results shed light
on understanding the genetic basis of AD and hold great
promise for the early diagnosis of cancer and neurological
disorders (Wu et al., 2020). In conclusion, due to the
penetrability and good biocompatibility of CDs, they can
provide a good possibility for developing effective methods
for clinical diagnosis and treatment of the central nervous
system.

2.2 Organelles Bioimaging
Nowadays, fluorescence imaging technology is becoming more
and more mature, and more and more fluorescent probes for
biological imaging have been developed, but the bioimaging of
subcellular and organelles still needs further efforts to track
changes in cell morphology or function. Biomaging of cell
nuclei is crucial for revealing nuclear morphology and its role
in cell metabolism, growth, differentiation, and inheritance (Zhou
et al., 2020). Zhang et al. synthesized nitrogen doped CDs
(N-CDs) by using citric acid as raw material and propylene
diamine as a passivation agent. Then the N-CDs were used for
HeLa cell staining, the results showed that N-CDs were located in
the nucleus, showing a multicolor luminescence effect, and there
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was almost no blue-green-red fluorescence intensity in the
cytoplasm (Figure 1C). The N-CDs will be automatically
enriched in the nucleus, and the concentration in the
cytoplasm is very low, and they could be a new way to track
individual cells or visualize processes such as nuclear marker-
based mitosis, which may provide new tools for tracking
chromatin phase changes during cell cycle changes (Zhang
et al., 2020).

Mitochondria are one of the most important subcellular
compartments in the cell, the site of ATP production and the
center of cellular metabolism. The state of mitochondria is
associated with a variety of diseases, grasping the state of
mitochondria plays a crucial role in the treatment of various
diseases (Anqi Li et al., 2020; Mani et al., 2021). CDs can be a new
mitochondrial imaging probe, a series of N-CDs were prepared by
Kaminari et al. The N-CDs exhibit subcellular mitochondrial
localization and compared to known mitochondrial probes,
multi-functionalized N-CDs exhibit superior photostability,
stable long-term mitochondrial imaging, and cell compatibility
with apoptotic labeling potential (Figure 1D). Their uptake
depends on mitochondrial membrane potential and induces
their preferential localization in malignant cells, which is
expected to serve as a carrier for mitochondria-targeted
delivery of anticancer drugs (Kaminari et al., 2021). Guo et al.
synthesized fluorescent CDs that could observe cell viability in
situ by simple microwave-assisted synthesis. Due to electrostatic
interactions, positively charged CDs tend to accumulate in
mitochondria with high negative MMPs in healthy cells. When
cells are damaged with a concomitant decrease in MMP levels,
CDs migrate from the mitochondria to the nucleolus due to their
binding affinity to nucleic acids. Once the cellular state is
restored, MMP levels are again highly reduced, and the CDs
are reversed back to the mitochondria. Therefore, the viability of
cells can be easily observed through the different spatiotemporal
distribution of CDs in living cells. The discovery of CDs has great
potential in the study of cell survival (Guo et al., 2021).

The in vitro bioimaging demonstrate that CDs have broad
application prospects in the biomedical field. The CDs can be
used as fluorescent probes for cancer cell imaging and organelle
targeting for the diagnosis and prevention of somemajor diseases.
However, the current CDs-based fluorescent probes still have
some defects, we should focus on developing fluorescent probes
with better performance, such as precise targeting ability, high
fluorescence quantum yield, high stability, simple surface
functionalization, and so on. In addition, the targeting of CDs
and the application of in vivo bioimaging should be further
investigated in detail.

3 IN VIVO BIOIMAGING

In recent years, in vivo biomedical applications based on
fluorescent CDs have made many efforts for future clinical
diagnosis and therapy. Yang et al. (2009) are the first to report
in vivo imaging of CDs in mice via three injection routes. Since
then, more and more animal models have been established to
explore the imaging studies of CDs in vivo.

3.1 Biodistribution of CDs in Zebrafish and
Mice
CDs play an important role in the medical field. In vivo imaging of
CD may have chronic toxicity, low stability, and potential for
accumulation. Therefore, the distribution andmetabolism of CD in
vivo should be assessed. Liu et al. synthesized F.nucleatum-CDs
(Fn-CDs) for in vivo imaging in mice. The CDs were injected into
mice and detected Fn-CDs inmice at different periods. At different
periods, different parts of the mice appeared fluorescence
successively. After that, the fluorescence intensity of Fn-CDs
gradually decreased, indicating that Fn-CDs may have entered
the blood circulation. What’s more, the fluorescence disappeared
after 24 h, whichmanifesting that Fn-CDs can be excreted through
digestive system metabolism, making Fn-CDs an excellent
candidate for in vivo bioimaging and biosensing (Lijuan Liu
et al., 2021). Besides, Liu et al. synthesized high-yield water-
soluble CDs (WCDs) by the targeted method with good
biocompatibility. The uptake and metabolism of WCDS in vivo
were studied by zebrafish. When WCDs were cultured with
zebrafish embryos, WCDs mainly existed in the yolk of the
zebrafish embryonic stage. In adult zebrafish, green fluorescence
is distributed in the intestine, stomach, liver and yolk sac
(Figure 1E). By observing the fluorescence imaging of WCDs in
zebrafish at different periods, the distribution and metabolism of
WCDs in zebrafish can be observed (Zonglin Liu et al., 2021).
These research works provide valuable information for the
administration of CDs in vivo, monitoring the therapeutic
effect, etc. By observing the distribution and metabolism of CDs
in vivo, evaluating the toxicity of CDs in vivo, and reducing the
potential cellularity of CDs through surface modification.

3.2 Fluorescent Bioimaging-Guided Drug
Delivery System
The blood-brain barrier (BBB) is one of the most important
factors limiting the development of treatments for neurological
diseases and brain cancer. Many drugs cannot directly penetrate
the BBB, resulting in very limited drug delivery systems (DDS) for
the treatment of central nervous system-related diseases and
brain cancer. Therefore, the development of new DDS is very
necessary. CDs-mediated DDS has received extensive attention
due to its penetration of the blood-brain barrier (Liyanage et al.,
2020). A fluorescein carbon dots prepared from glucose
(GluCDs-F) was synthesized by Seven et al. They tested the
ability of GluCDs-F to cross the blood-brain barrier in
zebrafish and rat models. After intravenous administration in
rats, GluCDs-F was observed to concentrate in cervical spinal
cord gray matter (e.g., ventral horn, dorsal horn, mid-gray) in the
central nervous system, consistent with aggregation behavior in
neurons. Therefore, GluCDs-F-targeted neurons have great
potential as a drug delivery platform in neurodegenerative
diseases, traumatic injuries, and central nervous system
malignancies (Figure 1F). In addition, to enhance tumor-
specific imaging and drug delivery, tumor drug molecule
delivery systems can be realized by targeting probe-binding
ligands that recognize receptor-like molecules (Seven et al.,
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2021). Li et al. reported large amino acid mimetic CDs (LAAM-
CDs) for selective imaging and drug delivery to tumors, including
brain tumors. The LAAM-CDs were used as a DDS utilizes
specific carrier transporters that are differentially upregulated
in cancer cells. LAAMTC-CDs, a type of LAAM-CDs, which were
synthesized by using 1,4,5,8-tetraaminoanthraquinone (TAAQ)
and citric acid (CA). Then LAAMTC-CDs were administered
intravenously to patients with U87 glioma in mice and analyzed
using near-infrared fluorescence imaging at different time points.
The accumulation of LAAM TC-CDs in the brain increased over
time by fluorescence imaging profiles and peaked at 8–12 h after
injection when the fluorescence signal in the brain dominated.

Therefore, LAAM-CDs had the potential to translate into clinical
applications for imaging and drug delivery in various tumors and
diseases of the central nervous system (Shuhua Li et al., 2020).

3.3 Fluorescent Bioimaging Guides the
Treatment of Cancer and Kidney Disease
Cancer treatment is one of the biggest challenges facing the
medical field today. Li et al. have explored watermelon-derived
CDs with secondary near-infrared (NIR-II) emission as in vivo
optical fluorescent agents, which in addition to their excellent
optical properties, also possess excellent 808 nm laser-induced

TABLE 1 | Application of different types of carbon dots in bioimaging.

Precursor of CDs Materials of bioimaging Application in bioimaging References

Citrus fruit peels FA-CDs MCF-7 cells imaging Gudimella et al.
(2021)

Citric acid (CA) CDs-polyethyleneimine-
AS1411

MCF-7 and L929 cells imaging Kong et al. (2020)

Tinospora cordifolia leaves CDs B16F10 Melanoma and SiHa cervical cancer cells imaging Mohapatra et al.
(2022)

CA CD-MIPs MCF-7, HepG-2, and NIH-3T3 cells imaging Mahani et al. (2021)
Fresh tea leaves + urea N-CDs A549 cells imaging Ge et al. (2022)
Formamide + Phosphoric acid N, P-CDs HeLa cell imaging Naixin Li.et al. (2021)
Sulfonated tetraphenylporphyrin CDs HeLa cell imaging Li-ping Li.et al.

(2021)
Rose bengal+1,4-
dimercaptobenzene

S-CDs HPAEpiCs and A549 cells imaging Yu et al. (2022)

Kiwi fruit peel CDs imaging human normal and cancer cells Atchudan et al.
(2022b)

Betel leaves CDs Mouse fibroblast L929 cells imaging Atchudan et al.
(2022a)

Lignin CDs Neuronal N27 cells imaging Pei et al. (2021)
Thiourea + o-PDA CDs-DNA-Azo miR-9 imaging in AD mouse brain tissue Wu et al. (2020)
CA + Propylene diamine N-CDs HeLa cells nuclear chromatin imaging Zhang et al. (2020)
Propylene Glycol + Protamine Protamine-CDs HEK-293 cells nucleus imaging Zhang et al. (2021)
p-PDA+4-formylbenzeneboronic
acid

CDs RAW 264.7 murine cells line nucleus imaging Phukan et al. (2022)

CA + Ethylenediamine CDs A-MB-231 cells mitochondria imaging Kaminari et al. (2021)
CA + p-PDA CDs LO-2 cells and Hep3B cells imaging Jin et al. (2022)
Metformin CDs Mitochondrial imaging and targeting capabilities Cilingir et al. (2021)
CA + N,N-dimethylaniline CDs Image mitochondria in cells and observe cell viability Guo et al. (2021)
F. nucleatum Fn-CDs In vivo fluorescence imaging of male Kunming mice Lijuan Liu et al.

(2021)
Carrots + Acrylamide WCDs Imaging, uptake and distribution of WCDs in zebrafish Zonglin Liu et al.

(2021)
M-PPD+1,2,3-propanetricarboxylic
acid

N-CDs Imaging exogenous ClO− in cell nucleus and living zebrafishes Wu et al. (2021b)

Glucose GluCD-F Zebrafish in vivo imaging and drug delivery system Seven et al. (2021)
1,4,5,8-tetraminoanthraquinone
+ CA

CDs In vivo imaging and drug delivery system in U87 glioma mice Shuhua Li et al.
(2020)

Panax notoginseng N-CDs As diagnostic tools and contrast dyes for biomedical applications Zheng.et al. (2021)
Caulis polygoni multiflora CDs In vivo imaging in mice and as a disease detection tool in physiology and

pathology
Chang et al. (2021)

Camellia japonica S-CDs In vivo tumor imaging and photothermal therapy of cancer in HT-29 tumor-
bearing mice

Kim et al. (2021)

Trf + Glucose oxidase Iron-doped CDs C6-LUC cell imaging and targeted therapy for the treatment of gliomas Liu et al. (2022)
Hematoporphyrin HP-CQDs Breast cancer cells (MCF-7) imaging and Photodynamic therapy aids in

clearing breast cancer cells
Murali et al. (2022)

m-PDA m-PDA-based CDs In vivo imaging and mitigation of acute kidney injury in IR-AKI mice Gao et al. (2020)
Cucumis melo CDs Cunninghamella elegans cells, Aspergillus flavus cells, and Rhizoctonia solani

cells imaging
Desai et al. (2019)
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photothermal properties, photothermal therapy (PTT) for cancer
and CD has a good biological function (Figure 1G). These studies
verified the potential application of CDs in the treatment of
cancer PTT (Li et al., 2019). Due to insufficient light-to-heat
conversion, developing an ideal CDs is still difficult, requiring the
aid of high-power-density lasers. Therefore, Kim et al. prepared
sulfur-doped CDs (S-CDs) with strong near-infrared absorption
ability using Japanese camellia as raw material by hydrothermal
method. And the lower dose of S-CDs was found to have higher
PTT performance (Kim et al., 2021). Acute kidney injury (AKI) is
a reactive oxygen species (ROS)-promoted disease with high
mortality and morbidity for which there is currently no
effective drug treatment. Gao et al. prepared
m-phenylenediamine-based CDs (PDA-CDs) with ultra-small-
sized glomerular filtration barrier permeability and antioxidant
properties, the PDA-CDs exhibited significant ROS scavenging
in vitro and in vivo active. Both AKI mice and healthy mice were
injected with PDA-CDs intravenously. Then major organs (heart,
liver, spleen, lung, and kidney) were taken for fluorescent
bioimaging of fluorescence-specific parameters of PDA-CDs.
Normal mouse PDA-CDs mainly accumulated in the liver and
kidney. In AKI mice, PDA-CDs mainly accumulated in the liver
and kidney (Figure 1H), and after injection of 12 h, the
accumulation of PDA-CDs in the kidneys of AKI mice
reached a peak, which was much longer than that in normal
kidneys. Meanwhile, by comparing with the cisplatin-induced
AKI model, it was found that PDA-CDs exhibited significant
therapeutic effects in both models. This provides an effective drug
therapy strategy for ROS-induced AKI with significant clinical
translation potential (Gao et al., 2020).

In a short, in vivo bioimaging based on CDs have broad
application, the above work validates the ability of CDs to
have potent chemotherapeutic effects, which can provide a
strategy for the potential clinical application of CDs in image-
guided tumor therapy, renal disease treatment and other diseases.

4CONCLUSIONAND FUTUREPROSPECTS

Till now, CDs have already proven to be an intriguing class of
nanoparticles, which have made significant achievements in the
field of bioimaging due to their excellent fluorescence properties,
good biocompatibility, low toxicity, high sensitivity, and easy
surface functionalization. This review mainly summarizes recent
advances in the field of CDs-based bioimaging in two aspects

(Table 1): in vitro bioimaging of important organelles (nucleus,
mitochondria) and in vivo bioimaging (mice, zebrafish).
Although the CDs have shown many advantages in
bioimaging, there are still some challenges: (1) How to
synthesize CDs with excellent fluorescent properties by a
simple synthesis method and explain the synthesis
mechanism? (2) More experimental and theoretical studies
should be carried out to elucidate the fluorescent mechanism
of the CDs. (3) CDs with red or near-IR fluorescent emission are
more suitable for bioimaging in vitro/vivo, it is very important to
prepare CDs with red or near-IR fluorescent emission which have
high quantum yield and excellent bioimaging performance. (4)
With the advancement of bioimaging methods and equipment,
efficient tissue penetration and in vivo bioimaging under low
background fluorescence will continue to be achieved, which will
further promote the development of CDs in bioimaging. We
believe that with the continuous development of the field, the
practical application of CDs in bioimaging will be greatly
improved.
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