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The equilibrium and reciprocal actions among appetite-stimulating (orexigenic) and
appetite-suppressing (anorexigenic) signals synthesized in the gut, brain, microbiome
and adipose tissue (AT), seems to play a pivotal role in the regulation of food intake and
feeding behavior, anxiety, and depression. A dysregulation of mechanisms controlling the
energy balance may result in eating disorders such as anorexia nervosa (AN) and bulimia
nervosa (BN). AN is a psychiatric disease defined by chronic self-induced extreme dietary
restriction leading to an extremely low body weight and adiposity. BN is defined as out-of-
control binge eating, which is compensated by self-induced vomiting, fasting, or
excessive exercise. Certain gut microbiota-related compounds, like bacterial chaperone
protein Escherichia coli caseinolytic protease B (ClpB) and food-derived antigens were
recently described to trigger the production of autoantibodies cross-reacting with
appetite-regulating hormones and neurotransmitters. Gut microbiome may be a
potential manipulator for AT and energy homeostasis. Thus, the regulation of appetite,
emotion, mood, and nutritional status is also under the control of neuroimmunoendocrine
mechanisms by secretion of autoantibodies directed against neuropeptides, neuroactive
metabolites, and peptides. In AN and BN, altered cholinergic, dopaminergic, adrenergic,
and serotonergic relays may lead to abnormal AT, gut, and brain hormone secretion. The
present review summarizes updated knowledge regarding the gut dysbiosis, gut-barrier
permeability, short-chain fatty acids (SCFA), fecal microbial transplantation (FMT), blood-
brain barrier permeability, and autoantibodies within the ghrelin and melanocortin systems
in eating disorders. We expect that the new knowledge may be used for the development
of a novel preventive and therapeutic approach for treatment of AN and BN.

Keywords: anorexia nervosa and bulimia, ghrelin, alpha-MSH, caseinolytic peptidase B, gut and blood-brain barrier
permeability, fecal microbial transplantation, microbiome, autoantibody
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INTRODUCTION

Anorexia nervosa (AN) and bulimia nervosa (BN) are serious
eating disorders with a substantial impact on the long-term
quality of life and broad psychological, social and economic
implications. These psychiatric disorders affect as many as 2-3%
of young women and adolescents (1) and exhibit substantial
mortality (with a mortality rate of 5-10% after 10 years) (2). Both
AN and BN are disorders with severe disturbances in eating
behavior. While AN is characterized by self-induced starvation,
amenorrhea, severe weight loss due to reduction of both fat mass
and fat free mass mainly at the expense of adipose tissue (AT),
refusal to gain and maintain a minimal normal body weight
(weight criterion for the diagnosis is under 85% of normal body
weight), manifestations of BN include recurrent episodes of
binge eating followed by inappropriate compensatory behavior
such as self-induced vomiting, laxative and diuretics misuse (3).

Despite extensive research efforts worldwide, the etiopathogenesis
of AN and BN has not been elucidated to date. Fetissov et al.
hypothesized that AN is an autoimmune disease caused by delayed
exposure to microorganisms (such as Group A b-hemolytic
Streptococcus, Escherichia coli, and Helicobacter pylori) in which
autoantibodies against appetite-regulating neuropeptides,
neurotransmitters, peptide hormones, and hypothalamic neurons
disturb appetite and mood and lead to decreased intake of food (4).
A higher prevalence of autoimmune diseases such as type 1 diabetes
and Crohn’s disease was observed among patients with eating
disorders (5). In this vein, the development of type 1 diabetes in
adolescence seems to be a risk factor for the subsequent development
of AN and BN (6). Further, patients with AN are suggested to be
susceptible to autoimmune diseases and thus, a bi-directional
relationship between eating disorders and autoimmunity was
considered (7–9).

Recently, Watson et al. (10) identified multiple genetic loci for
AN and reconceptualized AN as a metabo-psychiatric disorder.
Negative genetic correlations were documented between anorexic
patients and metabolic traits such as type 2 diabetes, insulin
Abbreviations: ACTH, adrenocorticotropin; AGRP, agouti-related protein; a-
MSH, alpha-melanocyte-stimulating hormone; AN, anorexia nervosa; anti-ClpB
Ig, enterobacterial caseinolytic protease B immunoglobulin; ARC, arcuate nucleus;
AT, adipose tissue; autoAbs, autoantibodies; BCFA, branched-chain fatty acids;
BMI, body mass index; BN, bulimia nervosa; CART, cocaine- and amphetamine-
regulated transcript; CIPO, chronic intestinal pseudo-obstruction syndrome;
ClpB, enterobacterial caseinolytic protease B; CNS, central nervous system; EC,
enterochromaffin serotonin cells; FFA, free fatty acids; FFAR, free fatty acid
receptor; FMT, fecal microbiota transplantation; GABA, gamma-aminobutyric
acid; GH, growth hormone; GHS-R1a, growth hormone secretagogue receptor
type 1a; GLP-1, glucagon-like peptide-1; GLP-2, glucagon-like peptide-2; GOAT,
ghrelin O-acyltransferase; HCA, hydroxy-carboxylic acid; HDL, high-density
lipoprotein; HOMA-IR, homeostasis model assessment of insulin resistance;
HPA, hypothalamic-pituitary-adrenal axis; 5-HT, 5-hydroxytryptamine; HW,
healthy women; I-FABP, intestinal fatty acid binding protein; Ig,
immunoglobulin; Ig, immunoglobulin (IgA, IgG, and IgM classes); IL-1b,
interleukin-1 beta; IL-6, interleukin-6; MC4R, melanocortin 4 receptor; NE,
norepinephrine; NPY, neuropeptide tyrosine; PANDAS, Pediatric Autoimmune
Neuropsychiatric Disorders Associated with Streptococcal infection; POMC, pro-
opiomelanocortin; PP, pancreatic polypeptide; PYY, peptide tyrosine tyrosine;
SCFA, short-chain fatty acids; SIBO, small intestinal bacterial overgrowth
syndrome; SNS, sympathetic nervous system; TNF-a, tumor necrosis factor-alpha.
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resistance, blood plasma insulin, leptin, and a significant positive
genetic correlation was found with high-density lipoprotein (HDL)
cholesterol. Disordered niacin metabolism leading to niacin
deficiency was shown to provoke schizophrenia-like symptoms in
neuropsychiatric diseases such as pellagra (11), which was seen as a
secondary complication associated with a tryptophan-deficient diet
in AN and BN (12, 13).

The gut, enteric nervous system, central nervous system, gut
microbiome, and adipose tissue (AT) newly introduced as the
AT-microbiome-gut-brain axis produce a variety of neuroactive
factors with orexigenic and anorexigenic effects which are
important in the regulation of food intake and body weight
control (14–16) (Figure 1). The differential release of these
compounds may act to initiate, maintain, or exacerbate cycles
of food restriction or binge-purge behavior observed in AN and
BN (17). In particular, translocation of intestinal bacterial
antigens including enterobacterial caseinolytic protease B
(ClpB) and food-derived antigens across the intestinal wall can
trigger the production of autoantibodies cross-reacting with
appetite-regulating hormones (18). This cross-reactivity is a
phenomenon affecting the AT-microbiome-gut-brain axis.

In the present review we show that the regulation of appetite,
emotion, nutritional status, and adiposity is also under the control by
secretion of autoantibodies directed against neuropeptides,
neurotransmitters, and neuromodulators. This may lead to the
onset, development, and perpetuation of severe food restriction or
binge-eating behavior and psychopathological traits in eating
disorders. Better understanding of the AT-microbiome-gut-brain
axis in eating disorders and elucidation of its interactions with
adipocyte lipolysis and adipogenesis may provide a novel
therapeutic approach for treatment of anorexia and bulimia nervosa.

The goals of the present review were to: (i) describe the role of
autoantibodies cross-reacting with appetite-regulating hormones
and the gut microbiome in etiopathogenesis of AN and BN, and
to (ii) discuss bi-directional communication along the AT-
microbiome-gut-brain axis in eating disorders.
INVOLVEMENT OF AUTOIMMUNITY IN AN
AND BN PATHOGENESIS

Various microorganisms have been shown to exhibit protein
sequence homologies with some autoantigens including appetite-
regulating peptides, which can lead to the production of
autoantibodies (autoAbs) cross-reacting with these peptides
and to the changed appetite regulation. Molecular mimicry
concept was proposed to explain autoantibodies formation
directed against microbial antigens and cross-reacting with
host proteins, which can explain some microorganism-
triggered autoimmune diseases (19, 20).

Such homology was reported for anorexigenic/anxiogenic
peptide a-melanocyte-stimulating hormone (a-MSH) and
bacterial protein Escherichia coli caseinolytic protease B (ClpB)
(21). ClpB, a-MSH conformational mimetic produced by the
bacterial Enterobacteriaceae family induces the production of
antibodies cross-reacting with human a-MSH. In patients with
April 2021 | Volume 12 | Article 613983
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FIGURE 1 | Scheme demonstrating the bi-directional interactions along the adipose tissue, microbiome, gut and brain leading to the development of eating
disorders. Microbial composition and consequently the amount of microbial metabolites and components are affected by various factors like diet, antibiotics, infection
and so on. Gut microbial metabolites and components act as signals to influence enteric nervous system and adipose tissue responses through various receptors.
P/D1 like ghrelin cells in humans (or termed X/A like ghrelin cells in rodents) are localized in the oxyntic mucosa of the gastric fundus and duodenum.
Enteroendocrine L cells secrete PYY and GLP-1/-2 (and/or co-release GLP-1/-2 together with PYY) in the mucosa of the distal ileum and colon. F (or PP) cells,
which secrete pancreatic polypeptide (PP) under cholinergic control, are localized in the periphery of pancreatic islets of Langerhans, and also expressed in the distal
gut. Enteroendocrine I and K cells, which secrete CCK and glucose-dependent insulinotropic peptide (GIP), are located in the mucosa of the upper small intestine.
Short-chain fatty (FFA2-3) and hydroxy-carboxylic (HCA1-2) acid receptors are expressed on gastric P/D1 like ghrelin cells, ileal L cells, pancreatic a cells,
enterochromaffin (EC) serotonin cells, duodeno-jejuno-ileal I and K cells, pancreatic b cells, and adipocytes. The signalization leads to ghrelin secretion inhibition or
produce PYY, GLP-1/-2, serotonin, CCK, insulin, and leptin production. Leptin, an adipocyte-secreted hormone, is an indicator of energy stores and acts to reduce
food intake and increase energy expenditure. These appetite-regulating hormones signal to NPY/AGRP and POMC/CART neurons, the mesolimbic reward system,
and higher cortical areas, which all play a pivotal role in the regulation of metabolism. GABA has an inhibitory input from NPY/AGRP neurons to POMC/CART
neurons in the hypothalamic arcuate nucleus. Activation of hypothalamic NPY/AGRP neurons stimulates hunger and inhibits energy expenditure and lipolysis in AT;
however, stimulation of hypothalamic POMC/CART neurons together with MC4R leads to inhibition of food intake and enhancing of energy expenditure and lipolysis
in AT. IgG immune complexes with orexigenic and anorexigenic peptides chronically activate MC4R leading to increased satiety in both AN and BN. Dysregulation of
appetite-regulating circuits may affect altered feeding behavior leading to the onset, development, and maintenance of AN and BN. a2R, alpha-2 adrenoceptors;
AGRP, agouti-related protein; AT, adipose tissue; b 1, 2, 3R, beta-1, 2, 3 adrenoceptors; BCFA, branched-chain fatty acids (isobutyrate, 2-methyl-butyrate, and
isovalerate); ATB, antibiotics; CART, cocaine- and amphetamine-regulated transcript; CCK, cholecystokinin, CCK1, 2 R; cholecystokinin 1, 2 receptors;
CLA, conjugated linoleic acid; ClpB, enterobacterial caseinolytic protease B; EC, enterochromaffin serotonin cells; FFAR, free fatty acid receptor; GABA, gamma-
aminobutyric acid; GIP, glucose-dependent insulinotropic peptide; GIPR, glucose-dependent insulinotropic peptide receptor; GLP-1/-2, glucagon-like peptide-1 and
2; GLP1-R, glucagon-like peptide-1 receptor; GPR142, G protein receptor 142 for tryptophan, HCAR, hydroxy-carboxylic acid receptor; L-DOPA, L-3,4-
dihydroxyphenylalanine; LPS, lipopolysaccharide; MC4R, melanocortin 4 receptor; NPY, neuropeptide tyrosine; POMC, pro-opiomelanocortin; PP, pancreatic
polypeptide; PYY, peptide tyrosine tyrosine; PYY-Y1R, peptide tyrosine tyrosine-1 receptor, SCFA, short-chain fatty acids (butyrate, acetate, and propionate);
TMA, trimethylamine; (+) = the stimulatory effect of ligands on hormone or serotonin secretion; (-) = the inhibitory effect of ligands on hormone secretion.
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AN, increased levels of IgM autoantibodies against a-MSH were
detected (22). Another study showed lower levels of IgG
autoantibodies against a-MSH in obese patients, but increased
levels in anorectic and bulimic patients (23). Furthermore, IgG
from patients with AN can form immunocomplexes with a-
MSH, which chronically activate the melanocortin (MC) system
involved in the feeding behavior regulation (24, 25). a-MSH
signals via the MC type 4 receptor (MC4R), a key molecular
pathway regulating appetite (23). This interaction may thus
represent a pathophysiological trigger of both AN and BN (21).

a-MSH–reactive autoAbs as well as autoAbs directed against
other appetite-regulating peptides are present also in the plasma
of healthy people. Fetissov et al. (25) screened the plasma of
healthy women for the presence of autoantibodies directed
against 14 key appetite-regulating neuropeptides or peptide
hormones including a-MSH, ACTH, NPY, ghrelin, leptin,
insulin, or PYY suggesting a link between IgG and IgA classes
of such autoantibodies and antigenic stimulation by gut
microbiota in healthy subjects (25) (Table 1). High affinity
autoantibodies are responsible for the neutralization of
neuropeptides preventing them from immune complexes
formation, while low affinity autoantibodies do not exhibit
blocking properties and can bind neuropeptides reversibly and
thus play a role in peptide transport or protection from
degradation by peptidases (33, 34).

Except higher levels of a-MSH (IgM class), higher levels of
ACTH (IgG class) autoantibodies were also found in the plasma
of patients with AN (22, 35). On the contrary, lower levels of
Frontiers in Endocrinology | www.frontiersin.org 4
acylated ghrelin (IgM class) autoantibodies (26) and lower levels
of NPY (IgG class) autoantibodies in depressive disorder, a
common comorbidity of eating disorders, were found (28).
This is in contrast to increased levels of plasma NPY in BN
and AN patients, which can act as a protective mechanism that
prevents the exhaustion of energy reserves (36). Garcia et al.
supported NPY protective role in depression by detection of
decreased plasma levels of NPY IgG autoantibodies in patients
with depression while their increased affinities were associated
with lower body mass index (BMI) and reduced appetite (28).

IgG leptin-neutralizing autoantibodies were found in healthy
subjects with a lower BMI; however, a decreased affinity of these
antibodies was found in obese patients, which might be relevant
to leptin resistance in obesity (30) (Table 1). Fetissov et al.
reported that levels and affinities of autoantibodies against
orexigenic and anorexigenic neuropeptides correlated with
psychopathological traits in patients with eating disorders and
these neutralizing autoantibodies were suggested as important
attributors to mechanisms controlling motivation in AN and
BN (22).

Moreover, immunoglobulin class switching of autoantibodies
reacting with appetite-regulating hormones could be responsible
for the differences in pathological manifestations of AN and BN.

In AN, the dysregulated immune profile includes an over-
expression of anorexigenic and pro-inflammatory cytokines such
as tumor necrosis factor-alpha (TNF-a), interleukin-6 (IL-6),
and interleukin-1b (IL-1b). IL-1b and TNF-a influence the
expression of certain crucial neuropeptides, which are known
TABLE 1 | Summary of changes in autoantibodies against appetite-regulating hormones, the ClpB-mimetic protein, and neurotransmitters in AN, BN, depression, in
healthy subjects, in obesity, and diabetes.

Antigen Healthy subjects /
disease

Ig class Changes Reference

Ghrelin Healthy women IgG, IgA present (25)
Acylated ghrelin AN IgG, IgA,

IgM
IgG ↓, IgA ↓, IgM ↓ before renourishment (associated with ghrelin
resistance), IgM ↑ after renourishment

(26)

Ghrelin Obese humans IgG IgG affinity ↑ (27)
NPY Healthy women IgG, IgA present (25)
NPY Depressive disorder IgG IgG ↓ (28)
a-MSH AN, BN IgG IgG ↑ (23)
a-MSH AN IgM IgM ↑ (22)
a-MSH Obese female

patients
IgG IgG ↓ (23)

ClpB AN, BN IgG, IgM ClpB correlated positively with anti-ClpB IgM in BN
anti-ClpB IgG, IgM present in AN

Breton et al. (2016)
in the (29)

ClpB Healthy women IgG ClpB correlated positively with anti-ClpB IgG in HW Breton et al. (2016)
in the (29)

Leptin Healthy women IgG, IgA present (25)
Leptin Healthy subjects with

lower BMI
IgG IgG affinity ↑ (30)

Leptin Obesity and type 2
DM

IgG IgG affinity ↓ (associated with leptin resistance) (30)

Insulin Type 1 DM IgG, IgM IgG, IgM affinity ↑ and/or ↓ (31)
Insulin Type 2 DM IgG, IgM IgG, IgM affinity ↑ (associated with insulin resistance) (31)
PYY Healthy women IgG, IgA present (25)
Dopamine, dopamine-beta-
hydroxylase and serotonin

BN IgG, IgM IgG, IgM ↓ in BN (32)
April 2021 | Volume
a-MSH, alpha-melanocyte-stimulating hormone; anti-ClpB Ig, enterobacterial caseinolytic protease B immunoglobulin; AN, anorexia nervosa; BMI, body mass index, BN, bulimia nervosa;
ClpB, enterobacterial caseinolytic protease B; DM, diabetes mellitus; Ig, immunoglobulin (IgA, IgG, and IgM classes); NPY, neuropeptide tyrosine; PYY, peptide tyrosine tyrosine.
↑ = higher than healthy controls, ↓ = lower than healthy controls.
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to be associated with anxiety states and AN. Importantly, it has
been surmised that AN may result from an inability to produce
neutralizing antibodies to TNF-a and/or IL-1b (37). Direct TNF-
a, IL-1b, and IL-6 down-regulating monoclonal antibodies such
as infliximab, adalimumab, etanercept, and tocilizumab as well as
monoclonal antibodies against appetite-regulating hormones
have not been evaluated as a treatment of AN and BN so far,
although there is a strong theoretical rationale that could justify
such a study (38, 39). Beneficial effects of anti-TNF-a therapy
and an improvement in psychopathological traits in a case of AN
with comorbid Crohn’s disease and with juvenile idiopathic
arthritis were reported (40, 41).

In our previous studies, we observed in vivo increased
sympathetic nervous system (SNS) activity, especially elevated
norepinephrine (NE) concentrations in subcutaneous abdominal
adipose tissue (AT) in AN and BN patients (36, 42, 43). NPY is
synthesized in AT and co-localized with NE in perivascular
sympathetic nerve fibers of the AT. NPY is also co-localized
with NE and gamma-aminobutyric acid (GABA) in the brain.
NPY amplifies growth hormone (GH) release, and stimulates
appetite and lipogenesis (36, 44). Corcos et al. hypothesized that
dopamine, dopamine-b-hydroxylase, and serotonin could be the
antigenic cerebral targets reacting with “anti-brain” antibodies in
BN (32). The role of up- or down-regulated neutralizing
autoantibodies (IgM, IgG, and IgA classes), and changes of their
affinity directed against appetite-regulating neuropeptides and
neurotransmitters (dopamine, dopamine-beta-hydroxylase, and
serotonin) in neuropeptidergic transmission was documented in
the pathogenesis of eating disorders (26, 32) (Table 1). Moreover,
a link between CNS neuroinflammation, autoimmunity, and
neuropsychiatric disorders was reported (45–47).
“LEAKY GUT” AND THE BLOOD-BRAIN
BARRIER PERMEABILITY IN AN AND BN

The gutmicrobiota transform dietary components, includingmacro-
and micronutrients, fibers, and polyphenols, into a range of
metabolites, including amino acid derivatives, vitamins, short-
chain fatty acids (SCFA), and trimethylamines. These microbial-
derived metabolites and dietary components can modulate host
homeostasis, including gut and blood-brain barrier integrity (48–50).

SCFA (in particular butyrate, acetate, propionate), and other
microbial metabolites can act on the intestinal epithelial barrier,
the blood-brain barrier, and directly on brain neurons; they can
regulate the endocrine and immune system to protect against the
pathological inflammation (49). SCFA-producing gut microbiota
was shown to up-regulate the expression of blood-brain barrier
tight junction proteins occludin, claudin-5, and zonulin, and to
reduce the permeability of the blood-brain barrier (51).

SCFA can mediate appetite reduction via increased POMC/
CART neurotransmission of glutamatergic neurons and via
decreased NPY/AGRP neurotransmission of GABAergic
neurons in the hypothalamic arcuate nucleus (52, 53). Starvation
and weight loss of AN patients may decrease the gut-barrier
permeability (54) and increase the permeability of the blood-
Frontiers in Endocrinology | www.frontiersin.org 5
brain barrier through increased plasma free fatty acids levels and
increased ketone bodies production (55, 56). Disruption of blood-
brain barrier integrity in parallel with decreased expression of tight
junction proteins occludin and claudin-5 have been also related to
stress, post-streptococcal autoimmune disorders (PANDAS), and
increased pro-inflammatory anorexigenic cytokines including
TNF-a, IL-6, and IL-1b (37, 57–59). Autoantibodies against
appetite-regulating peptides, and neurotransmitters can also
disrupt the blood-brain barrier permeability and the gut-barrier
permeability referred to as “leaky gut” underlying low-grade
inflammation in AN and BN patients (18, 24). Indeed,
penetration of circulating neuropeptides to the brain may be
assisted by neuropeptide autoantibodies (60).

It is believed that the access of high-affinity autoantibodies
against appetite-regulating neuropeptides and peptides to the
brain centers, otherwise protected by the blood-brain barrier, can
trigger the development of AN and BN. The increased affinity of
plasmatic IgG for acyl-ghrelin in obesity was associated with
increased ghrelin function, while increased plasma IgG/a-MSH
affinity in obesity was shown to decrease activation of MC4R (23,
61). Monteleone et al. reported a decrease of intestinal
permeability in the small intestine by measuring lactulose/
mannitol absorption in AN patients (54). Jésus et al. observed
increased colonic permeability with decreased expression of the
tight junction protein claudin-1 in an activity-based anorexia
model in mice (62). Methotrexate-induced intestinal
inflammation was shown to acutely disrupt the gut-barrier
permeability and induce anorexia in rats (63). Coquerel et al.
linked intestinal inflammation to the production of
autoantibodies against neuropeptides and showed that changes
in anti-a-MSH autoAb plasma levels may participate in the body
weight control relevant to the pathophysiology of AN (64).

Intestinal fatty acid binding protein (I-FABP) was proposed
as a biomarker for small intestinal epithelial damage and
subsequently for potentially altered gut permeability in Crohn’s
and celiac diseases (65, 66). It is a small (14-15 kD) protein,
which constitutes up to 2% of the cytoplasmic protein content of
mature enterocytes (67). Upon death of the enterocyte, its
cytoplasmic content is liberated into the circulation. I-FABP is
present in very small amounts in the plasma of healthy
individuals, probably representing the normal turnover of
enterocytes, but its levels rise rapidly after episodes of acute
intestinal ischemia and inflammation.

We determined a significantly increased I-FABP level in patient
with severe and enduring AN suffering from the small intestinal
bacterial overgrowth syndrome. Patient treatment with fecal
microbiota transplantation (FMT) led to an improvement of the
gut barrier function reflected by a decrease in I-FABP levels within 6
months post-FMT with non-detectable values 1 year post-FMT (68).
THE GHRELIN, LEPTIN, AND
MELANOCORTIN SYSTEM IN AN AND BN

Ghrelin is a 28-amino-acid peptide produced mainly by the
neuroendocrine cells named P/D1 in humans in the oxyntic
April 2021 | Volume 12 | Article 613983
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mucosa of the gastric fundus, and to a far lesser extent in the
duodenum, and also in the epsilon pancreatic islet cells (69, 70).
Ghrelin is cleaved from the 117-amino-acid preproghrelin
protein encoded by the human ghrelin gene on chromosome
3p25-26. Two major molecular forms of ghrelin were found in
the stomach and plasma, i.e. acyl ghrelin with n-octanoylated
serine in position 3 attached by the GOAT (Ghrelin O-
Acetyltransferase), and des-acyl ghrelin. Acyl ghrelin is
involved in the regulation of growth hormone (GH) secretion,
energy homeostasis, gastric emptying, cardiac performance,
cardiac output and contractility, antidepressant-like and
anxiolytic responses (71–73). It was reported that in contrast
to acyl ghrelin, des-acyl ghrelin induces a negative energy
balance by decreasing food intake and delaying gastric
emptying (71, 74). The physiological role of ghrelin in food
intake regulation is reflected by an increase in its plasma level
before eating and its decrease after the meal (75).

Thus, des-acyl ghrelin does not bind to growth hormone
secretagogue receptor type 1a (GHS-R1a). Moreover, it has anti-
ghrelin effects including the loss of ghrelin’s appetite-stimulating
effect via increasing expression of melanocortin 4 receptor
(MC4R) in the hypothalamic arcuate nucleus (76). It was
found that des-acyl ghrelin level was higher in symptomatic
AN patients than in healthy controls, which may elucidate why
AN patients report being less hungry compared to healthy
women. On the other hand, the des-acyl ghrelin level was
lower in AN patients after renourishment than in heathy
women (71, 77).

Acyl ghrelin binds to GHS-R1a and its plasma levels have
been documented to be decreased in AN when compared to age-
matched and weight-healthy women (71, 78, 79). Therefore,
treatment with acyl ghrelin and/or Relamorelin, a pentapeptide
ghrelin receptor agonist, may be useful for stimulating appetite,
gastric emptying, and weight regain in AN patients (80).

Plasma total ghrelin levels are increased in patients with AN;
however, anorexic patients report less hunger when compared
to healthy women. This discordance may be explained on the
basis of ghrelin resistance in anorectic women (71, 78) or a
changed acyl/des-acyl ghrelin ratio and/or ghrelin reactive
autoantibodies (77, 81). Patients with AN display lower levels
of autoantibodies (IgG) against acyl-ghrelin and higher levels of
autoantibodies against des-acyl ghrelin present in immune
complexes compared to healthy controls. Moreover, negative
correlations between plasma ghrelin autoantibodies (IgG) and
ghrelin peptides were found. The observed decrease in the
levels of bioavailable ghrelin autoantibodies (IgG) was
suggested to lead to increased ghrelin levels and ghrelin
resistance in patients with AN (26) (Table 1). Moreover, a
decrease in IgM and IgA classes of acyl ghrelin autoantibodies
in AN was also detected (26). Subsequently, the refeeding of
AN patients led to an increase in IgM acyl ghrelin
autoantibodies levels, which may indicate new antigenic
stimulation resulting from realimentation-induced changes in
the gut-barrier permeability. Furthermore, high affinity anti-
ghrelin IgG autoantibodies were proposed to enhance ghrelin’s
orexigenic effect, which may contribute to increased appetite
Frontiers in Endocrinology | www.frontiersin.org 6
and overeating and may enhance the bioactivity of endogenous
or exogenous ghrelin in obese patients (27, 61) (Table 1). In
addition, this shows that ghrelin degradation is inhibited by
these autoantibodies, i.e. by forming ghrelin-IgG immune
complexes in obese patients (27).

The presence of immune complexes prevents des-acyl ghrelin
from occurring with a decrease of the free fraction of
autoantibodies binding ghrelins resulting in elevated levels of
free acylated ghrelin in AN patients, and eventually in ghrelin
resistance in AN (26). High-affinity insulin autoantibodies have
been proposed to be involved in a mechanism underlying severe
insulin resistance after insulin administration (31) and have also
been also studied as a marker of type 1 diabetes (Table 1). Low-
affinity autoantibodies against insulin may influence the levels of
bioavailable insulin with potential effects on hypoglycemia (31).
Using a homeostasis model assessment of insulin resistance
(HOMA-IR), significantly lower values of HOMA-IR in
malnourished and underweight patients with AN were found
when compared to healthy controls (82). However, refeeding led
to the onset of insulin resistance in patients with AN (83).
Indeed, the onset of type 1 diabetes in adolescence seems to
place female patients at risk for the subsequent development of
AN and BN (5, 6, 78, 84). Importantly, a decrease in leptin-
reacting immunoglobulin affinity kinetics may also be related to
hyperinsulinemia, insulin resistance, and leptin resistance in
patients with type 2 diabetes (30). Intravenous injection of
leptin-neutralizing antibodies was reported to induce
hyperinsulinemia in mice (85). Conversely, an increase in IgG
affinity kinetics for leptin was found in healthy controls with
lower BMI suggesting an enhancing role of IgG in leptin
transduction with anorexigenic and antidiabetic properties (30)
(Table 1).

Obestatin, a 23-amino-acid peptide cleaved of the pro-
hormone preproghrelin, appears to function as a part of the
anorexigenic gut-brain axis that decreases food intake and
reduces body weight in rats (86). Obestatin has been
postulated to antagonize ghrelin action on energy balance and
gastrointestinal function. However, controversies exist as regards
its specific effects on food intake in animals and humans (71, 87).
Patients with AN displayed increased circulating levels of both
obestatin and ghrelin and an increased ghrelin/obestatin ratio,
whereas patients with BN did not (88).

Gastric ghrelin stimulates appetite, while gut hormones
pancreatic polypeptide (PP) and peptide tyrosine tyrosine
(PYY) have the opposite effect on the hypothalamic level. PP
and PYY, 36 amino acid peptides, are secreted from pancreatic F
cells and enteroendocrine L-cells following meals, respectively
(89, 90). Importantly, G protein receptor 142 for tryptophan
(GPR142) is expressed on gastro-enteroendocrine and pancreatic
islet cells to stimulate ghrelin, PYY, glucagon-like peptide-1
(GLP-1), cholecystokinin (CCK), and insulin secretagogue
activities, respectively (91, 92) (Figure 1). It was shown that
SCFA including butyrate and lactate are ligands of FFA2, FFA3,
and HCA1 receptors which are expressed on gastric ghrelin cells
and ileal L cells. Their activation reduces ghrelin secretion and
increases PYY secretion, respectively (69, 73, 93). Furthermore,
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PYY and GLP-1 stimulate serotonin (5-hydroxytryptamine, 5-
HT) secre t ion f rom smal l in tes t ina l and co lon ic
enterochromaffin (EC) cells (94) (Figure 1). The SCFA
receptors FFA2, FFA3, and HCA1 were found in AT where
they increase the secretion of the anorexigenic hormone leptin
(95, 96), and the blood-brain barrier is endowed with FFA3 (97).
Interestingly, an endogenous ligand for HCA2 and FFA2
receptor is 3-hydroxy-butyrate. Thus, FFA2 and HCA2
receptors are activated by the endogenous ligand 3-hydroxy-
butyrate as well as the exogenous ligand anti-dyslipidemic drug
niacin having protective effects of the prebiotic fiber-derived
butyrate in the gut-barrier permeability (42, 98, 99). We
documented reduced ghrelin levels and increased PP, PYY, and
leptin levels after administration of the niacin-like anti-
dyslipidemic drug Olbetam in bulimic patients when compared
to healthy-weight Czech women (42).

The subpeptide PYY3-36 is the major form of PYY in the
circulation. This peptide reduces food intake in humans. In AN,
unlike ghrelin, plasma levels of anorexigenic PYY are
paradoxically increased (100). Elevated levels of PYY might
contribute to decreased food intake and disordered eating
psychopathology in AN. PYY levels remain elevated despite
renourishment and weight regain (101, 102). Healthy humans
showed a negative correlation between ghrelin plasma
concentrations and BMI (103) and a negative correlation of
PYY and body weight (104). However, two independent research
groups documented that BN patients, despite of higher BMI, had
increased plasma ghrelin levels before food ingestion with a
decreased response of ghrelin after food ingestion (105, 106). In
those patients with BN, the increase of plasma PYY levels after
food ingestion was also blunted. Depressed and blunted PYY
levels may result from reduced and impaired CCK secretion in
BN. The anorexigenic hormone CCK is a stimulant of PYY
secretion (107). PYY3-36 is known as meal terminator opposed to
ghrelin considered as meal initiator in the feeding behavior. The
suppression of plasma ghrelin and the increase of plasma PYY3–

36 after food ingestion may indicate compensatory activation of
peripheral signals promoting termination of food ingestion in
healthy humans. Thus, the altered CCK, PYY, and ghrelin
response to food intake may play a role in the perpetuating
post-binge eating behavior in bulimic patients (108).

Ghrelin has an important role in regulation of energy
homeostasis and appetite by acting centrally through GHS-R1a
or via vagal afferents. Furthermore, ghrelin can activate
hypothalamic GABAergic arcuate neurons that secrete the
orexigenic peptides NPY and the agouti-related peptide
(AGRP). It can inhibit anorexigenic neurons secreting a-MSH
resulting in higher energy intake to be induced by increased
GABA-mediated inhibitory inputs from NPY/AGRP neurons to
hypothalamic glutamatergic arcuate neurons, which express
anorexigenic pro-opiomelanocortin (a precursor of a-MSH),
and cocaine- and amphetamine-regulated transcript (POMC/
CART) (42, 89). Anorexigenic/anxiogenic a-MSH is a 13-
amino-acid-long neuropeptide derived from POMC. Activation
of POMC neurons leads to stimulation of the melanocortin
satiety pathway. Cone has demonstrated that the central
Frontiers in Endocrinology | www.frontiersin.org 7
melanocortin system operating through a-MSH on MC4R
provides the final common pathway signaling satiety (109).
High plasma levels and changes of affinity kinetics of
autoantibodies reacting with a-MSH and ACTH seem to be
caused by the exposure to stress as a result of concomitant
hypothalamic-pituitary-adrenal (HPA) axis activation (110,
111). These results support the hypothesis that changes in
affinity of autoantibodies reacting with a-MSH and ACTH are
involved in the pathogenesis of AN and BN and that increased
levels of high-affinity anti-a-MSH or anti-ClpB (a-MSH
conformational mimetic produced by Enterobacteriaceae)
autoantibodies can induce bulimia, while increased levels of
low-affinity anti-a-MSH autoantibodies can induce anorexia
(24, 110, 112) (Table 1).

a-MSH and ClpB may exert a dual effect on the anorexigenic/
orexigenic pathway. A key role in appetite regulation is played by
the melanocortin 4 receptor (MC4R), which is activated by its
main ligand a-MSH in both peripheral and central sites. In this
vein, a-MSH and ClpB can induce the activation of MC4R
expressed on intestinal enteroendocrine L cells which regulate
the release of satiating hormones PYY or GLP-1/-2 leading to
activation of the POMC neurons releasing a-MSH via the vagal
and endocrine pathways (29, 113, 114) (Figure 1). Surprisingly,
a−MSH can also induce activation of MC4R expressed on gastric
ghrelin cells which stimulate orexigenic hormone ghrelin
secretion (73, 92, 93) (Figure 1). In AN patients, plasma a-
MSH were significantly lower all over the day. Thus, lower
circadian a-MSH levels integrate the adaptive profile of
appetite regulation in AN (115).

As mentioned above, the gut microbiota serving as a direct
source of antigens was shown to produce molecules that share
similar sequence and conformational homologies with some
neuroactive peptides (25). Healthy humans display IgG and
IgA autoantibodies directed against appetite-regulating
hormones and neuropeptides, such as leptin, ghrelin, PYY,
neuropeptide Y and others. These neuropeptides share
sequence homology with various peptides produced by some
commensal and pathogenic microorganisms including
Lactobacilli, Bacteroides, Helicobacter pylori, Escherichia coli,
and Candida species. The autoAbs may thus affect hunger and
satiety pathways (25). The presence of H. pylori was also
associated with decreased adiposity, high levels of stomach
leptin, and insulin resistance. On the other hand, decreased
ghrelin and increased obestatin were found after H. pylori
eradication (116, 117). Psychological stress was shown to alter
the gut microbiome, e.g. to decrease Bacteroides and to increase
Clostridium abundance (118). Certain bacterial proteins of
Clostridium perfringens and Enterococcus faecalis were shown
to have sequence homology with orexigenic ghrelin (24, 25).

Appetite-stimulating hormone ghrelin (increased in AN) was
associated with greater levels of Bacteroides and Prevotella and
reduced levels of Bifidobacterium and Lactobacil lus.
Simultaneously, appetite-suppressing hormone leptin
(decreased in AN) showed an inverse association with reduced
levels of Bacteroides and Prevotella and higher levels of
Bifidobacterium and Lactobacillus in rats (119). In another
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study incorporating an activity-based anorexia mouse model
mimicking the core features of AN, bacterial taxa that correlate
positively or negatively with body weight, food intake, and fat
mass as well as with hypothalamic mRNA levels of orexigenic
NPY and satiety inducer POMC, were identified (120).

Recently, Schalla & Stengel (121) discussed the link between
ghrelin and gut microbiota. They surmised that positive effectors
such as exercise, prebiotics, probiotics, and food supplements are
efficient to increase Blautia cocoides, Bacteroidetes/Firmicutes
ratio, Faecalibacterium , Prevotellaceae , Streptococcus ,
Escherichia coli, Shigella, and SCFA leading to a suppression of
plasma acylated ghrelin and a decrease of GHS-R1a-induced
food intake and weight regain. Conversely, negative effectors
including the gut dysbiosis, food restriction, fasting, antibiotics,
and pesticides are able to stimulate Coriobacteriaceae,
Veillonellaceae, Clostridium sensu stricto 1, Ruminococcus,
Prevotella, and Coprococcus, which may result in an increased
plasma acylated ghrelin and its orexigenic and the obesogenic
side effects (121).
THE GUT MICROBIOME IN AN AND BN

It is now generally accepted that the immune and nervous
systems maintain a state of systemic homeostasis by
continuous communication. The gut microbial content plays
an important role in this communication. Disruption of the
pathways connecting gut and brain can lead to various
psychopathologies (122, 123). In our studies we described the
role of gut microbiota and the gut-barrier permeability in the
pathogenesis of inflammatory, autoimmune diseases, including
neurological, and psychiatric diseases (19, 124–126). Kleiman
et al. showed that the intestinal microbiota plays a role in key
features of AN, including weight regulation, energy metabolism,
anxiety, and depression as well as a role in the development,
maintenance, and recovery from BN (127).

Microbial diversity seems to be essential for health and disease
prevention (14, 15). The predominant bacterial phyla in the human
gut microbiome are obligate anaerobes Bacteroidetes (e.g. genera
Bacteroides and Prevotella) and Firmicutes (e.g. genera Lactobacillus,
Clostridium, Enterococcus, and Streptococcus), and facultative
anaerobes present in lesser abundance such as Actinobacteria (e.g.
Bifidobacteria), Proteobacteria (e.g. Escherichia coli), Verrucomicrobia
(e .g . Akkermansia muciniphi la) , and Archaea (e .g .
Methanobrevibacter smithii) (128). Microbiome dysbiosis is
characterized by either expansion of pathobionts, loss of
commensals, loss of microbial diversity, or their combinations
(129). There are conflicting results regarding specific changes in
microbiome composition in patients with AN (Table 2). Current
research and microbiota signature associated with acute ill AN
patients show a relative depletion of Firmicutes (e.g. Roseburia,
Clostridium, Anaerostipes, and Faecalibacterium prausnitzii) for the
benefit of Bacteroidetes (133, 134, 136–138) together with increased
abundance in the archeonMethanobrevibacter smithii (130, 131, 134,
136), the mucin-degrader Akkermansia muciniphila (134, 139) and
Proteobacteria (Escherichia coli) (131, 136) (Table 2).
Frontiers in Endocrinology | www.frontiersin.org 8
Simultaneously, inconsistent results were reported on bacterial
alpha and beta diversity in AN. The gut microbiome exerted lower
alpha microbial diversity (describes intra-sample variance) in five
studies in underweight AN patients (133, 135, 137, 138, 140); in
three additional studies, no difference in alpha diversity was found
(126, 134, 136). A significant increase in alpha microbial diversity
after weight rehabilitation of patients with AN was shown in two
studies (133, 134). Recently, we measured parameters of microbial
alpha diversity and detected only an increased Chao 1 index in
patients with AN before their renourishment considering their
interindividual variation. In this study, weight gain in patients with
AN led to a modification of the Chao 1 index which reached
healthy control values (126).

Furthermore, differences in beta microbial diversity
(describes inter-sample variation) were found in three studies
showing higher heterogeneity in AN patients (126, 133, 134).
This beta microbial diversity was modified during weight regain
in AN patients (126, 133). Bacterial composition of the control
and of patients with AN was similar in two studies (136, 138).

Various studies of the gut microbiota in patients with AN
revealed an increase in Methanogens (e.g. Methanobrevibacter
smithii), while Lactobacillus species were linked to obese patients
(130, 131). M. smithii is known to recycle and convert hydrogen
and carbon dioxide to methane, increase the transformation of
nutrients to calories by free hydrogen reduction in the colon,
increase the fermentation of prebiotic fiber and resistant starch
generating SCFA (butyrate, acetate, and propionate), thus
increasing energy harvest. Methanogens in AN may be thus
associated with an adaptive response to very low caloric diet
(130) (Table 2). However, M. smithii may contribute to delay
gastric emptying and constipation in AN (78). Archaeal family
Methanobacteriaceae co-occur with the bacterial family
Christensenellaceae and are more abundant in lean individuals
with lower BMI (141). Christensenella spp. can efficiently support
the metabolism of M. smithii by H2 production (142).

FMT of Christensenella minuta to microbiome-lacking mice,
i.e. germ-free mice, led to weight gain and adiposity reduction
suggesting a role of the gut microbiome in the altered
metabolism of AN (141). Furthermore, FMT from lean donors
increased insulin sensitivity in patients with the metabolic
syndrome and obesity-associated insulin resistance (143).
Conversely, FMT from obese mice to germ-free mice led to
greater adiposity and increased weight gain indicating that
manipulation of gut microbiome might be a possible approach
in the treatment of obesity (144, 145).

Lactobacillus intake may be associated with weight gain,
anxiolytic or antidepressant effects and may reduce intestinal
permeability. In a recent study, Lactobacillus rhamnosus
decreased anxiety and depression and reduced stress-induced
ACTH and corticosterone levels in mice. This study
demonstrated that these effects are dependent on the vagus
nerve and that parasympathetic innervation is necessary for
Lactobacillus rhamnosus participation in the gut microbiota-
brain interaction (146). Consumption of Bifidobacterium
species by rats was found to change serotonin metabolism in
the brain (147).
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Bacterial species produce a number of neuroactive
compounds including serotonin (Bacillus spp., Lactobacillus
plantarum, Clostridium ramosum, and Escherichia coli),
dopamine, the major disruptor of the mesolimbic-neocortical
reward circuit in the brain (Lactobacillus plantarum, Clostridium
spp. , Escherichia coli , Bacil lus spp. , Serratia spp.) ,
norepinephrine (Clostridium spp., Escherichia coli, and Bacillus
spp.), and acetylcholine (Lactobacillus plantarum), and they
synthesize the inhibitory neurotransmitter GABA from
Frontiers in Endocrinology | www.frontiersin.org 9
glutamate, reducing anxiety and stress (Bacteroides, Escherichia
coli, Lactobacillus reuteri, Bifidobacterium, Lactobacillus
rhamnosus, Lactobacillus brevis, and Lactobacillus plantarum)
(146, 148–158). These microbially-derived neurotransmitters
may induce intestine epithelial cells to release molecules that in
turn modulate neural signaling within the enteric nervous system
and consequently signal brain function and host behavior. Mood
and depressive-like behavior regulators include serotonin which
is an important neurotransmitter implicated in psychiatric
TABLE 2 | Gut microbial studies in patients with AN.

Year of publication Author, reference Population Bacterial differences

2009 Armougom et al. (130) AN=9
C=20

↑ M. smithii
↔ Bacteroidetes
↔ Firmicutes
↔ Lactobacillus

2013 Million et al. (131) AN=15
C=76

↑ M. smithii
↑ E. coli
↓ L. reuteri

2013 Pfleiderer et al. AN=1 Composition of gut microbiota
2014 Gouba et al. AN=1 Composition and diversity of gut microbiota
2015 Morita et al. (132) AN=25

C=21
↓ Streptococcus
↓ Cl. coccoides
↓ Cl. leptum
↓ L. plantarum
↓ B. fragilis

2015 Kleiman et al. (133) AN=15
C=12

↑ Bacilli
↓ Clostridium spp.
↓ Anaerostipes spp.
↓ Faecalibacterium spp.

2016 Mack et al. (134) AN=55
C=55

↑ mucin-degraders (Verrucomicrobia, Bifidobacteria, Anaerotruncus)
↑ Clostridium clusters I, XI and XVIII
↓ Roseburia spp.
↓ Gemminger spp.

2017 Mörkl et al. (135) AN=18
C=26

↑ Coriobacteriaceae

2017 Borgo et al. (136) AN=15
C=15

↑ Enterobacteriaceae
↑ Proteobacteria
↑ M. smithii
↓ Firmicutes
↓ Ruminococcaceae
↓ Roseburia spp.
↓ Ruminococcus spp.
↓ Clostridium spp.

2017 Kleiman et al. AN=3 Composition and diversity changes over time
2019 Hanashi et al. (137) AN=33

C=22
↑ Turicibacter spp.
↑ Anaerotruncus spp.
↑ Salmonella spp.
↑ Klebsiella spp.
↓ Eubacterium spp.
↓ Roseburia spp.
↓ Anaerostipes spp.
↓ Peptostreptococcaceae

2019 Prochazkova et al. (68) AN=1 Composition and diversity changes over time after the FMT
2021 Prochazkova et al. (126) AN=59

C=67
↑ Alistipes spp.
↑ Clostridiales
↑ Christensenellaceae
↑ Ruminococcaceae
↓ Faecalibactrium spp.
↓ Agathobacter spp.
↓ Bacteroides spp.
↓ Blautia spp.
↓ Lachnospira
AN, anorexia nervosa; C, healthy persons.
↑ = higher than healthy persons, ↓ = lower than healthy persons, ↔ = not different from healthy persons.
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disorders including AN and BN. Hata et al. observed significantly
lower brainstem serotonin levels in anorectic mice, which may be
associated with reduced tryptophan intake resulting from
restricted food intake (159). Recently, Prochazkova et al. (126)
detected lower levels of serotonin, dopamine and GABA in fecal
samples of patients with AN when compared with
healthy women.

The central nervous system (CNS) modulation by microbiota
occurs primarily through neuroimmune and neuroendocrine
mechanisms. Except neurotransmitters and hormones, this
communication is mediated by gut microbial metabolites,
including SCFA, bile acids, and tryptophan metabolites. SCFA
are generated by microbial fermentation of non-digestible
colon polysaccharides.

Overall, there are inconsistent results for fecal concentrations
of SCFA and branched-chain fatty acids (BCFA; isobutyrate, 2-
methyl-butyrate, and isovalerate) in AN patients (132, 134, 136,
160). In our study, we detected reduced butyrate and acetate in
AN, which were not changed after weight recovery (126).
Reduced levels of acetate and propionate were found in
another study (132), while Borgo et al. found decreased
butyrate and propionate concentrations in patients with
AN (136).

FMT is a therapeutic procedure to modify the recipient’s gut
microbiota. FMT is commonly used for the treatment of
recurrent pseudomembranous colitis caused by toxin-
producing Clostridium difficile (161). Moreover, FMT was also
used to alleviate chronic intestinal pseudo-obstructive syndrome
(CIPO) mimicking mechanical intestinal obstruction (162, 163)
or the small intestinal bacterial overgrowth syndrome (SIBO).
SIBO is a gastrointestinal disorder diagnosed as an excessive and/
or abnormal bacterial colonization in the small intestine (more
than 105 colony-forming units of bacteria per mL of jejunal
aspirate) associated with various metabolic disorders and serious
malnutrition found also in patients with AN (68, 163) who suffer
from delayed gastric emptying and constipation (164, 165).
Frontiers in Endocrinology | www.frontiersin.org 10
CONCLUSIONS

Various stressors, especially infectious, but also components of
diet, mental stress, and others can modify the gut and the blood-
brain barrier function leading to the production of antibodies
directed against microbial compounds and cross-reacting with
human neuropeptides and neurotransmitters. The interplay
between the gut microbiome, immune, hormonal, behavioral,
and emotional regulation provides a complex mechanism
under ly ing AN pathophys io logy as we l l a s other
neuropsychiatric diseases. Immunization against ClpB could be
validated as a potential preventive and therapeutic option for AN
and BN. The current long-term pharmacological therapy of AN
and BN patients is rather inefficient, is associated with adverse
side effects, and given that these disorders tend to relapse. New
approaches to prevention and therapy could be suggested. The
gut microbiota modulation realized by lifestyle changes and by
application of prebiotics, probiotics (psychobiotics), FMT could
represent an useful tool for prevention and treatment of eating
and other neuropsychiatric disorders.
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