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Genetic disease genes are considered a promising source of drug targets. Most

diseases are caused by more than one pathogenic factor; thus, it is reasonable to

consider that chemical agents targeting multiple disease genes are more likely to have

desired activities. This is supported by a comprehensive analysis on the relationships

between agent activity/druggability and target genetic characteristics. The therapeutic

potential of agents increases steadily with increasing number of targeted disease

genes, and can be further enhanced by strengthened genetic links between targets

and diseases. By using the multi-label classification models for genetics-based drug

activity prediction, we provide universal tools for prioritizing drug candidates. All of

the documented data and the machine-learning prediction service are available at

SCG-Drug (http://zhanglab.hzau.edu.cn/scgdrug).

Keywords: drug discovery, disease associated genes, drug targets, systems chemical genetics, machine learning

INTRODUCTION

Finding novel drugs or new uses for old drugs is one of the most important motivations of life
sciences. Drug development is a costly process. The rich knowledge accumulated by modern life
sciences is, thus, highly expected to reduce the attrition rate during drug development. From
a chemical viewpoint, drugs exert therapeutic effects by inhibiting or activating one or more
of the target genes/proteins associated with certain diseases. Therefore, gene-disease association
information is crucial for drug discovery (Brinkman et al., 2006; Sanseau et al., 2012; Wang Z. Y.
et al., 2012; Plenge et al., 2013; Okada et al., 2014; Nelson et al., 2015).

In life sciences, genetics is best dedicated to revealing gene-disease links. Thus, genetics
makes great contributions to the pharmaceutical industry. For example, disease-associated genes
identified by medical genetics constitute a promising source of drug targets (Brinkman et al., 2006;
Sanseau et al., 2012; Wang Z. Y. et al., 2012; Plenge et al., 2013; Okada et al., 2014; Nelson et al.,
2015). Moreover, the pathogenesis revealed by genetics is also of high value for drug discovery. If
a disease arises from gain of function (GOF) mutation of a target gene, the corresponding drugs
must be antagonists or inhibitors; while for a disease induced by loss of function (LOF) mutation
of a gene, the targeted drugs must be agonists (Wang and Zhang, 2013).
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Thousands of disease-associated genes have been identified by
traditional Mendelian genetics and recently developed genome-
and phenome-wide association studies (GWAS and PheWAS,
respectively). However, nearly all studies attributed diseases to
variations at a single genetic locus. Most diseases are caused
by multiple pathogenic factors (Yildirim et al., 2007; Hopkins,
2008; Guney et al., 2016); thus, a majority of the identified links
between diseases and single genetic variations are not strong
enough to have therapeutic value. For example, only ∼5% of the
drug-disease associations derived from PheWAS are supported
by clinical evidence (Rastegar-Mojarad et al., 2015). Thus, to
utilize the medical genetic information more efficiently in drug
development, we should aim at multiple genes associated with
certain diseases rather than a single pathogenic factor to identify
potential drugs. To test this hypothesis, we retrieved the genes
responsible for various disorders and collected the chemical
agents targeting these genes. A comprehensive analysis on
the relationships between agent activity/druggability and target
genetic characteristics revealed that the agents targeting multiple
pathogenic factors were more likely to show desired medicinal
activities and to be clinically approved. The therapeutic potential
of agents can be enhanced with the consolidation of genetic links
between targets and diseases. These observations allowed us to
predict agent activities using machine learning methods, which
are definitely helpful to prioritize drug candidates.

RESULTS

Data Preparation and Validation
The information for agent-target interaction was obtained
through retrieving Drug-Gene Interaction database (DGIdb)
(Wagner et al., 2015), Therapeutic Target Database (TTD) (Qin
et al., 2014), and DrugBank (Law et al., 2014). Only the clinically
supported or approved activities of the agents were used in
the present study, which were derived from DrugBank, TTD,
and ClinicalTrials (Zarin et al., 2011; Law et al., 2014; Qin
et al., 2014). The disease-associated gene information was derived
from the following eight databases: Genetic Association Database
(GAD) (Becker et al., 2004), Online Mendelian Inheritance
in Man (OMIM) (Hamosh et al., 2005), Clinvar (Landrum
et al., 2014), Orphanet (http://www.orpha.net/consor/cgi-bin/
index.php), DisGeNET (Piñero et al., 2015), INtegrated TaRget
gEne PredItion (INTREPID) (Chen and Tian, 2016), GWASdb
(Nelson et al., 2015), and The Human Gene Mutation Database
(HGMD) (Wang X. et al., 2012) (Figure 1).

To facilitate the present analysis, a natural language
processing tool MetaMap was used to convert disease terms
of genes and indication annotations of agents to Unified
Medical Language System (UMLS) concepts (Aronson, 2001),
where the Medical Subject Headings (MeSH) thesaurus was
selected as the vocabulary source of UMLS (Liu et al.,
2014). Using the disease classes provided by pharmaprojects
(Similarity threshold: 0.75) (Mcinnes et al., 2009), the chemical
agents were indicated for treating 667 disease classes and
the disorder-related genes were associated with 703 disease
classes (Figure 1). All of the data are freely available at SCG-
Drug (http://zhanglab.hzau.edu.cn/scgdrug).

Data validation was performed by the following analyses.
First, we assessed the reliability of the gene-disease pairs by
examining whether similar diseases cover similar gene sets.
The disease similarity was measured using UMLS::similarity
(Mcinnes et al., 2009); the disease gene set distance was
calculated using the Tanimoto coefficient (see Methods). As
shown in Figure 2A, a definite correlation exists between
disease similarity and gene set distance. That is, if two diseases
exhibit similar symptoms, then these diseases tend to involve
similar genes, validating the identified gene-disease pairs. Then,
we used a similar method to evaluate the quality of agent-
disease pairs. A good correlation was observed between disease
similarity and agent set distance (Figure 2A), supporting the
reliability of agent-disease pairs. Therefore, one can infer
the activities of agents through their target-associated genetic
diseases, provided the agents and the targets are truly linked.
As illustrated in Figure 2B, for the agents in TTD, DGIdb,
and DrugBank, 4.1, 4.7, and 5.3% of their genetics-implicated
activities are supported by clinical trials, respectively, comparable
with the PheWAS-based activity prediction efficiency (Rastegar-
Mojarad et al., 2015). However, if the agents were randomly
assigned with targets (for 10,000 times), the clinically supported
activities derived from genetic predictions are significantly
rarer than those from real agent-target pairs (Figure 2B,
P < 10−4). This 10,000-permutation test validates the agent-
target associations.

Dependence of Agent Activity/Druggability
on Target Quantity
Based on the validated data, we can investigate how the agent
activity/druggability depends on the target characteristics. As
illustrated in Figure 3, for the agents targeting a single disease
gene, 3.0% of genetics-derived activities are supported by clinical
test and only 0.6% are clinically approved (Table S1). For
agents targeting two disease-associated genes, 4.1% of genetics-
implicated activities are clinically supported, and 1.5% have been
introduced to the market (Table S1). The clinically active ratio of
agents culminates to 26.7%, and the approval ratio is up to 11.4%,
when the agents targeting tens of disorder genes. Together, the
therapeutic potential of agents increases steadily with increasing
number of targeted disease genes (Figure 3).

Drug action is usually considered a specific process. It
is thus of apparent interest to investigate the molecular
mechanisms underlying the promiscuity of the multi-target
agents. Considering the fact that human genes generate a large
number of paralogs during evolution, a primary explanation
is that the multiple targets covered by the agents have similar
sequences and functions. Indeed, the sequences for target pairs
hit by the agents are more similar than those randomly selected
from the target set (P = 2.20 × 10−16, Wilcoxon rank-
sum test) (Figure 4A), where the needle program of EMBOSS
package (Rice et al., 2000) was used to do pairwise alignments.
Furthermore, it was found that the target pairs covered by the
agents are significantly enriched with paralogs (4.72% (2,602 of
55,110), derived from Ensemble database), compared with the
randomly combined target pairs (0.10% (4,029 of 3,955,078), P
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FIGURE 1 | Pipeline for data processing. Disease-associated genes were derived from eight databases. Agent activities were obtained from TTD, DrugBank, and

ClinicalTrials. The disease terms of genes and the indication annotations of agents were uniformed to UMLS concepts using MetaMap. Using the disease classes

provided by pharmaprojects (Similarity threshold: 0.75), 703 types of diseases for 19,233 genes were identified, resulting in 914,190 gene-disease pairs. Through

searching DGIdb, TTD, and DrugBank, 3,346 genes were targeted by 14,558 agents. 3,346 targets were associated with 703 diseases, resulting in 359,101

gene-disease pairs; 5,759 agents were indicated for treating 667 diseases, resulting in 74,902 agent-disease pairs.

∼ 0, hypergeometric test). Besides, the GO-based Czekanowski–
Dice distances (Ovaska et al., 2008) of the gene pairs targeted
by the agents are evidently smaller than those of randomly
selected target pairs (P = 2.20 × 10−16, Wilcoxon rank-sum
test) (Figure 4B). These observations not only support the
evolutionary explanation to the molecular basis of multi-target
drug action, but also provide useful clues to addressing the
concerns about the side effects of promiscuous agents.

Despite the achievements of multi-target strategy for drug
discovery, questions concerning security remain, as the tendency
to act on multiple genes may increase the probability of inducing
adverse effects. The present analyses indicate that these agents
prefer to target genes with similar sequences and functions,
namely paralogs, which means that the agent-targeting process
is not so random that it will constrain the agent activities into a
relatively narrow range. This is definitely beneficial to alleviate
the side effects of multi-target agents and thus helpful to enhance
their druggability.

Furthermore, we analyzed the chemical genetic data recorded
in connectivity map (cMap) (Lamb et al., 2006). The cMap
comprises 7,056 gene expression profiles for five human cell lines
treated with 1,309 agents. Using the biclustering approach FABIA
(factor analysis for bicluster acquisition), we have generated 49
gene modules for cMap data, establishing links between gene
modules and chemical agents (Xiong et al., 2014). Therefore,

each agent has a gene module profile, and the promiscuity of the
agent increases with the increasing number of modules the agent
covers. As shown in Figure 5A, with the increase of targets, the
agents indeed cover more gene modules, supporting the opinion
thatmulti-targeted agents have a higher risk of yielding unwanted
effects. However, the druggability analysis indicated that with the
increasing number of targets, the drug approval ratio does not
decrease but rather increases slightly (Figure 5B). Moreover, if
only disease-associated genes are considered, the drug approval
ratio increases evidently with the increase of targeted gene
number (Figure 5C). This observation strongly suggests that
despite the enhanced risk in side effects, multi-targeted agents are
still very promising in drug development.

Dependence of Agent Activity/Druggability
on Target Quality
Besides the quantity of agent targets, their quality also influences
the medicinal potential of agents in principle. Our prior study
has revealed that the agents targeting “top genes” have higher
therapeutic potential (Quan et al., 2018), where “top genes”
were defined as those tightly associated with certain diseases.
Four disease-gene databases, i.e., AlzGene (Bertram et al., 2007),
SzGene (Allen et al., 2008), PDGene (Lill et al., 2012), and
MSGene (Lill et al., 1994), provide “top genes” annotations for
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FIGURE 2 | Validation of gene-disease pairs, agent-disease pairs and

agent-target pairs. (A) Correlations between disease similarity and disease

gene set distance or drug set distance. The disease similarity was measured

using the UMLS::similarity, and the disease gene set or drug set distance was

characterized by Tanimoto coefficient. (B) Clinically active ratios of

genetics-implicated agent activities. The red, brown, and green vertical dashed

lines indicate the clinically active ratios derived from real agent- target pairs in

TTD, DGIdb, and DrugBank, respectively. The curves show the clinically active

ratio frequency distributions for 10,000 random permutations of agent-target

pairs.

Alzheimer’s disease, schizophrenia, Parkinson’s disease, multiple
sclerosis, respectively. From DGIdb, TTD and DrugBank, we
retrieved 3,692 agents targeting the genes including “top genes”
contained in these four databases (Table S2). As illustrated in
Figure 6, multi-target agents exhibit higher medicinal potential
than single-target counterparts, consistent with the above
observations. Next, for the agents covering “top genes,” their
genetics-derived activities are more likely to be supported by
clinical evidence and be clinically approved (Figure 6 and
Table S2), indicating the importance of target quality in genetics-
based drug discovery.

However, only a few genetic databases contain quality
information for disease genes. Considering the above finding
that multi-target agents usually hit paralogs, we speculated
that ohnolog genes, i.e., paralogs generated by whole genome
duplication, may be used as “top genes” instead. Ohnolog
genes have been recognized to significantly enrich disease genes,
compared with other paralog genes, because of their strong
dosage balance (Makino and Mclysaght, 2010; McLysaght et al.,
2014; Xie et al., 2016; Sekine and Makino, 2017).

FIGURE 3 | Dependence of agent activity/druggability on target quantity.

Therapeutic potential of agents increases with increasing number of targeted

disease genes.

As illustrated in Figure 7, the agents covering disease-
associated ohnolog genes indeed exhibit higher approved
potential (P < 1.09 × 10−61, hypergeometric test), suggesting
that disease-associated ohnolog genes can be regarded as “top
genes” to some extent. This finding is very useful in establishing
the machine-learning models for drug activity prediction (see
below for details).

Target Quality Evaluation and Druggability
Score of Disease Genes
Eight disease gene databases (including Clinvar, OMIM, HGMD,
Orphanet, GWASdb, INTREPID, GAD, andDisGeNET) are used
in the present study. The target quality of each database must be
different, which stimulated our interest to do an evaluation by
comparing the clinically supported ratio of genetics-implicated
agent activities derived from eight databases. The results showed
that target genes of Clinvar have the highest quality, in which
16.52% of genetics-based activity predictions are supported by
clinical test. The target quality (measured by clinically active
ratio) of other databases declines in the order: OMIM (15.01%),
HGMD (14.09%), Orphanet (13.62%), GWASdb (10.53%),
INTREPID (7.08%), GAD (5.75%), and DisGeNET (4.14%)
(Figure 8 and Table S3). This observation inspired us to propose
a parameter for quantitatively measuring the druggability of
disease genes. First, the genes derived from different databases
were given different quality scores, with the highest-quality
database (i.e., Clinvar) being assigned with the highest score
(eight points), while the lowest (i.e., DisGeNET) with the lowest
score (one point). Then, the scores were summed up for each
disease gene to define its druggability (see Methods). The higher
the score is, the more druggable the disease gene. Apparently, a
gene may have different scores for different diseases.

This scoring system is validated by the following observations.
First, for the disease genes with higher druggability scores, the
genetics-implicated activities of agents are more possible to
be clinically supported and approved (Figure 9 and Table S4).
Considering the correlation between gene druggability and
pathogenicity (Plenge et al., 2013; Quan and Zhang, 2016),

Frontiers in Genetics | www.frontiersin.org 4 May 2019 | Volume 10 | Article 474

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


Quan et al. Systems Chemical Genetics-Based Drug Discovery

FIGURE 4 | Sequence similarity and GO distances of gene pairs targeted by the multi-target agents. (A) The sequences for target pairs hit by the agents are more

similar than those randomly selected from the target set (P = 2.20 × 10–16, Wilcoxon rank-sum test). (B) The GO-based Czekanowski–Dice distances of the gene

pairs targeted by the agents are evidently smaller than those of randomly selected target pairs (P = 2.20 × 10–16, Wilcoxon rank-sum test).

it is inferred that druggability score is also appropriate for
characterizing gene-disease links. Indeed, the “top genes” derived
from AlzGene, SzGene, PDGene, and MSGene, which are tightly
connected with diseases, exhibit much higher druggability scores
than other genes with the same pathogenic annotations (P= 2.51
× 10−52, Wilcoxon rank-sum test) (Figure 10). Therefore, each
disease can be characterized by the corresponding scored genes,
constituting a gene profile pertinent to the disease. Different
diseases can be compared through calculating Spearman’s rank
correlation between their gene profiles. It is interesting to notice
that the diseases exhibiting similar gene profiles display similar
symptoms measured by UMLS::similarity (Figure 11), validating
the scoring system in characterizing gene-disease links. Together,
it is concluded that druggability score can be used to measure
target quality and genetic links between genes and diseases,
which is of great value in drug activity prediction by machine-
learning models.

Agent Activity Prediction With Multi-Label
Classification Model
The above analysis implied that it is possible to establish drug-
activity prediction models based on the genetic information of
drug targets. Since a drug is usually associated with multiple
activities for diseases and a disease could be treated by multiple
drugs, drug-activity prediction problem can be considered as a
multi-label classification task. In this paper, we adopted a method
of multi-label k-nearest neighbor (MLKNN) which can construct
high-accuracy multi-label prediction models for drug-activity
prediction (Zhang and Zhou, 2007; Wen et al., 2015).

First, we investigate a variety of features to represent the
characters of druggability. Considering that various features may
bring diverse information as well as noise, we adopt ensemble
learning method to select suitable features to build the models

(Lee and Soo, 2013; Yang et al., 2014; Zhang et al., 2015).
Considering that agents targeting multiple disease genes, in
particular “top disease genes” and genes with high druggability
scores, tend to show high therapeutic potential (Figures 3, 6,
7, 9), we rationally selected four parameters to build the models.
The first parameter characterizes the overall score of genes
responsible for certain diseases within drug targets, and the
second parameter is the normalized average value of the overall
score. The third and fourth parameters describe the absolute
number and relative ratio of ohnologous disease genes (serving
as “top genes”) within drug targets, respectively (see Methods).

Representation of drug labels is a crucial step in multi-label
learning. An agent-disease pair was regarded as a positive, if the
drug hits one or more disease genes and is indicated for treating
this disease. An agent-disease pair was regarded as a negative, if
the drug targets one or more disease genes but is not annotated
for controlling this disease. As a result, a total of 74,902 positives
covering 5,759 agents and 667 diseases, and 3,778,517 negatives
were selected.

Given a dataset of n drugs denoted as
{(

xi, yi
)}n

i=1, xi and yi
are the p-dimensional feature vector and q-dimensional disease
vector for the ith drug, respectively. Our goal is to build
the functional relationship Y = F (X) : 2p → 2q between
exploratory variables (feature vector) and target values (agent-
activity vector) for multi-label learning.

First, four MLKNN models were constructed based on four
features. Then, each model was evaluated by the internal 5-fold
cross validation on the training data. As a result, five MLKNN
models were built based on five internal folds and selected
features. The final prediction result is the average and standard
deviation scores of outputs by five MLKNN models. At last, we
used the ensemble learning method to combine four features and
generate high-accuracy prediction models (see Methods).
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FIGURE 5 | Relationships between druggability and target number of agents

derived from cMap. (A) With the increasing number of targets, the agents

cover more gene modules (ANOVA: P = 1.94 × 10−9). (B) With the increasing

number of targets, the drug approval ratio increases slightly. (C) If only

disease-associated genes are considered, the drug approval ratio rises

evidently with the increase of targeted gene number.

The performance of assembled classifier for agent-activity
prediction is shown in Figure 12. For a 5-fold stratified cross-
validation with a 1,000 repeat, MLKNN displays the best
performance (Table S5). By inputting the 5,759 original agents
and associated targets into the models (where the threshold of
predictive value was set to 0.5), 11,649 activities were predicted.
67.01% of the predicted activities are supported by clinical trials,
and 14.52% have been approved, which are much higher than the
overall ratio of genetics-implicated clinical activity and approved
indication (3.96 and 1.16%, respectively).

To examine for which kind of diseases the predictions are
most relevant, we compared the clinically active/approval ratio

FIGURE 6 | Effects of top genes on the clinically active/approval ratio of

agents. The top genes were derived from AlzGene, SZGene, PDGene, and

MSGene. From DGIdb, TTD and DrugBank, we retrieved 3,692 agents

targeting the genes contained in the four databases, of which 726 targeted at

least one top gene. The results show that for the agents covering top genes,

their genetics-implicated activities are more likely to be supported by clinical

trials and to be clinically approved (P-values were calculated using the

hypergeometric test).

FIGURE 7 | Effects of disease-associated ohnolog genes on the clinically

active/approval ratio of agents. A total of 7,294 ohnolog genes were obtained

from Makino and Mclysaght’s work31, in which 5,265 genes were

disease-associated. Searching DGIdb, TTD and DrugBank revealed that 4,058

agents targeted 1,164 of the 5,265 ohnolog genes. The results show that for

the agents covering disease-associated ohnolog genes, their genetics-derived

activities are more likely to be supported by clinical evidence and be clinically

approved (P-values were calculated using the hypergeometric test).

of the predicted results for various diseases. It was found that,
leukemia and lymphoma have the most predictions (Table S6).
To demonstrate the usefulness of the present method, we tested
the predicted anti-leukemia agents by cytotoxicity experiment.
Using our models, 809 agents were predicted to have anti-
leukemia potential, of which 550 (67.99%) have been validated
by prior clinical tests. Thus, it is intriguing to examine the
anti-leukemia potential of the rest 259 agents. 14 of 259 agents
are commercially available, which were evaluated by K562
(chronic myeloid leukemia-derived cancer cell line) cytotoxicity
assays. The results show that 10 agents (71.43%) can inhibit
the growth of K562 efficiently (Figure 13) (Table S7), with
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FIGURE 8 | Clinically active ratio of genetics-implicated agent indications

derived from different disease gene databases.

FIGURE 9 | Dependence of agent activity/druggability on target quality. With

the increase of druggability scores of target genes, the therapeutic potential of

corresponding agents also increases.

IC50 values ranging from 0.106 (saracatinib) to 111.2µM
(veliparib) (Table S7).

To facilitate the use of the machine-learning prediction
models, we developed a web server SCG-Drug (Systems
Chemical Genetics-Drug, http://zhanglab.hzau.edu.cn/scgdrug)
that allows a quick and intuitive access to the background
information and predicted results. Currently, SCG-Drug
contains 5,759 agents, 703 diseases and 19,233 genes derived
from various databases. By inputting the target information
of any agents into SCG-Drug, one can use the established
machine-learning models to predict the potential activities
of the agents. The SCG-Drug web interfaces allow users to
explore medicinal information related to a given drug, disease
or gene through four interfaces in “Analysis” page: “Drug”,
“Batch prediction,” “Disease,” and “Gene.” The “Drug” interface
allows users to submit a single drug to retrieve target genes and
potential activities of the query drug. For example, when a user
submits a single drug that was shown in the dropdowns, the
drug will be searched in the database directly. If it is unable to
find any matches for the search term, the user will be asked
to input the corresponding target genes of the drug. Then,
the system will call the prediction module. Alternatively, the
system allows the user to upload a file on the “Batch prediction”
interface, in which an agent and corresponding targets are in

FIGURE 10 | Comparison of druggability scores for top genes derived from

AlzGene, SzGene, PDGene, MSGene, and ordinary genes with the same

pathogenic annotations. The top genes exhibit evidently higher scores than

other genes (P = 2.51 × 10–52, Wilcoxon rank-sum test).

a single row and the terms in each row are separated by tabs,
along with an email address to which the predicted activities of
the agents will be sent. Offline prediction automatically starts,
and the predicted results will be sent to the user via e-mail.
The “Disease” interface allows users to obtain relevant disease
genes with druggability score, and database source by querying
standardized disease descriptions of MeSH. The “Gene” interface
allows users to explore gene-related diseases (with druggability
score) and drugs only by submitting a gene name or an Entrez
ID, which have been documented in the server. In addition,
users can obtain the information for documented drugs (with
normalized indications) and targets/genes (with normalized
disease descriptions) from “Download” page. The data and the
machine-learning models will be updated regularly.

DISCUSSION

Selecting agents with desired activities and high druggability
from an infinite chemical space is a fundamental task for drug
development. Previous studies have revealed that genetic disease
genes can provide valuable clues for drug activity prediction
and druggability assessment (Brinkman et al., 2006; Sanseau
et al., 2012; Wang Z. Y. et al., 2012; Plenge et al., 2013; Wang
and Zhang, 2013; Okada et al., 2014; Nelson et al., 2015).
However, these studies are limited to single-drug-single-target
paradigm. Because most complex diseases are caused by multiple
pathogenic factors, it is reasonable to speculate that targeting
multiple disorder factors will better navigate the drug space.
In this study, by a comprehensive analysis, we clearly indicate
that aiming at multiple disease genes is helpful to prioritize
drug candidates with promising activities and high druggability.
Additionally, the strengthened genetic links between target genes
and diseases are helpful to improve the medicinal potential
of drug candidates. The drug-gene interaction information is
expected to be rapidly accumulated through emerging techniques
in chemical biology. However, the identification of reliable
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FIGURE 11 | Efficiency of druggability scoring system in characterizing gene-disease links. Diseases exhibiting similar gene profiles, calculated by Spearman’s rank

correlation, display similar symptoms measured by UMLS::similarity. The number of disease pairs is shown in the box. The color exhibits enrichment of the number in

each row, with red representing the strong enrichment and blue representing the weak.

FIGURE 12 | Agent activity prediction with machine-learning models. (A) Workflow for the machine-learning model establishment. (B) Sketch view for the rationale of

agent activity prediction. (C) The overall performance of the ensemble classifier.

genetic links between genes and diseases depends on progress in
medical genetics.

A number of systems genetics methods have been developed
for enriching and screening the driver genes underlying
complex traits in the post-GWAS era. For example, Zhu

et al. identified 126 genes related to human complex traits
through the integration of summary-level GWAS results
and eQTL data (Zhu et al., 2016). Based on the exome
sequencing, array copy number and RNA sequencing (RNA-seq)
data from 3,281 samples across 12 cancer types, Leiserson
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FIGURE 13 | Cytotoxicity of 14 predicted anti-leukemia agents. K562 cells were treated with (A) Amuvatinib, (B) Aspirin, (C) Brivanib, (D) Crenolanib, (E) Gossypol

acetic acid, (F) Masitinib, (G) Motesanib, (H) Niraparib, (I) RGB-286638, (J) Saracatinib, (K) Tandutinib, (L) Trametinib, (M) Veliparib, (N) Vemurafenib. The results

show that 10 agents (Amuvatinib, Brivanib, Crenolanib, Masitinib, Motesanib, Niraparib, Saracatinib, Tandutinib, Veliparib, Vemurafenib) (71.43%) can efficiently inhibit

the growth of K562.

et al. performed a pan-cancer analysis of mutated networks
utilizing a HotNet2 (HotNet diffusion-oriented sub-networks)
algorithm, by which they identified 16 significantly mutated
subnetworks containing 147 genes. Many of these genes have
been validated to play a critical role in cancer pathogenesis
(Leiserson et al., 2015). Gamazon et al. proposed a gene-
based association method called PrediXcan that directly
tests the molecular mechanisms through which genetic
variation affects phenotype (Gamazon et al., 2015). Greene
et al. introduced a Network-guided GWAS Analysis method
called NetWAS, which integrated tissue-specific networks and
nominally significant P-values in GWAS to identify biologically
important disease-gene associations (Greene et al., 2015).
Although these methods are helpful to identify reliable genes
associated with a complex disease trait, the complex application
procedures hinder their convenient use. In this study, we
endorsed the possibility of using ohnolog genes as a source
of “top disease genes.” The high accessibility of ohnologs will
facilitate the identification of disease driver genes and the
genetics-based drug discovery.

The above discoveries inspired us to establish systems
chemical genetic models for predicting drug activities. Because
drug repurposing is a hot spot in the pharmaceutical industry,
a number of theoretical methods, including cheminformatics-
based, bioinformatics-based and systems biology-basedmethods,
have been proposed to predict drug activities (Jin and Wong,
2014). However, most of these methods were derived from
parameters trained using large datasets, suggesting that these
methods may be sensitive to datasets and poor in generalization
capabilities. The identification of the genetic determinants of
drug activities facilitates the rational selection of parameters to
establish machine-learning models for drug activity prediction.
Because this model was built on the fundamental principle
of drug activity determination, it is expected to be robust
when generalized to different datasets and explainable to
certain extent. Moreover, to maximize the convenience for
researchers, a user-friendly online service (SCG-Drug) was
provided for drug-activity prediction and data retrieval as
well. These systems chemical genetics methods are of high
value in prioritizing drug candidates, also highlighting the
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importance of modern genetics in facilitating the paradigm shift
of pharmaceutical industry.

MATERIALS AND METHODS

Data Sources and Pre-processing
Agent Information
We collected agents and agent-target associations from three
databases: DrugBank, TTD, and DGIdb (Law et al., 2014; Qin
et al., 2014; Wagner et al., 2015). By integrating the 6,841
agents covering 3,692 targets from DrugBank, the 5,208 agents
covering 569 targets from TTD, and the 10,941 agents covering
3,090 targets from DGIdb, we obtained 35,860 agent-target
associations, comprising 16,021 agents and 4,613 target genes.
The indication information for the agents were collected from
DrugBank, TTD, and ClinicalTrials (Zarin et al., 2011; Law et al.,
2014; Qin et al., 2014). Totally, we obtained 80, 90 agents with
corresponding target genes and pharmacological activity records.
Using the disease classes provided by Pharmaprojects (similarity
threshold: 0.75, for more details see the Disease standardization
section), we finally acquired 5,759 agents covering 667 types of
diseases and 2,813 target genes.

Disease-Associated Genes
Eight databases were used to collect disease-related genes,
including the Genetic Association Database (GAD, https://
geneticassociationdb.nih.gov/) (Becker et al., 2004), Online
Mendelian Inheritance in Man (OMIM, http://omim.org/)
(Hamosh et al., 2005), Clinvar (http://www.ncbi.nlm.nih.gov/
clinvar/) (Landrum et al., 2014), Orphanet (http://www.
orpha.net/consor/cgi-bin/index.php), DisGeNET (http://www.
disgenet.org/web/DisGeNET/menu/rdf) (Piñero et al., 2015),
INtegrated TaRget gEne PredItion (INTREPID) (Chen and Tian,
2016), GWASdb (http://jjwanglab.org/gwasdb) (Nelson et al.,
2015) and The Human Gene Mutation Database (HGMD, http://
www.hgmd.cf.ac.uk/ac/index.php) (Wang X. et al., 2012). A total
of 19,233 disease-associated genes were collected for use in the
present analysis. Genes that could not be mapped to an Entrez ID
were excluded. The available URLs, version information, access
dates, and number of records from the above eight databases are
provided in Table S8.

Disease Standardization
We used the Unified Medical Language System (UMLS), which
provides a comprehensive set of medical concepts, to standardize
disease annotations of genes, and agents. UMLS is a medical
terminology system that has been developed by the National
Library of Medicine for more than 20 years and contains a
large number of standardized medical concepts. The natural
language processing program MetaMap was used to convert
disease annotations to the corresponding disease concepts
(Aronson, 2001). We selected Medical Subject Headings (MeSH)
as the vocabulary, and limited the semantic type to “Pathologic
Function,” “Injury or Poisoning,” and “Anatomical Abnormality”
to obtain the disease-related concepts (Liu et al., 2014). We
processed all gene-related phenotypes and agents’ indications
using the UMLS concept. As MeSH defines disease concepts

using a hierarchical system, it classifies each disease to a narrow
disease type; for example, “Alzheimer disease 15” is a subtype
of “Alzheimer disease.” The latter is simply a broader term
for the former. In our work, all subtype disease concepts were
converted to the appropriate broader term using a Perl module
UMLS::Interface. Disease annotations that could not be mapped
to any disease concept were excluded from subsequent analyses.
Using the disease classes provided by Pharmaprojects (similarity
threshold: 0.75) (Mcinnes et al., 2009), we obtained 914,190
gene-disease pairs (involving 703 types of diseases) and 74,902
agent-disease pairs (involving 667 types of diseases).

Sequence Similarity Analysis
The needle program of EMBOSS package (Version: 6.6.0.0) (Rice
et al., 2000) was employed to perform sequence similarity analysis
of agent-targeted proteins, because of its accurate production of
Needleman-Wunsch global pairwise alignments.

Gene Ontology (GO) Terms Similarity Measurement
We used the GO-based Czekanowski–Dice distance to evaluate
the GO terms similarity of the target pairs. The Czekanowski–
Dice functional distance was calculated using a previously
described method (Ovaska et al., 2008). The GO term
information of the gene pairs was obtained from the Ensembl
database (version 72).

“Top Genes” and Ohnolog Genes
The AlzGene database contains 650 genes for Alzheimer’s disease
(Bertram et al., 2007); the SzGene database contains 937 genes for
schizophrenia (Allen et al., 2008); the PDGene database contains
571 genes for Parkinson’s disease (Lill et al., 2012); and the
MSGene database contains 675 genes for multiple sclerosis (Lill
et al., 1994). From these databases, 44, 43, 31, and 43 genes
strongly associated with Alzheimer’s disease, schizophrenia,
Parkinson’s disease and multiple sclerosis, respectively, were
identified. These genes were termed “top genes,” meaning that
relatively reliable associations have been established between
these genes and certain diseases. In addition, the ohnologs served
as an alternative source of “top disease genes,” because ohnologs
are significantly enriched with disease genes due to their strong
dosage balance (Makino and Mclysaght, 2010; McLysaght et al.,
2014). FromMakino et al.’s work (Makino and Mclysaght, 2010),
we extracted 9,057 ohnolog pairs covering 7,295 genes from the
human genome.

Druggability Score of Disease Genes
Based on clinically active ratio of genes from eight disease
databases (Clinvar, OMIM, HGMD, Orphanet, GWASdb,
INTREPID, GAD, and DisGeNET), we proposed a parameter
named druggability score for quantitatively measuring the
druggability of disease genes. First, the genes derived from
different databases were given different scores, with the highest-
clinically active ratio database (i.e., Clinvar) being assigned with
the highest score (eight points), the disease genes obtained from
the second-ranked database of the clinically active ratio (i.e.,
OMIM) was given seven points, and so on, from HGMD was
given six points, from Orphanet was given five points, from
GWASdb was given four points, from INTREPID was given
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three points, from GAD was given two points, while the lowest
clinically active ratio (i.e., DisGeNET) with the lowest score (one
point) (Table S3). Then, if a disease gene is recorded in multiple
databases, the scores of the corresponding multiple databases
were summed up for this disease gene to define its druggability:

Druggability score =
∑k

j=1
scoreij (1)

where scoreij denotes the assigned score of a pathogenic gene i in
the jth database (Table S3); i = 1, 2, ..., m; j = 1, 2, ..., k, where
m is the number of disease genes, k is the number of databases
(k= 8 in this study).

Statistical Analysis
Disease Similarity Measurement
First, the disease terms of genes and indication annotations of
agents were converted to the standardized medical concepts of
UMLS by a natural language processing tool MetaMap. Then,
through using the disease classes provided by pharmaprojects
(Similarity threshold: 0.75), the disease similarity was measured
using UMLS::similarity. Lin, which is calculated using the
information content and path of concepts, shows good
performance for disease similarity measurement (Nelson et al.,
2015). In this study, we used the Lin to evaluate the disease term
similarity of all disease concepts. The Lin is calculated using the
following equation:

Lin =
IC(lcs)

IC
(

concept1
)

+ IC(concept2)
(2)

where IC is the negative log of the probability of the concept,
the probability is pre-calculated by the Perl module by summing
the probability of the concept occurring in some text plus the
probability of its descendants occurring in some text, and lcs is
the least common subsuming concept of concept1 and concept2.

Tanimoto Coefficient Calculation
To assess the correlations between disease concepts and their
corresponding causal genes or drugs, we characterized the
distance between disease gene sets or drug sets using the
Tanimoto coefficient. The Tanimoto coefficient (TC) is calculated
using the following equation:

TC =
NAB

NA + NB − NAB
(3)

where NA is the number of disease A-related genes or drugs, NB

is the number of disease B-related genes or drugs, and NAB is the
number of common genes or drugs for disease A and disease B.

Permutation Test
To evaluate the quality of agent-target pairs, we did a 10000-
permutation test on the three sets of agent-target pairs derived
from DGIdb, TTD and DrugBank (Law et al., 2014; Qin
et al., 2014; Wagner et al., 2015), respectively. The agents were
randomly assigned with targets and the clinically active ratio
of agents was calculated. This random shuffling procedure was
repeated for 10,000 times.

Machine-Learning Modeling
Feature Generation
We rationally selected four parameters to build the model. The
first parameter characterizes the overall druggability score of the
pathogenic genes within drug targets. The second parameter is
the average value of the first parameter and is normalized by
36 (namely 8∼). For example, if an agent targets two related
disease genes derived from Clinvar and DisGeNET, respectively,
the first parameter will be 9 (8 + 1), and the second parameter
will be 0.125 (9/2× 36). The third and fourth parameters are the
absolute number and relative ratio of ohnologous disease genes
within drug targets, respectively.

Positive Sample Generation
An agent-disease pair was regarded as a positive, if the drug
hits one or more disease genes and is indicated for treating this
disease. The positive samples were generated as 74,902 agent-
disease pairs.

Negative Sample Generation
An agent-disease pair was regarded as a negative, if the drug
targets one or more disease genes but is not annotated for
controlling this disease. The negative samples were generated as
3,778,517 pairs. In the web server SCG-Drug (http://zhanglab.
hzau.edu.cn/scgdrug), the model with all samples is provided.

MLKNN
Given the training set

{(

xi, yi
)}n

i=1, xi is the ith instance (drug),

and yi is the corresponding disease vector. yi
(

l
)

= 1. If the ith
instance can treat the lth disease, otherwise yi

(

l
)

= 0, l =

1, 2, . . . , q. The k nearest neighbors (in training set) of instance
xi are denoted by N (xi) , i = 1, 2, . . . , n. Thus, based on lth
disease of these neighbors, a membership counting vector can be
denoted as:

Cxi

(

l
)

=
∑

a∈N(xi)

ya
(

l
)

, l = 1, 2, . . . , q (4)

where Cxi

(

l
)

counts the number of neighbors of xi treating the
lth disease, and 0 ≤ Cxi

(

l
)

≤ k.
For a test drug t, MLKNN identifies its k nearest neighbors

in the training set and calculate Ct

(

l
)

. Let Hl
1 be the event that a

drug has lth disease andHl
0 be the event that a drug does not treat

lth disease. Let Elj be the event that a drug just has j neighbors with
lth disease in its k nearest neighbors. For the instance t, its label
for lth disease yt

(

l
)

is determined by the following principle:

yt
(

l
)

= argmaxb∈{0,1}P
(

Hl
b|E

l
Ct(l)

)

, l = 1, 2, . . . , q (5)

Using the Bayesian rule, above Equation (5). can be rewritten as:

yt
(

l
)

= argmaxb∈{0,1}

P
(

Hl
b

)

P
(

El
Ct(l)

|Hl
b

)

P
(

El
Ct(l)

)

= argmaxb∈{0,1}P
(

Hl
b

)

P
(

El
Ct(l)

|Hl
b

)

(6)
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In the predictionmodel, P
(

Hl
b

)

and P
(

El
Ct(l)

|Hl
b

)

are calculated

based on the training set. The prior probabilities are calculated.

P
(

Hl
1

)

=

(

s+
∑n

i=1 yi
(

l
))

(s× 2+ n)
and P

(

Hl
0

)

= 1− P
(

Hl
1

)

(7)

Then, the posterior probabilities P
(

El
Cxi(l)

|Hl
0

)

, P
(

El
Cxi(l)

|Hl
1

)

are calculated by following equations,

P
(

Elj|H
l
1

)

=

(

s+ c
[

j
])

(

s×
(

k+ 1
)

+
∑k

i=0 cl [i]
) (8)

P
(

Elj|H
l
0

)

=

(

s+ c′
[

j
])

(

s×
(

k+ 1
)

+
∑k

i=0 cl
′ [i]

)

l = 1, 2, . . . , q, j = 1, 2, . . . , k (9)

where s is the smooth factor. cl [i] is the number of instances
which just has i neighbors with lth disease in their k nearest
neighbors; c

′

l [i] is the number of instances which just has
i neighbors without lth disease in their k nearest neighbors
(Zhang and Zhou, 2007).

Cross-Validation
We used 5-fold stratified cross-validation with 1,000 repeats to
avoid arbitrariness.

Ensemble Learning Method
In this paper, an ensemble learning method was designed to
combine various features and develop high-accuracy prediction
models (Lee and Soo, 2013; Yang et al., 2014; Wen et al., 2015).
Previous studies have shown that combining predictions from
different methods could achieve better and more robust results
than using one algorithm alone. In this study, an ensemble
classifier was generated using the linear weighted sum of outputs
from classifiers based on four features.

Given m features, we build m individual feature-based
MLKNN models, and use them as base predictors. Since
features may make different contributes, it is natural to adopt
weighted scoring ensemble strategy, which assigns m base
predictors with m weights {w1,w2, . . . ,wm}. For a testing
instance, the ith predictor will give scores for q diseases, denoted
as Si =

{

s1i , s
2
i , . . . , s

q
i

}

, i = 1, 2, . . . ,m. The final prediction
produced by the ensemble model is the linear weighted sum of
outputs from base predictors.

Ensemble Score = [w1,w2, . . . ,wm]×









S1
S2
. . .

Sm









(10)

= [w1,w2, . . . ,wm]×







S11 · · · S
2
1S

q
1

...
. . .

...
S1mS

2
m · · · S

q
m






(11)

Tuning weights for base predictors are critical for the ensemble
models. The weights are non-negative real values between 0 and

1, and the sum of weights equals 1. We adopt the internal 5-CV
AUPR on training data is used as the fitness score (Lee and Soo,
2013; Yang et al., 2014; Wen et al., 2015).

Performance Evaluation
In the agent-activities prediction, the predicted scores for
activities were usually merged for evaluation, and the metrics
for ordinary binary classification were often adopted. The area
under ROC curve (AUC) and the area under the precision-recall
curve (AUPR) can be used to evaluate models regardless of any
threshold. However, there are much more negative labels than
positive labels in the agent-activities prediction, and machine-
learning methods are likely to produce overestimated AUC
scores. Since AUPR takes into account recall as well as precision,
it is used as the most important metric.

We used the following evaluation metrics to evaluate the
performance of machine-learning models: Precision, Accuracy
(ACC), Recall, Specificity, Mathew’s correlation coefficient
(MCC) (12–16). These metrics can be calculated by the number
of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN).

Precision =
TP

TP + FP
(12)

ACC =
TP + TN

TP + FN + TN + FP
(13)

Recall =
TP

TP + FN
(14)

Specificity =
TN

TN + FP
(15)

MCC =
TP × TN − FP × FN

√

(TP + FP) × (TP + FN) × (TN + FP)× (TN + FN)

(16)

Several metrics were designed for multi-label classification, i.e.,
Hamming loss, one-error, coverage, ranking loss and average
precision. Hamming loss is the fraction of the wrong labels to
the total number of labels. The one-error evaluates the fraction
of examples whose top-ranked label is not in the relevant label
set. The coverage evaluates how many steps are needed, on
average, to move down the ranked label list so as to cover all the
relevant labels of the example. The average precision evaluates
whether the average fraction of relevant labels ranked higher than
a particular label. Therefore, we adopt AUPR, average precision,
one-error, coverage, ranking loss and hamming loss for the agent-
activities prediction.

Cytotoxicity Assays
Cell Culture and Reagents
K562 cells were purchased from Shanghai Cell Bank, Chinese
Academy of Sciences. Cells were cultured in RPMI-1640
(Procell, China) with 10% FBS (Biowest, France) and 1%
penicillin/streptomycin (Procell, China) at 37◦C, in 5% CO2

humidified atmospheric air. All agents were purchased from
TargetMol and dissolved in dimethyl sulfoxide (DMSO).
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Cytotoxicity Assays
The effects of agents on K562 were determined using CellTiter-
Glo R© Luminescent Cell Viability Assay (Promega). Cells were
seeded in 96-well plate at a density of 2 × 103 cells/well and
treated with different agents for 72 h together. An equal volume of
CellTiter-Glo reagents was added to the cells in 96-well plates and
mixed for 2min on an orbital shaker and incubated for a further
10min at room temperature. The luminescence of each well was
measured by FlexStation3(Molecular Devices). The IC50 values
were calculated using Graphpad Prism software. All experiments
were performed in triplicate.

Web Server Implementation
Systems Chemical Genetics-Drug (SCG-Drug, http://zhanglab.
hzau.edu.cn/scgdrug) was built in Java, JavaScript, and Bootstrap
with MySQL as the primary data store. The site is served with
nginx on a server running CentOS 7.2. Two modules are used:
the searchmodule and the predictionmodule. The searchmodule
was implemented by an entry-name matching algorithm. By
using this module, the server will return a list of partially matched
terms and shows them in the dropdowns when users type only the
starting characters of a gene, disease or drug in the search field.
In the prediction module, there are two steps: data preprocessing
and drug indication prediction. In the data preprocessing step, a
Python script was used to produce the parameters matrix. In the
drug indication prediction step, an R script was used to generate
the result by calling the prediction model.

Code and Data Availability
The R and Python scripts used to process the data and conduct
the analyses described herein are available upon request. All of
the intermediate data are available from the authors by request.
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can be found here: http://zhanglab.hzau.edu.cn/scgdrug.

AUTHOR’S NOTE

Finding novel drugs or new uses for old drugs is a costly
process. Previous studies have shown that genetics, which is

best dedicated to revealing gene-disease links, makes great
contributions to the pharmaceutical industry. On the other hand,
most diseases are caused by multiple pathogenic factors. In this
paper, we proposed that aiming at multiple genes associated
with certain diseases rather than a single pathogenic factor
is more efficient in identifying potential drugs. In addition,
our results demonstrated the therapeutic potential of agents
can be enhanced with the consolidation of genetic links
between targets and diseases. In other words, simultaneously
increasing the quantity and quality of target-disease associations
can significantly increase the activity/druggability of agents.
According to the above theories, we have established a
drug-activity predictor with multi-label classification model
based on the genetic information of drug targets (online
service is freely available at SCG-Drug, http://zhanglab.
hzau.edu.cn/scgdrug), which is of high value in prioritizing
drug candidates.
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