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Amyotrophic lateral sclerosis 
and cerebellum
Renata Kabiljo3*, Alfredo Iacoangeli3, Ammar Al‑Chalabi2 & Ivana Rosenzweig1

Amyotrophic lateral sclerosis (ALS) is a devastating, heterogeneous neurodegenerative 
neuromuscular disease that leads to a fatal outcome within 2–5 years, and yet, a precise nature of the 
association between its major phenotypes and the cerebellar role in ALS pathology remains unknown. 
Recently, repeat expansions in several genes in which variants appreciably contribute to cerebellar 
pathology, including C9orf72, NIPA1, ATXN2 and ATXN1, have been found to confer a significant risk 
for ALS. To better define this relationship, we performed MAGMA gene‑based analysis and tissue 
enrichment analysis using genome‑wide association study summary statistics based on a study of 
27,205 people with ALS and 110,881 controls. Our preliminary results imply a striking cerebellar 
tissue specificity and further support increasing calls for re‑evaluation of the cerebellar role in the ALS 
pathology.

Amyotrophic lateral sclerosis (ALS) is a devastating, heterogeneous neurodegenerative neuromuscular disease 
predominantly affecting upper and lower motor  neurons1, leading to death within 2–5  years1. About 15% of 
people with ALS have mutations in one of the 40 Mendelian ALS  genes1. Recently, repeat expansions in several 
genes in which variants appreciably contribute to cerebellar pathology, including C9orf72, NIPA1, ATXN2 and 
ATXN1, have been found to confer a significant risk for  ALS1,2.

Cerebellar degeneration in ALS has long been a contentious topic, with the consensus being minimal 
involvement of the cerebellum in ALS, or at best, a compensatory role for cerebellar function during progres-
sive supratentorial  degeneration3,4. This is, however, in opposition to compelling radiological and post-mortem 
pathologic evidence for extrapyramidal and cerebellar  degeneration4–6. Accordingly, a recent imaging study of 
161 people with ALS, stratified for ALS-associated C9orf72 and ATXN2 variants, described distinct focal cerebel-
lar trophic change, preferentially affecting specific  lobules5. Notably, a significant cerebellar pathology was also 
demonstrated in patients without these ALS-associated  mutations5.

Based on these  findings2,5, we explored whether significant cerebellar specificity of the ALS phenotypes could 
be confirmed by performing MAGMA tissue expression analyses on the ALS genome-wide association study 
(GWAS) summary statistics.

Results
The ten most statistically significant genes in MAGMA gene-based analysis were MOB3B, C9orf72 (unless 
excluded), SCFD1, UNC13A, IFNK, G2E3, TNIP1, TBK1, BAG6 and EFTUD1. Complete list and MAGMA-
dataset is available from https:// fuma. ctglab. nl/ browse/ 423.

Of 54 anatomical regions investigated, MAGMA-tissue-expression-profile-analysis revealed that the 
ALS-associated genes were significantly enriched for expression in the cerebellum and the cerebral-cortex 
[P(cerebellum) = 1.3 ×  10−04; P(cerebellar_hemispheres) = 1.5 ×  10−04; P(brain_frontal_cortex_BA9) = 3.3 ×  10−04 
and P(brain_cortex) = 1.2 ×  10−04].

This enrichment was observed even when known cerebellar pathology-associated ALS-risk genes C9orf72, 
ATXN1, ATXN2 and NIPA1 were excluded in later analyses to avoid disproportionate enrichment (Fig. 1). It is 
of note that the region of the nucleus accumbens within the basal ganglia reached statistical significance during 
these analyses [P(nucleus accumbens) = 9.2 ×  10−04]. Statistical significance for the most enriched tissues is listed 
in Table 1.
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Discussion
We report a striking cerebellar tissue specificity for ALS. In addition, similar specificity is shown for the dor-
solateral-prefrontal-region (the-Broadmann-area-9), the cortical-area targeted with distinct cerebellar inputs 
via thalamic-projections, essential for ‘higher’-cognitive functions such as working-memory, motor-planning, 
abstract reasoning and voluntary control of automatic  movements7.

Moreover, we report that this specificity remains even when we exclude ALS-genetic variants known to 
contribute to cerebellar pathology in ALS.

In past, ALS has been similarly associated with widespread and differential basal ganglia  involvement8. More 
specifically, changes in the regions of the nucleus caudatus, hippocampus, and in the region of the nucleus 
accumbens, have been proposed to present some of the key features of  ALS8. Accordingly, these brain regions 
feature among the top ten enriched anatomical regions (see Fig. 1, Table 1). Statistically significant specificity 

Figure 1.  MAGMA tissue enrichment analysis of candidate genes for ALS, based on GTEx RNA-seq data of the 
54 specific tissue types. Top 20 tissues are shown in figure. Significant tissues are marked with *.

Table 1.  P values for the most enriched tissues for MAGMA tissue enrichment analysis of candidate genes for 
ALS, based on GTEx RNA-seq data for 54 specific tissue types. Significant P values are bolded.

Anatomical region Complete No C9ORF72 No C9ORF72,NIPA1,ATXN1, ATXN2

Brain cortex 0.00012057 0.00011576 0.00011708

Brain cerebellum 0.00013406 0.00017257 0.00017868

Brain cerebellar hemisphere 0.00015471 0.00019659 0.00020407

Brain frontal cortex BA9 0.00033164 0.00033169 0.00033791

Brain nucleus accumbens basal ganglia 0.00098116 0.00092179 0.00092735

Brain anterior cingulate cortex BA24 0.0015641 0.0015002 0.0015101

Brain caudate basal ganglia 0.0023117 0.0021419 0.0021732

Brain putamen basal ganglia 0.0056439 0.0051024 0.005195

Brain hypothalamus 0.0073602 0.0076545 0.007772

Brain hippocampus 0.01405 0.01342 0.013692

Brain amygdala 0.021646 0.020465 0.020641

Pituitary 0.074125 0.079439 0.080076

Brain substantia nigra 0.12635 0.12497 0.12759

Testis 0.16764 0.16718 0.16765

Cells EBV-transformed lymphocytes 0.18536 0.18119 0.18576
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has, however, only been demonstrated for the basal ganglia’s nucleus accumbens region (Table 1), and only in 
analyses that excluded the ALS-genetic variants known to contribute to cerebellar pathology in ALS, including 
C9orf72. This is perhaps somewhat contraintuitive to previous studies, which argued a more intensive basal 
ganglia involvement in patients with ALS carrying the C9orf72 hexanucleotide repeat  expansion8. Whilst the 
dissonance may reflect important aspects of our methodological limitations, we propose that our findings may 
also emphasise the complexity of the cerebellar role in the ALS-affected neurocircuitry. For example, a specific 
(focal) cerebellar pathology may arguably dictate differential downstream changes in functional connectivity 
between the sub-regions of the cerebellum, the dorsolateral prefrontal cortex and the nucleus  accumbens9,10. 
The cerebellum shares functionality in motivated  behaviors9,10 with these subcortical and cortical regions, and 
thus, any distinct cerebellar changes may drive and underlie, at least in part, different ALS phenotypes, with 
significant clinical  implications9.

In summary, the role of the cerebellum in exacerbating cardinal clinical manifestations such as motor dis-
ability, bulbar dysfunction, respiratory compromise, sleep and cognitive problems, is often overlooked, and 
symptoms traditionally primarily linked to supratentorial  pathology4. Furthermore, a closed-loop connectivity 
between localised regions of the prefrontal cortex, nucleus accumbens and cerebellum, and the extent to which 
cerebellar output may contribute to the ALS pathology remain mostly unmapped. Further aggravating point is 
that it is also challenging to identify cerebellar signs clinically in patients with motor weakness.

Our findings cannot be taken to suggest causality, or indeed the valence of these cerebellar associations due 
to the methodological limitations of MAGMA-analyses. Nonetheless, while cerebellar signatures of specific 
ALS-genotypes are yet to be firmly established, our study further supports increasing calls for re-evaluation of 
the cerebellar role in the ALS  pathology4,5.

Methods
For the purpose of this study,  MAGMA11 gene-based analysis and tissue enrichment analysis were performed 
using genome-wide association study (GWAS) summary statistics from a study of 27,205 people with ALS and 
110,881  controls12, downloaded from https:// surfd rive. surf. nl/ files/ index. php/s/ E5Ret Kw10h C3jXy.

Three MAGMA-analyses were performed. During the first we analysed the entire GWAS-ALS dataset. To 
establish whether genes with known cerebellar involvement might be driving potential enrichment in cerebellum, 
we performed two additional analyses. For the first, all SNPs mapping positionally to C9orf72 were excluded (see 
Table 1, column ‘No C9orf72’. To the same end, additionally, all SNPs mapping positionally to C9orf72, ATXN1, 
ATXN2 and NIPA1 were excluded (see Table 1, the column ‘No C9orf72, ATXN1, ATXN2 and NIPA1’). MAGMA 
(v1.08) was invoked by FUMA (v1.3.7)13, an online tool for mapping and annotation of genetic associations. In 
MAGMA gene-based analysis, GWAS summary statistics are used to compute gene-based P values for protein 
coding genes by mapping SNPs to genes if SNPs are located within the genes. Bonferroni correction was used 
to correct for multiple testing.

Tissue-enrichment analysis was performed using the results of the gene-based analysis and the data from 
the Genotype—Tissue Expression (GTEx)  project14, integrated in FUMA (v1.3.7)13. GTEx project traditionally 
includes 54 specific human body tissue types, amongst which are thirteen different brain  regions14. Detailed 
information on the anatomical sampling sites, used databanks and the specific extraction methods can be found 
on https:// www. gtexp ortal. org/. For example, for the cerebellar hemisphere please refer to https:// www. gtexp 
ortal. org/ home/ tissue/ Brain_ Cereb ellar_ Hemis phere and for the cerebellum on https:// www. gtexp ortal. org/ 
home/ tissue/ Brain_ Cereb ellum.

Average gene-expression per tissue type was used as a gene covariate to test for a positive relationship between 
gene expression in a specific tissue type and genetic associations.

Ethics declarations. This study does not does report on experiments on humans. Only GWAS summary 
statistics have been used.

Data availability
The complete FUMA gene based and tissue besed analysis results and parameters are available at https:// fuma. 
ctglab. nl/ browse/ 423.
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