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Abstract
Retinit is pigmentosa is an incurable degenerative disease that causes loss of light-sensitive cells in the retina and leads 
to severe vision impairment. The development of optogenetics has created great hype around its potential to treat retinitis 
pigmentosa by the introduction of light-sensitive proteins into other neural cells in the retina. The first-in-human studies 
of optogenetic treatment for this disease have recently been reported (NCT02556736 and NCT03326336). The treatment 
involves irreversible gene therapy and requires access to specially designed goggles to deliver light to the treated eye. These 
highly innovative and high-profile clinical trials raise numerous ethical issues that must be addressed during the early phases 
of research and clinical testing to ensure trial participants are treated fairly and can provide appropriate informed consent.
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Introduction

Optogenetics consists of introducing light-sensitive proteins 
(opsins) into cells, such as neurons, allowing their behaviour 
to be controlled optically. As such, it presents unprecedented 
potential to control tissue function through the application of 
light to genetically modified target cells [1]. The first human 
trial testing optogenetics dates from 2016 (clinicaltrials.
gov NCT02556736). This novel invasive technology shows 
great potential for medical application through treatment 
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of neurological and psychiatric conditions such as retini-
tis pigmentosa (RP), Parkinson’s disease (PD), addiction, 
schizophrenia, autism, and depression. There are ongoing 
ethical debates about which population is best targeted for 
optogenetics [2, 3], usage for memory modification [4–7], 
and whether some ethical concerns linked to testing optoge-
netics in humans belong to the realm of speculative ethics 
[4, 8, 9].

A recent ground-breaking study has established further 
efficacy and safety information of optogenetics in humans. 
This new demonstration of partial recovery of visual func-
tion in a blind patient after optogenetic therapy is an impor-
tant step in treating RP and potentially other disorders [10] 
and indicates optogenethics is crucial to the advancement 
of the technology. However, the original research and sub-
sequent clinical trials of this technology raised numerous 
safety and ethical issues, many persistent ones, while other 
new issues have arisen [3]. While there are general guide-
lines on what risks gene therapy–trial participants should 
be informed about [11], the decision is almost always deter-
mined by the researchers, with feedback from an Institutional 
Review Board [12]. As a result, the informed consent cover-
ing health risks may only focus on potential changes to tis-
sue, cancer formation, transfer of genes to future progeny, or 
infection of close contacts. These are generally well-studied 
risks that are highly unlikely to occur, allowing researchers 
to portray the trial as very low-risk. It may downplay other 
significant risks to trial participants due to the unknown 
impact of the treatment. Futhermore, as observed with other 
experimental invasive technologies [13], positive reporting 
of a clinical trial in mainstream media often ignores the risks 
and unproven nature of the treatment which may further bias 
participants’ view of their inclusion. It is critical that risks 
associated with participation in an optogenetics trial (i.e. 
NCT03326336) are appropriately addressed during the early 
clinical trial phases to ensure patients are treated fairly, and 
have sufficient informed consent, based on the short- and 
long-term risks and benefits of the potential therapy.

Treatment risks

The current trial uses an adeno-associated viral vector 
(AAV) to deliver the genes coding for the optogenetic 
protein (NCT03326336). Cells expressing opsins are not 
sufficiently light-sensitive on their own to provide visual 
function; the trial participant must also wear goggles that 
deliver a high-intensity image to the treated retina. The 
primary outcome of the phase 1/2a trial is to determine the 
safety and tolerability of a single viral dose over 1 year. 
Secondary measures include visual acuity assessments 
and evaluation of immune response up to 1 year. The ini-
tial cohort is estimated at 15 participants with varying 

viral vector dosage. While this provides crucial safety and 
efficacy information, protein expression and function can 
vary between recipients receiving equivalent dosages. Par-
ticipants who receive some therapeutic response may only 
have activation in small regions of the retina, limiting their 
field of view. It is also unknown how long protein expres-
sion will persist or if phototoxic effects will occur, so a 
therapeutic dose may degrade over time. As a result, some 
patients may require multiple doses to achieve a therapeu-
tic response. This raises the risk of a potential immune 
response which is not being assessed in the current trial. In 
an attempt to minimize this risk, the current trial precludes 
participants who have previously received gene therapy 
(typical for all gene therapy trials). It also only treated 
the worse-seeing eye, to minimize the impact of potential 
adverse events. However, if these participants receive any 
therapeutic benefit from the trial, they may be precluded 
from being inoculated over a wider region of the treated 
eye or in the other eye.

AAVs are also being used in other treatments, includ-
ing the voretigene neparvovec-rzyl gene therapy for RPE65 
mutation-associated inherited retinal disease [14] and the 
Oxford-AstraZeneca and Johnson & Johnson COVID-19 
vaccines. While these particular treatments use different 
AAV serotypes, the increased usage of AAVs in biomedi-
cal treatments raises the risk of participants having repeated 
exposure to these vectors, increasing the chance of a harmful 
immune response. This could prevent people participating in 
a trial or receiving treatment, limiting their future benefit. It 
may also have public health impacts if large numbers of peo-
ple become immune to certain viral vectors and are unable 
to receive vaccines. It would therefore be unethical to run 
a new clinical trial with a different viral vector or opsin for 
the sole purpose of novelty if one has already been shown 
to be safe and effective. It may therefore be unethical to 
use AAV serotype 2.7m8 for the optogenetics trial when the 
voretigene neparvovec-rzyl retinal gene therapy has already 
undergone dosage studies and received FDA approval using 
AAV serotype 2. One of the side effects of the AAV COVID-
19 vaccines has been thrombosis with thrombocytopenia 
[15]. Another serotype, Ad5, may also increase the risk of 
contracting HIV [16]. While these particular side effects 
are unlikely with the optogenetics treatment, it highlights 
the variability and unpredictability of side effects that can 
occur from gene therapy. There is potential for these types 
of low-risk events occurring from the retinal optogenetics 
therapy, which are unlikely to be detected in such research 
trials given the small number of participants. These types 
of issues may not be detected until well passed the 1 year 
trial completion. Inclusion and exclusion of some patients 
with comorbidities, and/or medical predispositions, should 
guide recruitment eligibility. As trial stages progress and 
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new knowledge is obtained, the need to remove some vulner-
able participants may be critical.

Right to withdraw

A fundamental safety guarantee of research trials is the 
capacity of participants to withdraw at any time before 
and during the trial. The current trial (NCT03326336) 
uses viral dose-escalation to evaluate its safety and toler-
ability—which satisfies common drug dosage protocols 
enabling withdrawal or termination of a trial; patients 
enrolling in a trial testing optogenetics might be pre-
vented in exercising their right to withdraw after inocula-
tion. Optogenetics is limited in terms of reversibility of the 
procedure, and attempting to reverse the implantation may 
lead to severe harm (e.g. surgical trauma and scar tissue 
formation). What makes it more difficult to withdraw from 
the trial is that in most cases, it is likely that patients will 
be facing a ‘last chance’ scenario: putting them in an irre-
versible situation. Even if the treated patient is in a stable 
condition at the conclusion of the trial, the treated cells 
cannot be substituted for a superior treatment in the future. 
For instance, participants in this trial may be prevented 
from being treated with other optogenetic methods which 
may be more effective (e.g. Allergan NCT02556736) or 
other types of therapies such as a bionic eye (e.g. Second 
Sight Medical Products) or stem cell therapy. Therefore, 
participating in an optogenetics trial may cause patients to 
lose their opportunity and eligibility for future treatment. 
Ethically speaking, the inability to obtain treatment due 
to potential harm and irreversibility of a treatment is only 
one concern [17]. The key point here is not that patients 
missed out on another treatment, but because they partici-
pated in an experimental optogenetics trial, they missed 
out on better treatment in the future.

Sponsor obligations

Given the permanent nature of invasive optogenetic inter-
ventions, post-trial obligations raise enormous safety 
and moral questions. What happens if the trial needs to 
be terminated due to unexpected reasons (i.e. financial, 
regulations, etc.)? The first company which tested optoge-
netics in humans, Retrosense, was bought by Allergan in 
2016. When new investors are introduced into a protocol, 
it is never clear whether a trial will remain active, and if 
not, what will happen to the irreversibly inoculated par-
ticipants. Will participants still have access to the gog-
gles required for visual function? Even if a protocol is 
financially robust and remains active, there are unknown 
consequences. What happen if a participant has received 

therapeutic benefits from the trial but the protein expres-
sion degrades or inoculated cells do not survive, returning 
them to blindness and preventing any future treatment? 
There is potential for participants to experience unantici-
pated psychological harms at the end of the trial by virtue 
of treatment degradation or withdrawal by loss of access 
to the goggles [18–20]. Where possible, participants 
receiving a therapeutic benefit from the optogenetics trial 
should be offered ongoing access to the goggles and other 
facilities required for maintaining vision. Any protocol 
involving irrevocable and permanent change to the nerv-
ous system, not just the optogenetics trial, should account 
for the safety and ethics of an early terminating trial, 
especially when irreversible harms may appear in small 
numbers of cases long after termination. Post-trial access 
to medical support will likely be challenging given the 
limited number of clinics capable of dealing with innova-
tive optogenetic trials. Participants may be forced to attend 
unique, specialized laboratories, affecting future lifestyle 
and residency options. They may also be dependent on 
highly trained individuals that are no longer employed on 
the trial or do not have access to the necessary facilities. 
Clinical teams and patients should be prepared to address a 
potential ending of the trial. Equally important, many ethi-
cal issues may only become apparent one or two decades 
after treatment, as with other technologies which were also 
in first-in-human trial at some point. For instance, deep 
brain stimulation, which was an experimental invasive 
brain surgery in the 1990s targeting PD, now appears to be 
linked to an increase of life expectancy of PD’s patients, 
according to recent longitudinal follow-up studies [21–23]. 
However, this longitudinal medical benefit does not come 
without attendant negative consequences, such as inducing 
iatrogenic harms that were not initially expected when the 
trials were first conducted [24, 25]. Should optogenetics 
become an effective and safe treatment for neurodegen-
erative diseases, there is a strong chance it will impact 
life expectancy and disease trajectory, and therefore has a 
potential for inducing iatrogenic harms to patients.

Beyond post-trial responsibilities and accountability for 
participating companies and clinicians, questions of access 
and justice from potential optogenetic treatments must be 
anticipated. How should optogenetic treatments be allocated 
given a scarcity of resources? Will patients only located in 
advantageous socio-economic groups be the beneficiary of 
the treatment? Where possible, distribution of optogenetic 
interventions should be made by the public health care sys-
tem to ensure a fair and equitable approach over all strata of 
the population, eliminating potential injustice in treatment 
administration.
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Conclusion

As a reminder, the false hope of treatment may be synony-
mous with participant recruitment in these types of experi-
mental optogenetics trials. Due to the progressive nature of 
RP, many patients may have exhausted all standard therapeu-
tic options, and consider an experimental optogenetics trial 
as a last resort treatment. Patients with RP are at increased 
risk of conflating participation in a clinical trial with access-
ing novel medical treatment, a well-known phenomenon 
during experimental stage trials identified as therapeutic 
misconceptions [26]. Desperate patients may not realize the 
disadvantages of participating in an experimental optoge-
netics trial, because the design of the protocol focuses on 
safety rather than effective therapeutic outcomes (i.e. aim 
at non-therapeutic endpoints, not at the needs or interests 
of participants). While there are many novel technologies 
entering clinical trial which may have profound benefits to 
individuals and society, clinicians and trial participants must 
not be blind to their potential short- and long-term risks of 
harm.
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