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Abstract

Advances in imaging acquisition techniques allow multiple imaging modalities to be

collected from the same subject. Each individual modality offers limited yet unique

views of the functional, structural, or dynamic temporal features of the brain. Multi-

modal fusion provides effective ways to leverage these complementary perspectives

from multiple modalities. However, the majority of current multimodal fusion

approaches involving functional magnetic resonance imaging (fMRI) are limited to 3D

feature summaries that do not incorporate its rich temporal information. Thus, we

propose a novel three-way parallel group independent component analysis (pGICA)

fusion method that incorporates the first-level 4D fMRI data (temporal information

included) by parallelizing group ICA into parallel ICA via a unified optimization frame-

work. A new variability matrix was defined to capture subject-wise functional vari-

ability and then link it to the mixing matrices of the other two modalities. Simulation

results show that the three-way pGICA provides highly accurate cross-modality link-

age estimation under both weakly and strongly correlated conditions, as well as com-

parable source estimation under different noise levels. Results using real brain

imaging data identified one linked functional–structural–diffusion component associ-

ated to differences between schizophrenia and controls. This was replicated in an

independent cohort, and the identified components were also correlated with major

cognitive domains. Functional network connectivity revealed visual–subcortical and

default mode-cerebellum pairs that discriminate between schizophrenia and controls.

Overall, both simulation and real data results support the use of three-way pGICA to
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[Correction added after online publication on

27 November 2021, the order of grant

numbers has been changed for the funder,

National Natural Science Foundation of

China.]

identify multimodal spatiotemporal links and to pursue the study of brain disorders

under a single unifying multimodal framework.
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4D fMRI, group ICA, independent component analysis (ICA), parallel ICA, three-way multimodal
fusion, unify

1 | INTRODUCTION

Advances in brain imaging acquisition technologies have enabled the

collection of more than one imaging modality from each subject, for

example, magnetoencephalography (MEG), positron emission tomog-

raphy, and magnetic resonance imaging (MRI), which includes struc-

tural MRI (sMRI), functional MRI (fMRI), and diffusion MRI (dMRI).

Each of them provides limited yet unique views of the functional,

structural or dynamic temporal features of the brain. For example,

sMRI provides higher spatial resolution on specific brain tissue types

(e.g., gray matter, white matter, cerebrospinal fluid) but lacks temporal

information, while MEG measures brain electrical activity with high

temporal resolution, fair spatial resolution, but no tissue specificity.

The limitations of each individual modality and their evident mutual

complementarities suggest that advances in multimodal data fusion

could be key to maximizing clinical and scientific benefit from large

multimodal imaging studies (Baltrusaitis, Ahuja, & Morency, 2019;

X. Zhang, Pan, et al., 2020).

Several multimodal fusion methods have been proposed with the

purpose of taking full advantage of complementary brain imaging

modalities (Sui, Adali, Yu, Chen, & Calhoun, 2012). A representative

two-modality (two-way) fusion approach named parallel independent

component analysis (pICA) (Liu et al., 2009) maximizes both intra-

modality independence and intermodality correlation to identify

linked independent component (IC) pairs between two modalities. An

important feature of pICA is that each modality is characterized by its

own mixing matrix. For three-way fusion, joint ICA (jICA) (Calhoun

et al., 2006) maximizes the independence among the concatenated

multimodal features but generates the same mixing matrix for all

modalities. Multiset canonical correlation analysis (mCCA) (Li Yiou,

Wang, & Calhoun, 2009) maximizes intersubject covariation across

any number of modalities but without an independence constraint,

and limited to orthogonal features, which is extended to grouped

sparse CCA (X. Zhang, Pan, et al., 2020). The mCCA + jICA (Sui

et al., 2011) method maximizes intramodality independence and inter-

subject covariation by combining mCCA and jICA using a two-step

process, where mCCA acts as preprocessing for jICA. Another two-

stage fusion is multiple regression (De Martino et al., 2010), in

which source separation was performed first, then followed by a

cross-modality regression. Linked ICA (Groves, Beckmann, Smith, &

Woolrich, 2011) is based on Bayesian framework, which is extend

to identify phenotypes from large population sample (W. K. Gong,

Beckmann, & Smith, 2021) and to extract spatially and temporally

shared components of complex-valued fMRI by shift-invariant

canonical polyadic decomposition (X. F. Gong, Lin, Cong, & De

Lathauwer, 2018; Kuang et al., 2020). Meanwhile, the three-way

pICA (Vergara et al., 2014) method maximizes intramodality inde-

pendence and intermodality correlation under a unified optimiza-

tion framework. Another multiway fusion method, multidataset

independent subspace analysis (Silva, Plis, Adali, Pattichis, &

Calhoun, 2020) accomplishes the fusion aim from a subspace inde-

pendence perspective.

While the aforementioned methods use an unsupervised fusion

paradigm, supervised models also exist, offering alternative models for

hypothesis testing. The pICA with reference (Chen et al., 2013)

imposes an additional constraint upon spatial maps to minimize the

distance between an IC and the reference. The reference-based

mCCAR + jICA (Qi, Calhoun, et al., 2018) method adds a correlation

constraint on the mixing matrix that can identify underlying co-

varying patterns that correlate with the reference (Qi, Yang,

et al., 2018; Qi et al., 2020; Qi, Schumann, et al., 2021). Supervised

big FMRIB's linked ICA can use multiple nonimage derived pheno-

types to supervise multimodal MRI fusion (Gong Weikang, Ying-Qiu,

Smith Stephen, & Beckmann Christian, 2021). Importantly, all the

fusion methods mentioned so far are restricted to second-level fMRI

features (e.g., 3D regional homogeneity or connectivity maps,

subjects � imaging variables), rather than first-level 4D fMRI

(subjects � voxels � time points) (Plis et al., 2018). Under this 3D

framework, the valuable temporal dynamic information in fMRI data

cannot be fully utilized.

The temporal variation conveys important information in fMRI

signal (Yan et al., 2019). However, most multimodal methods rely on

preprocessing fMRI with dimensionality reduction approaches that

collapse the temporal information and yield 3D images. Reducing 4D

fMRI to 3D spatial data in such manner before data fusion does not

guarantee a full, efficient utilization of the temporal information dur-

ing the fusion step. Although there are methods incorporating the first

level 4D fMRI in single subject case which assume concurrent

EEG/fMRI data (Martinez-Montes, Valdes-Sosa, Miwakeichi,

Goldman, & Cohen, 2004; Van Eyndhoven et al., 2021) and multi-

subject case (Chatzichristos, Davies, Escudero, Kofidis, &

Theodoridis, 2018; Christos Chatzichristos, De Lathauwer,

Theodoridis, & Van Huel, 2020; Jonmohamadi et al., 2020), most of

them are limited to fusion of EEG and fMRI. We previously proposed

a two-way parallel GICA + ICA (Qi et al., 2019) to incorporate first-

level 4D fMRI data by parallelizing group ICA (GICA) and ICA, aiming

to enable direct fusion of first-level fMRI features, but it was limited

to two modalities. In this study, we extended parallel GICA + ICA to
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enable three-way fusion by integrating GICA into a three-way pICA

framework.

In addition to denoising the BOLD fMRI signal in preprocessing

(Churchill, Raamana, Spring, & Strother, 2017), ICA can further isolate

artifact components from fMRI (Du et al., 2016; X. F. Gong, Wang, &

Lin, 2015; Niu et al., 2021). This is particularly noticeable in GICA

(Calhoun, Adali, Pearlson, & Pekar, 2001), which deal with 4D fMRI

from multiple subjects and not only extracts subject- and group-level

ICs but also their time courses. In contrast, three-way pICA identifies

linked component triangles among all three modalities by simulta-

neously maximizing both intermodality association (at the subject

expression level) and intramodality independence (at the group com-

ponent level). Building on this three-way framework, we exploit

GICA's success with temporal information by letting it take the place

of the customary ICA of 3D fMRI data from traditional three-way

pICA. Fittingly, our approach enables analysis of temporal information

included 4D fMRI together with the other two 3D modality features,

in a single three-way pICA setting, thus keeping the original properties

of both GICA and three-way pICA.

In order to combine GICA and pICA within a single model, a vari-

ability matrix that calculate the L2-distance between subject-specific

and group maps was defined. We then maximize the correlation

among variability matrices estimated from each of the three modali-

ties in a three-way parallel ICA decomposition. The summarized vari-

ability matrices of each modality portray how much the subject-

specific components different from group-common maps. In turn,

direct correlations can be measured between every modality pair to

achieve data fusion of 4D fMRI (subjects � voxels � time points), plus

two other 3D modality features, which in this work are gray matter

volume (GMV) from sMRI and fractional anisotropy (FA) from dMRI

(both subjects � voxels). Based on this intuition, a novel three-way

parallel GICA (three-way pGICA) method that leverages the temporal

information from 4D fMRI ensues, enabling the identification of a

linked fMRI–sMRI–dMRI component triangle was proposed.

Notably, the fMRI decomposition obtained with the proposed

three-way pGICA is imbued with knowledge from the other two

modalities and, naturally, differs from that obtained with simple GICA.

Therefore, we can also evaluate its functional network connectivity

(FNC) (Damaraju et al., 2014; Gonzalez-Castillo & Bandettini, 2018;

Karahanoglu & Van De Ville, 2015; Preti, Bolton, & Van De

Ville, 2017; Y. Zhang, Zhang, et al., 2020) to identify abnormal cross-

network FNCs that are also related with diffusion and structural

covariations. In this study, we verified the effectiveness of three-way

pGICA in both simulation and human brain data. The Function Bio-

medical Informatics Research Network (fBIRN) dataset (N = 254)

(Keator et al., 2016) was used as a discovery and the Center for Bio-

medical Research Excellence (Jorge Nocedal, 1999) (COBRE, N = 89)

was an independent replication. Results show that three-way pGICA

can generate a linked fMRI–sMRI–dMRI component triangle in both

simulation and human brain data that can be validated in an indepen-

dent cohort. These results support the use of three-way pGICA for

stable identification of reliable spatiotemporal intermodality linkage

among three modalities to study brain disorders under a single unify-

ing multimodal framework.

2 | METHODS AND MATERIALS

2.1 | GICA of fMRI

X1 ¼ x1;x2;…;xN½ � represents concatenated 4D fMRI over subjects (N)

in the temporal direction (T), where xi is the T�V1 data matrix of sub-

ject i, V1 represents the number of voxels, and X1 has dimensions of

NT�V1. The mean was removed from each subject data xi before

principal component analysis (PCA). PCA is used to reduce subject-

and group-level dimensions for fMRI. Let Pi ¼ F�i �xi be the reduced

data matrix (L�V1) of subject i, where F�i is whitening matrix (L�T)

obtained by PCA decomposition at subject-level (the notation indi-

cates that F�i is the pseudoinverse of the rank L subject dewhitening

matrix Fi ¼DiΛ1=2
i , based on the top L eigenvalues of the eigenvalue

decomposition EVD Σxið Þ¼DiΛiD
>
i of the T�T subject-specific

covariance matrix Σxi ), and L represents the rank from PCA decompo-

sition. Then, the PCA-reduced data Pi is concatenated over subjects

along the temporal dimension. After that, a group-level PCA is per-

formed to further reduce the concatenated group data to the number

of components (M), as in (1):

Z1 ¼G�
1

F�1 �x1
..
.

F�N �xN

2
664

3
775 ð1Þ

where G�
1 is the M�NL group-level whitening matrix generated from

group-level PCA (G�
1 is the pseudoinverse of the rank M group

dewhitening matrix G1), and Z1 is the M�V1 reduced fMRI matrix.

Following ICA decomposition of Z1 (details provided further

below), we get Z1 ¼A1�Sgroup, where Sgroup is the estimated M�V1

aggregate group-level fMRI IC matrix (one component per row) and

A1 is the estimated M�M mixing matrix. Substituting Z1 ¼A1�Sgroup

into (1) and multiplying G1 (group-level dewhitening matrix) on both

sides, we obtain the rank M approximation:

G1A1Sgroup ¼M
F�1 �x1

..

.

F�N �xN

2
664

3
775 ð2Þ

The group dewhitening matrix G1 can be partitioned by subject, as in

the following equation:

G11

..

.

G1N

2
664

3
775A1Sgroup ¼M

F�1 �x1
..
.

F�N �xN

2
664

3
775 ð3Þ

1282 QI ET AL.



Taking each partition i, we can write the following least-squares

approximation for subject-specific ICs:

G1iA1Ssubi ¼ F�i �xi ð4Þ

bSsubi ¼ G1iA1ð Þ�F�i �xi ð5Þ

where bSsubi consists of spatial fMRI ICs specific to subject i and �ð Þ�
indicates the pseudoinverse. Likewise, multiplying two sides of (4) by

Fi (subject-level dewhitening matrix) yields the final data reconstruc-

tion approximation for subject i by least squares:

bxi ¼ FiG1iA1Ssubi ð6Þ

which reveals the final ICA decomposition of xi by means of its least

squares approximation (bxi). The M�V1 Ssubi matrix contains M

subject-specific ICs, while the T�M FiG1iA1 mixing matrix contains

the corresponding subject-specific time courses. These are the classic

linear back-reconstruction equations from GICA1 (Calhoun

et al., 2001).

2.2 | Three-way parallel GICA

In order to take advantage of the first-level temporal fMRI dynam-

ics in a combined GICA and pICA framework, we define a variability

matrix (C1) for three-way parallel fusion that captures component-

wise subject-level functional variability to link with the other two

modalities (Qi et al., 2019; Qi, Plis, et al., 2021). Specifically, each ele-

ment Ci,j
1 is defined for the ith subject as the L2-distance between the

jth group-level IC (Sgroup,j) and the jth subject-level IC (Ssubi ,j), where

i¼1,2,…,N, j¼1,2,…,M. Naturally, the dimensionality of C1 is equal

to A2 and A3 (subject expression profiles) from sMRI and dMRI,

respectively. Following the three-way pICA framework (8), we maxi-

mize the independence within each modality while also adding con-

straint terms that maximize the modality linkage among functional

(C1Þ and structural (A2, A3) variabilities (Figure 1c).

The intersubject functional variability matrix C1 is estimated as

Ci,j
1 ¼ Sgroup,j�Ssubi ,j

�� ��2
2 ¼ W j

1G
�
1

F�1 �x1
..
.

F�N �xN

2
664

3
775�W j

1G
�
1iF

�
i �xi

��������

��������

2

2

ð7Þ

where W1 ¼A�1
1 and W j

1 is the jth row of W1. C1 is normalized as

C1=norm C1ð Þ to avoid the component scaling.

Suppose that the N�V2 matrix X2 and the N�V3 matrix X3 rep-

resent the sMRI and dMRI data, respectively (V2 and V3 represent the

number of voxels in each modality). Akin to fMRI, the mean was also

removed from sMRI (X2) and dMRI (X3) modality. A PCA reduction

step (Z2 ¼G�1
2 �X2 for sMRI, Z3 ¼G�1

3 �X3 for dMRI) followed by

ICA decomposition yields the following for the remaining modalities

(assuming the subject-level data accounts for only one row of X2

or X3):

F IGURE 1 Framework of three-way parallel group independent component analysis (GICA) fusion method. (a) Preprocessed first-level
spatiotemporal 4D functional magnetic resonance imaging (fMRI) (X1), and second-level voxelwise gray matter volume (GMV) from 3D structural
MRI (sMRI) (X2) and voxelwise FA from 3D diffusion MRI (dMRI) (X3). (b) Feature matrix for each modality. (c) Three-way parallel GICA (pGICA)
that maximize the independence for all the three modalities based on independent component analysis (ICA) and GICA portions individually, and

maximize the correlation between subject expression profiles of sMRI and dMRI from ICA and the variability matrix of fMRI from GICA. (d,e)
Group-level and subject-level variability matrix and spatial components generated from GICA and ICA portions. (f) Functional network
connectivity (FNC) analysis for time courses of fMRI modality. GPCA: group-level PCA; GICA: group ICA; G1: fMRI dewhitening matrix from
GPCA; Fi: fMRI dewhitening matrix generated from subject-level PCA (sPCA); G2 and G3: sMRI and dMRI dewhitening matrix from PCA,
respectively; Sgroup,j: jth group component; Ssubi ,j: jth component of subject i; C1: variability matrix for fMRI; A2 and A3: mixing matrix for sMRI and
dMRI. ΔW1,Info, ΔW2,Info, and ΔW3,Info represent the Infomax gradient. ΔW1,C1, ΔW2,A2, and ΔW3,A3 are the between-modality linkage-regularized
gradient
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X2 ¼ G2�W�1
2

� �
�S2, A2 ¼G2�W�1:

2

X3 ¼ G3�W�1
3

� �
�S3, A3 ¼G3�W�1

3

ð8Þ

where G2 and G3 are the N�M group-level dewhitening matrices, Z2

and Z3 are the M�V2 and M�V3 reduced matrices for sMRI and

dMRI, respectively, and likewise for the corresponding N�M A2 and

A3 mixing matrices. Here, S2 (M�V2) and S3 (M�V3) are the

modality-specific IC matrices, each with M components.

We then formulate the cost function of the proposed three-way

parallel GICA method as:

max
W1,W2,W3

H Y1ð ÞþH Y2ð ÞþH Y3ð Þþα1Corr C1l , A2mð Þ2

þα2Corr C1l, A3kð Þ2þα3Corr A2m,A3kð Þ2 ð9Þ

where

H Y lð Þ¼�E ln fy Y1ð Þ½ ��E ln fy Y2ð Þ½ ��E ln fy Y3ð Þ½ � ð10Þ

Corr C1l, A2mð Þ¼ Cov C1l , A2mð Þ
Std C1lð Þ �Std A2mð Þ

Corr C1l, A3kð Þ¼ Cov C1l , A3kð Þ
Std C1lð Þ �Std A3kð Þ

Corr A2m, A3kð Þ¼ Cov A2m, A3kð Þ
Std A2mð Þ �Std A3kð Þ

ð11Þ

and

Y1 ¼ sigmoid U1ð Þ, U1 ¼W1�Z1þW10�1 >, A1 ¼W�1
1

Y2 ¼ sigmoid U2ð Þ, U2 ¼W2�Z2þW20�1 >, B2 ¼W�1
2

Y3 ¼ sigmoid U3ð Þ, U3 ¼W3�Z3þW30�1 >: B3 ¼W�1
3

ð12Þ

with sigmoid Uqð Þ¼ 1
1þe�Uq computed element-wise (q¼1,2,3), Ui and

Y i are in dimension of M�Vi. H �ð Þ is the differential entropy, E �ð Þ is

the expected value, and Corr �ð Þ is the Pearson correlation coefficient.

l,m,kf g are the IC indices for the components selected (the top corre-

lated component pair were selected) in each optimization iteration.

fy Yqð Þ is the probability density function of Yq and Wq0 represents

the bias vector for each modality.

Note that the objective function (9) looks like the three-way pICA

(Vergara et al., 2014); however, H Y1ð Þ represent GICA portion on 4D

fMRI, but not the ICA on 3D fMRI. Moreover, we redefined Ci,j
1 (vari-

ability matrix as in Equation (7)) for fMRI to link with sMRI and dMRI.

This Ci,j
1 estimates how much the subject component different from

the group-common component. Thus, whether this difference is asso-

ciated with the other two modalities can be investigated. While in tra-

ditional three-way pICA, the three modalities are linked by maximizing

the correlation among mixing matrices Ai generated from each ICA

portion. The first three terms in (9) are solved parallel by the Infomax

(Makeig, Bell, Jung, & Sejnowski, 1996). The last three regularization

terms (correlation among selected columns of the variability matrices,

based on selected ICs) are optimized using the steepest ascent

method. Finally, based on the definitions given above, we obtain the

following updating rules.

For the first three terms (major updates for W1, W2, and W3,

using the relative gradient (Amari, 1998; Zarzoso & Hyvärinen, 2010)):

ΔW1 ¼ λ1
∂H Y1ð Þ
∂W1

¼ λ1 Iþ 1�2Y1ð ÞUT
1

h i
�W1

ΔW2 ¼ λ2
∂H Y2ð Þ
∂W2

¼ λ2 Iþ 1�2Y2ð ÞUT
2

h i
�W2

ΔW3 ¼ λ3
∂H Y3ð Þ
∂W3

¼ λ3 Iþ 1�2Y3ð ÞUT
3

h i
�W3

ð13Þ

and correspondingly for the bias weights:

ΔW10 ¼ λ1 1�2Y1ð Þ
ΔW20 ¼ λ2 1�2Y2ð Þ
ΔW30 ¼ λ3 1�2Y3ð Þ

ð14Þ

where λq is the learning rate, which is annealed periodically. For the

last three terms (minor updates for W l
1, W

m
2 , and Wk

3 based on C1l,

A2m, and A3k):

ΔW l
1 ¼ λc1:α1: rW l

1
Corr C1l, A2mð Þ2þrW l

1
Corr C1l, A3kð Þ2

n o

¼ λc1:α1:
2Corr C1l, A2mð Þ
Std C1lð ÞStd A2mð Þ� JT�Qþλc1:α1:

2Corr C1l, A3kð Þ
Std C1lð ÞStd A3kð Þ�KT�Q

ð15Þ

where

J¼ A2m�A2m
� ��Cov C1l , A2mð Þ C1l�C1l

� �
Var C1lð Þ

K¼ A3k�A3k

� ��Cov C1l, A3kð Þ C1l�C1l

� �
Var C1lð Þ

Q¼2 W l
1Z1� ξl

��� ��� ZT
1

� �

ξl ≜

W l
1G

�
11F

�
1 �x1

..

.

W l
1G

�
1NF

�
N �xN

0
BB@

1
CCA l¼1,2,…,Mð Þ

and A2m represents the mean of the mth column of A2 (likewise for

A3k below),

ΔA2m ¼ λc2:α2 rA2mCorr A2m, C1lð Þ2þrA2mCorr A2m, A3kð Þ2
n o

¼ λc2:α2:
2Corr A2m, C1lð Þ
Std A2mð ÞStd C1lð Þ�LTþλc2:α2:

2Corr A2m, A3kð Þ
Std A2mð ÞStd A3kð Þ�PT

ð16Þ

where

L¼ C1l�C1l

� ��Cov A2m,C1lð Þ A2m�A2m
� �

Var A2mð Þ
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P¼ A3k�A3k

� ��Cov A2m, A3kð Þ A2m�A2m
� �

Var A2mð Þ

and

ΔA3k ¼ λc3:α3 rA3k
Corr A3k , C1lð Þ2þrA3k

Corr A3k , A2mð Þ2
n o

¼ λc3:α3:
2Corr A3k , C1lð Þ
Std A3kð ÞStd C1lð Þ�VTþλc3:α3:

2Corr A3k , A2mð Þ
Std A3kð ÞStd A2mð Þ�RT

ð17Þ

where

V¼ C1l�C1l

� ��Cov A3k , C1lð Þ AA3k
�AA3k

� �
Var A3kð Þ

R¼ A2m�A2m
� ��Cov A3k , A2mð Þ A3k�A3k

� �
Var A3kð Þ

Following the updates on A2m and A3k , W2 and W3 are updated

as W2 ¼A�1
2 G2, and W3 ¼A�1

3 G3. Thus, the above updated on A2m

and A3k eventually becomes an update on W2m and W3k , due to the

relationship between Aq and Wq (A2 ¼W�1
2 , and A3 ¼W�1

3 ). λq is the

learning rate for H �ð Þ terms of fMRI, sMRI, dMRI and λcq is the step

size of Corr �ð Þ terms. In summary, there are two different procedures

to update W1, W2, and W3, one is from the regular Infomax frame-

work and the other is from the intermodality correlation regularizer.

We adaptively tune the values of λcq and αq in Equations (13)–(17) to

control the weight in the cross-modality correlation regularizer. The

criterion is that when the maximum value in W i is larger than 1:0�
108 (the predefined maximum weight), then annealing is triggered

with the update λcq ¼0:95 �λcq (likewise for αq) to prevent values in

W i from blowing up. All in all, our approach adds a further small

adjustment on W1,W2, andW3 by maximizing the cross-modality cor-

relations. Hence, the proposed three-way pGICA is using an “alternat-
ing” approach to optimize (9), that is, it iteratively alternates between

Infomax and Correlation optimization. Note that ΔWq and ΔWq0

(corresponding to H �ð Þ terms) are updated in mini-batches. Following,

at the end of each epoch, ΔW l
1, ΔA2m, and ΔA3k (corresponding to

Corr �ð Þ terms) are evaluated once in a single full batch update. The

number of mini-batches is the same for all modalities and the stopping

criteria is whether all modalities converge or W i meets the maxi-

mum (1:0�108).

2.3 | Simulation

In this simulation, a comparison among the proposed three-way

pGICA, separate GICA/ICA, and separate GICA/pICA was conducted

to estimate the ability of source separation accuracy and cross-

modality linkage detection. Eight nonoverlapping spatial brain maps

were generated by the simTB toolbox (Erhardt, Allen, Wei, Eichele, &

Calhoun, 2012) (https://trendscenter.org/software/SimTB) for fMRI

and sMRI. Eight fiber bundles from the Johns Hopkins University

white matter atlas were selected to simulate dMRI. Thus, the true

sources S1i for fMRI in dimension of 100�100, S2 for sMRI in dimen-

sion of 150�150, and S3 for dMRI in dimension of 200�200 were

generated. The number of time points was set to 100. 100�8 time

course matrices were generated from simTB. Mixing matrices A2

(sMRI) and A3 (dMRI) were normally distributed elements in a size of

100�8. FMRI variability matrix C1 is generated by the L2 distance

between subject- and group-level brain maps. The simulated connec-

tions among the three modalities were carefully designed by selecting

one column (the third, fifth, and eighth columns for fMRI, sMRI, and

dMRI, respectively) from each of C1, A2, and A3 to be correlated under

certain noise conditions. Therefore, the simulated data contains only

one linkage triangle, and all other components are not linked.

Here, we used two ways to design the simulation. One is fixing

noise: under peak signal-to-noise ratio (PSNR) = 5, the linkage between

modalities were varied from weak (r = .2) to strong (r = .9) for both fMRI

with sMRI and fMRI with dMRI pairs, with a fixed strong correlation

between sMRI and dMRI (r = .8). The other one is fixing modality link-

ages: r = .7 between fMRI and sMRI, r = .18 (not statistically significant

at uncorrected p > .05) between sMRI and dMRI, and r = .6 between

fMRI and dMRI, and changing noise levels to PSNR values from �10 to

17 dB. The final observation data matrices result from the linear combi-

nation of sources and mixing matrices plus a noise term: X¼A �SþN.

For fMRI, each xi is generated by xi ¼TCiS1subi þNi i¼1,2,…Nð Þ. This
resulted in 100 simulated subjects, with 10,000; 22,500; and 40,000

voxels for fMRI, sMRI, and dMRI, respectively.

2.4 | Real brain data

In real data application, two independent cohorts were used. For the

discovery dataset we used fBIRN (Keator et al., 2016), including

123 SZ patients (38.8 ± 11.7, 30F/93M) and 131 gender-age matched

healthy controls (HCs) (36.8 ± 10.9, 39F/92M). FBIRN demographic

and cognitive scores are available in Supplementary Table 1. All partic-

ipants are adults between 18 and 60 years. DSM-IV (SCID)

(M. B. First, Spitzer, Gibbon, & Williams, 2002) was used to diagnose

SZ patients. Cognition was measured by the Computerized Multi-

phasic Interactive Neurocognitive System (CMINDS) (van Erp

et al., 2015). There is no gender (p = .30) or age (p = .17) differences

between HC and SZ for the discovery fBIRN.

We also included a validation dataset called COBRE (Aine

et al., 2017) consisting of 47 SZs (39.6 ± 13.1, 12F/35M) and 42 gen-

der-age matched HCs (37.0 ± 11.8, 10F/32M). Cognition was esti-

mated by the Measurement and Treatment Research to Improve

Cognition in Schizophrenia Consensus Cognitive Battery (MCCB)

(Green, Kern, & Heaton, 2004). COBRE demographic and cognitive

scores are shown in Supplementary Table 2. There were no gender

(p = .85) or age (p = .32) differences in the COBRE data. Written

informed consent was obtained for both fBIRN and COBRE which is

approved by the Institutional Review Boards. Resting fMRI, sMRI, and

dMRI were collected for fBIRN and COBRE. Preprocessing steps and

imaging parameters are in Supplementary “Imaging preprocessing.”
sMRI GMV and dMRI FA were used as features for the fusion input.
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3 | RESULTS

3.1 | Results of simulation

The proposed three-way pGICA (red) was compared with separate

GICA/ICA (green), separate GICA/pICA (blue) on simulated data to

test the ability in detecting between modality linkages. Figure 2a–c

shows the results for detecting intermodality association under

fixed noise levels PSNR = 5 for different methods. The black lines

in Figure 2a–c represent the true modality linkage (fMRI–sMRI and

fMRI–dMRI: [0.2–0.9]; sMRI–dMRI: 0.8). Results show that three-

way pGICA can get relatively high cross-modality linkage estimation

comparing with separate GICA/ICA, and separate GICA/pICA with-

out fusion. Separate GICA/ICA gets the worst linkage estimation

(Figure 2c), since there is no linkage regularization between sMRI

and dMRI in separate GICA/ICA without fusion. Due to the lack of

regularization between fMRI and the other two modalities, the link-

age estimation accuracy is lower for fMRI-sMRI (Figure 2a) and

fMRI-dMRI (Figure 2c) than three-way pGICA when comparing sep-

arate GICA/ICA, separate GICA/pICA. Figure 2d–f shows the

source accuracy estimation for fMRI, sMRI, and dMRI under chang-

ing modality linkages. The correlation between the true sources and

the estimated components was used as source estimation accuracy.

It is evident that the proposed three-way pGICA can achieve

comparable source estimation accuracy relative to separate GICA/

pICA, and relative to separate GICA/ICA. This means that without

losing the source separation ability in ICA portions, three-way

pGICA can get more accurate modality linkage estimation, indicat-

ing the benefit of the proposed method. Collectively, these results

show that three-way pGICA provides accurate intermodality link-

age detection under both weak and strong correlations with com-

parable source decomposition.

We also compared three-way pGICA with its alternatives when

fixing the modality linkage but changing noise levels, as shown in

Figure 3. It is clear that three-way pGICA can achieve higher estima-

tion accuracy of between modality linkages (Figure 3a–c), and compa-

rable estimation accuracy for source separation (Figure 3d–f) under

different noise levels. As expected, estimation accuracy decreases as

noise level increases.

3.2 | Results on real data application

3.2.1 | Linked fMRI–sMRI–dMRI triangle

In the fBIRN data application, the preprocessed T�V1 images from

resting-state fMRI, GMV from sMRI and FA from dMRI were used as

feature input for the proposed three-way pGICA to identify three-

F IGURE 2 Simulated three-way data fusion comparison between three-way parallel group independent component analysis (GICA) (red),
separate GICA/independent component analysis (ICA) (green), and separate GICA/parallel ICA (pICA) (blue). (a–c) Modality linkage estimation
under fixed noise (peak signal-to-noise ratio [PSNR] = 5) with different level of associations (r = .2–.9). (d–f) Source estimation under different
modality linkage. The black lines in (a–c) represent the true simulated modality linkage
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way linked fMRI–sMRI–dMRI components. The component number

at subject-level (L) was set to 80 given the higher dimensionality of

the fMRI data, and the group-level component number (M) was set to

20 based on the MDL criterion (Li, Adali, & Calhoun, 2007) for the

fMRI modality. Following the three-way pGICA decomposition, two-

sample t tests were applied on the estimated mixing matrix within

each modality to compare group differences between patients of SZ

and HC within the identified component triangle.

Among the 20 generated ICs, the seventh fMRI IC, the sixth sMRI

IC, and second dMRI IC (Figure 4a) were the linked components trian-

gle (r = .25, p = 4.0e-05* between fMRI_IC7 and GM_IC6; r = .30,

p = 9.1e-07* between fMRI_IC7 and FA _IC2; r = .58, p = 9.1e-53*

between GM _IC6 and FA _IC2, Figure 4b). The symbol * means FDR

correction for multiple comparisons. The loadings of the component

triangle also show significant group difference (p = 7.9e-05*,

p = 1.3e-07*, p = 1.6e-04*, Figure 4c) for fMRI_IC7, GM _IC6, and

FA_IC2, respectively. For the aggregate fMRI component fMRI_IC7,

the red regions indicate a higher variability in HCs than SZs and the

blue regions are opposite. For sMRI and dMRI, the red brain regions

indicate a higher contribution weight in HCs than SZs. In SZ, higher

functional activity in thalamus, para-hippocampus, with lower activity

in cerebellum, are accompanied with lower GMV in anterior cingulate

cortex (ACC), insula, prefrontal and para-hippocampus, plus lower FA

in forceps major and forceps minor. Detailed anatomical information

of the identified multimodal brain regions is summarized in Supple-

mentary Table 3.

3.2.2 | Modality specific component

Apart from the linked three-way fMRI–sMRI–dMRI components, we also

identified one fMRI component (fMRI_IC18, Figure 5), containing the left

attention network, whose time courses were anticorrelated with atten-

tion scores (r = �.2, p = .004). This result highlights the ability of the

proposed method in detecting both linked multimodal components as

well as modality specific component within the joint model.

3.2.3 | Correlation with cognition

We found that the loadings of the identified linked GM_IC6 and

FA_IC2 are also correlated with major cognitive domains, including

speed of processing (r = .40, p = 2.2e-10* for GM; r = .30, p = 2.4e-

06* for FA), working memory (r = .33, p = 3.2e-07* for GM), verbal

learning (r = .35, p = 5.0e-08* for GM; r = .30, p = 2.1e-06* for FA),

visual (VIS) learning (r = .36, p = 1.7e-08* for GM; r = .31, p = 1.0e-

06* for FA) and composite scores (r = .39, p = 1.1e-09* for GM;

r = .34, p = 1.4e-07* for FA), as displayed in Figure 6.

3.2.4 | FNC analysis

One of the advantages of the proposed three-way pGICA compared

with traditional three-way fusion methods is that, we can also

F IGURE 3 Comparison of modality linkage and source separation under different noise levels with fixed intermodality correlation among
three-way parallel group independent component analysis (GICA) (red), separate GICA/independent component analysis (ICA) (green), and
separate GICA/parallel ICA (pICA) (blue). The black lines in (a–c) represent the true simulated modality linkage
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calculate FNC by subject-specific time courses of the identified fMRI

components after the fusion analysis. These fMRI components were

then manually classified into seven categories: cerebellar, auditory, VIS,

sensorimotor, default-mode network (DMN), subcortical (SC), and cogni-

tive control (CC) networks based on the brain regions in the compo-

nents. The mean FNC matrices of SZ and HC are displayed in Figure 7a,

b. The group difference FNC matrix between SZ and HC is displayed in

Figure 7c. Values in Figure 7c are presented as �log10 pð Þ� sign tð Þ.

Results show that the VIS–SC (fMRI_IC7, Figure 4c) and DMN–CC

are group discriminating FNC pairs (p< :001, FDR corrected).

3.2.5 | Linkage replication in COBRE dataset

Here, we further tested the stability of our proposed method in

detecting modality linkage, that is, whether the linkage among

F IGURE 4 Linked independent component (IC) triangle that also keep group difference in functional magnetic resonance imaging (fMRI),
structural MRI (sMRI), and diffusion MRI (dMRI). (a) The Z-scored brain maps (jZj > 2). (b) Correlation between loadings among different modality
features. (c) Group difference between SZ and healthy control (HC) on the loadings for the linked IC triangle

F IGURE 5 Modality specific
left attention network in
fMRI_IC18, whose time courses
correlated with attention scores
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fMRI_IC7, sMRI_IC6, and dMRI_IC2 extracted in fBIRN can be

replicated in the independent COBRE dataset, by performing

cross-site linear projection analysis. Starting with sMRI, XfBIRN
sMRI ¼

AfBIRN
sMRI �SfBIRNsMRI in the fBIRN cohort. For the validation cohort, we

obtained the mixing matrix by linear projection as:

ACOBRE
sMRI ¼XCOBRE

sMRI � SfBINR
sMRI

� ��
. The same approach was used for dMRI

projection from fBIRN to COBRE.

For fMRI, we start with XfBIRN
fMRI ¼ xfBIRN1,fMRI;x

fBIRN
2,fMRI;…;xfBIRNN,fMRI

h i
rep-

resenting the fMRI data for fBIRN cohort. After subject-level and

group-level PCA, we have

ZfBIRN
fMRI ¼ GfBIRN

fMRI

� ��
FfBIRN1,fMRI

� ��
�xfBIRN1,fMRI

..

.

FfBIRNN,fMRI

� ��
�xfBIRNN,fMRI

2
66664

3
77775 ð18Þ

where ZfBIRN
fMRI (M�V1) is the reduced data matrix, GfBIRN

fMRI

� ��

(M� N �Lð Þ) and FfBIRNi,fMRI

� ��
(L�T) are the group-level and subject-level

whitening matrices, respectively. Here, the same L, which means the

same mask, for COBRE and fBIRN. After ICA decomposition, we can

calculate ZfBIRN
fMRI ¼AfBIRN

fMRI �SfBIRNgroup,fMRI, where AfBIRN
fMRI is the M�M mixing

F IGURE 6 Association with Computerized Multiphasic Interactive Neurocognitive System (CMINDS) cognitive domains of linked component
pairs

F IGURE 7 Functional magnetic resonance imaging (fMRI) functional network connectivity (FNC) matrix based on results of three-way parallel
group independent component analysis (pGICA). (a) SZ mean FNC matrix. (b) Healthy control (HC) mean FNC matrix. (c) Group discriminating
FNC matrix. The notation “xxx” denotes elements where p< :001 (FDR corrected). The components' indexes are displayed in the diagonal cells of
the FNC matrix
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matrix for fMRI and SfBIRNgroup,fMRI is the M�V1 group-level matrix of ICs.

Thus, we obtained a group component for COBRE by linear projection

as: ACOBRE
fMRI ¼ZCOBRE

fMRI � SfBIRNgroup,fMRI

� ��
: The subject-specific components

for COBRE were obtained as:

SCOBRE
subi

¼ GCOBRE
i,fMRI ACOBRE

fMRI

� ��1
FCOBRE
i,fMRI

� ��
�xCOBRE

i,fMRI ð19Þ

where GCOBRE
i,fMRI is the ith partition of the GCOBRE

fMRI dewhitening matrix

(i¼1,2,…,N, where N is number of subjects).

Finally, we can calculate the between-subject functional variabil-

ity matrix CCOBRE
fMRI from Equation (7). Correlation analyses were further

performed on the loadings of the projected target component

between CCOBRE
fMRI _IC7, ACOBRE

sMRI _IC6, and ACOBRE
dMRI _IC2. Results (Figure 8)

show that the triangle linkage detected in fBIRN can be replicated in

COBRE cohort (r = .29, p = .001* between fMRI_IC7 and GM_IC6;

r = .23, p = .02 between fMRI_IC7 and FA_IC2; r = .44, p =1.6e-05*

between GM_IC6 and FA_IC2), suggesting that the proposed three-

way pGICA provides a reliable association detection among fMRI–

sMRI–dMRI, that is, this association can be replicated in an indepen-

dent cohort. Furthermore, this replicable fMRI–sMRI–dMRI compo-

nent triangle also supports group differences between SZ and HC

(two-sample t tests: p = .003* for fMRI, p = .001* for sMRI, and

p = .006 for dMRI).

In addition to linear projection, we also performed the proposed

method on COBRE cohort separately to test the stability in both

modality linkage detection and pattern replication. The similarity of

component between fBIRN and COBRE was calculated. We calcu-

lated the spatial correlation of the identified linked component

between two cohorts using only voxels masked at jZj > 2. First, the

spatial maps were transformed into Z scores and masked at jZj > 2.

Then, we obtained two masks from FBIRN (mask_FBIRN) and COBRE

(mask_COBRE) respectively, which were used to perform the voxel

selection. Only voxels that fell in the union of the masks

(mask_FBIRN[mask_COBRE) were used to calculate the cross-cohort

spatial similarity. Thus, the total number of voxels for calculating the

spatial correlation is greatly reduced, for example, from n =153,594

(whole brain voxels) to m =2,135 (for the fMRI component). Spatial

similarity was finally performed on these commonly identified voxels

between two cohorts. In this way, the spatial similarity between

fBIRN and COBRE was measured (r = .56, r = .50, and r = .76 for

fMRI, GMV, and FA components, respectively), and the modality link-

age between the identified component for COBRE was also replicated

(Figure 9). It is clear that the proposed three-way GICA can extract a

stable linked component triangle across cohorts. More importantly,

PCC and caudate in fMRI, bilateral insula and ACC in GMV, and for-

ceps major and forceps minor in FA were replicated individually in

COBRE. This means that not only the modality linkage but also the

linked three-way spatial pattern can both be validated.

4 | DISCUSSION AND CONCLUSION

In this study, we proposed a novel approach to combine spatial and

spatiotemporal MRI data via a parallel fusion, called three-way pGICA.

We incorporate a regularizer that maximizes the correlation among

mixing matrices for fMRI, sMRI, and dMRI, aiming to extract three-

way linked components. Compared with existing three-way multi-

modal fusion methods (mCCA, jICA, three-way pICA), a key benefit of

three-way pGICA is that it can work directly with first-level 4D fMRI

to fuse it with 3D modalities such as sMRI and dMRI. Another benefit

is that fMRI FNC matrix can be calculated based on the results of

F IGURE 8 Linkage replication by projecting components from Function Biomedical Informatics Research Network (fBIRN) data to Center for
Biomedical Research Excellence (COBRE) data. The intermodality linkage detected in fBIRN cohort can be replicated in COBRE cohort, which also
supports group differences
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three-way pGICA. To the best of our knowledge, this is the first pro-

posed method that can incorporate 4D fMRI in a three-way fusion

framework. This method provides a new way to interpret linked pat-

terns among 4D fMRI and two other 3D modality features.

We note that several conditions were explored when designing

the simulations for comparing three-way pGICA with separate

GICA/pICA and separate GICA/ICA without fusion, in identifying

linked fMRI–sMRI–dMRI component triangle. Simulation results

indicate that the proposed three-way pGICA provides relatively

high intermodality linkage estimation accuracy under both strong

and weak modality correlation, as well as different noise levels. This

means that the proposed method does not inflate the link artificially

while achieving comparable accuracy on source map estimation.

Due to the lack of correlation regularization between fMRI and the

other two modalities, the modality linkage estimation of separate

GICA/pICA and separate GICA/ICA decreases significantly when

the real association is weak, or the noise level is high, as compared

with three-way pGICA. This demonstrates the advantages of three-

way pGICA in detection cross-modality association with weak link-

age and high noise levels, which are always the case in real human

brain data.

In real brain imaging application, we combined data from 4D

fMRI, GMV and FA from SZ patients and HCs. One linked component

triangle (fMRI_IC7-GM_IC6-FA_IC2) was identified. This triangle cor-

related between each modality pair and also presented significant

group difference between SZ and HC. In SZ patients, lower functional

activity in subcortical brain areas including thalamus and para-hippo-

campus, and higher activity in the cerebellum are identified in the

linked fMRI_IC7, consistent with widely reported thalamus-related

network dysfunction and cerebral dysconnections (Pinault, 2011).

GM_IC6 and FA_IC2 are correlated with several main cognitive

domains, which is consistent with the salience network (including

ACC, insula, and prefrontal cortex) detected in sMRI. The covaried

forceps major and forceps minor identified in dMRI are involved in

multiple high-order cognitive functions (Kochunov et al., 2017),

including attention, working memory (Hegde et al., 2020), and learning

(Davidson, 2019). Forceps major has also been reported in ENIGMA

large-scale coordinated study of white matter microstructural differ-

ences in schizophrenia (Kelly et al., 2017). Both modality linked com-

ponents (Figure 4) and modality specific components (Figure 5) can be

detected based on the proposed three-way pGICA. The left attention

network identified in fMRI_IC18 is consistent with the association

observed between time courses of fMRI_IC18 and attention scores.

After multimodal fusion analysis, we also performed post FNC analysis

of fMRI modality. Two abnormal FNC pairs, VIS-SC and DMN-CC

were identified discriminating between SZ and HC groups, which is

consistent with the VIS distortions impairment (Butler et al., 2007)

and self-related processing in SZ (Potvin, Gamache, & Lungu, 2019).

More importantly, the extracted linked fMRI–sMRI–dMRI triangle can

be replicated in the independent COBRE cohort by both linear projec-

tion and separately performing three-way GICA, suggesting that the

proposed three-way pGICA provides a reliable association detection

and pattern extraction among the three modalities. The reproducibility

of neuroimaging analysis methods has become a point of critical con-

cern in brain imaging studies (Botvinik-Nezer et al., 2020; Poldrack,

Gorgolewski, & Varoquaux, 2019). Here, we further demonstrate that

the proposed three-way pGICA method offers reproducible and reli-

able linked three-way component triangle detection among the three

MRI modalities, signaling its great potential for extracting linked multi-

modal imaging biomarkers in brain disorders.

F IGURE 9 The proposed three-way parallel group independent component analysis (GICA) was performed on Center for Biomedical
Research Excellence (COBRE) cohort separately to test whether both the pattern and the modality linkage identified in Function Biomedical

Informatics Research Network (fBIRN) can be replicated
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Apart from MRI modalities, single nucleotide polymorphisms,

methylation data, and behavioral assessments could also be used as

one of the modality fused along with the temporal information of

fMRI via the proposed three-way pGICA. This highlights the flexibility

of our method for general multimodal fusion. Moreover, in addition to

static FNC analysis, as shown in this work, dynamic FNC can also be

evaluated based on three-way pGICA results. A possible limitation is

that the linear back reconstruction for the fMRI modality has be com-

puted in each Infomax iteration to get the group- and subject-specific

fMRI components that generate the functional variability matrix C1

linking to the other two modality features, which is time consuming.

However, with current advanced computing server clusters, the linked

fMRI–sMRI–dMRI triangle can be extract within a few hours.

In sum, we proposed a new temporal information aware three-

way multimodal fusion method called three-way pGICA, and verified

its effectiveness in simulation and real brain imaging data. To the best

of our knowledge, this is the first proposed three-way fusion method

that can directly link 4D fMRI with the other two 3D MRI, seeking for

potential covaried multimodal biomarkers for brain disorders. Based

on the proposed three-way pGICA, we identified one linked fMRI–

sMRI–dMRI triangle that was associated with SZ deficits in major cog-

nitive domains in a discovery dataset and was replicated in an inde-

pendent dataset, highlighting the promise of the proposed method to

detect joint multiway multimodal biomarkers and capture novel infor-

mation that may be useful to characterize and predict brain disorders.

Future work needs to expand the flexibility of the detected associa-

tion structure to retrieve multiple triangles, as well as potentially miss-

ing and higher dimensional linkages.
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