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Background-—The variation and covariation for many cardiometabolic traits have been decomposed into genetic and
environmental fractions, by using twin or single-nucleotide polymorphism (SNP) models. However, differences in population,
age, sex, and other factors hamper the comparison between twin- and SNP-based estimates.

Methods and Results-—Twenty-four cardiometabolic traits and 700,000 genotyped SNPs were available in the study base of
10 682 twins from TwinGene cohort. For the 27 highly correlated pairs (absolute phenotypic correlation coefficient ≥0.40), twin-
based bivariate structural equation models were performed in 3870 complete twin pairs, and SNP-based bivariate genomic
relatedness matrix restricted maximum likelihood methods were performed in 5779 unrelated individuals. In twin models, the
model including additive genetic variance and unique/nonshared environmental variance was the best-fitted model for 7 pairs (5 of
them were between blood pressure traits); the model including additive genetic variance, common/shared environmental variance,
and unique/nonshared environmental variance components was best fitted for 4 pairs, but estimates of shared environment were
close to zero; and the model including additive genetic variance, dominant genetic variance, and unique/nonshared environmental
variance was best fitted for 16 pairs, in which significant dominant genetic effects were identified for 13 pairs (including all 9
obesity-related pairs). However, SNP models did not identify significant estimates of dominant genetic effects for any pairs. In the
paired t test, twin- and SNP-based estimates of additive genetic correlation were not significantly different (both were 0.67 on
average), whereas the nonshared environmental correlations from these 2 models differed slightly from each other (on average,
twin-based estimate=0.64 and SNP-based estimate=0.68).

Conclusions-—Beside additive genetic effects and nonshared environment, nonadditive genetic effects (dominance) also contribute
to the covariation between certain cardiometabolic traits (especially for obesity-related pairs); contributions from the shared
environment seem to be weak for their covariation in TwinGene samples. ( J Am Heart Assoc. 2018;7:e007806. DOI: 10.1161/
JAHA.117.007806.)
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L evels of cardiometabolic traits vary more between than
within individuals, and most of them are normally

distributed in the population, indicating complex regulation
by both genes and environment. The concept of “heritability”

reflects the relative importance of genes (in contrast to
environment) for complex traits.1 Univariate heritability is
defined as the proportion of a trait’s phenotypic variation
explained by genetic effects, whereas bivariate heritability is
the proportion of phenotypic covariation between 2 traits
explained by genetic effects.2

Several methods have been developed to partition the
variation and covariation of human complex traits into genetic
and environmental components. The twin study is the classic
family-based design, relying on comparing the within-pair
similarity between monozygotic and dizygotic twins.3 As a
result of genome-wide association studies, many common
single-nucleotide polymorphisms (SNPs) associated with
complex traits (eg, cardiometabolic biomarker levels) have
been identified.4 Since 2010, several SNP-based methods for
heritability estimation have been developed; the genomic
relatedness matrix restricted maximum likelihood (GREML)
and linkage disequilibrium score regression (LDSC) are the
most frequently used SNP-based methods.5–7
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To date, the univariate heritabilities of >17 800 traits/
diseases have been estimated from twin studies8; SNP-based
univariate heritabilities of >700 traits/diseases have been
estimated by GREML or LDSC.9,10 A general finding has been
that SNP-based estimates tend to be considerably lower than
corresponding estimates from twin studies. The causes of this
gap are topics for continuing discussions and investigations.11

Although heritability often turns out comparable across
populations, it varies by the actual distribution of age, sex,
and other factors in the investigated population sample.12

Therefore, the only straightforward and strictly valid way to
investigate the “heritability gap” between the twin and SNP
model is to compare the twin- and SNP-based estimates in the
same population sample at the same time point.

By comparing univariate heritabilities of 18 human complex
traits within the same study base, we observed that common
SNPs captured 70% of the narrow-sense heritability estimated
from twin models, when the power in the twin model was high
enough to declare and distinguish the dominant from additive
genetic variation.13 However, similar comparisons for the
bivariate estimates between cardiometabolic traits have not
been undertaken. This study quantifies the extent of genetic
(additive and dominant) and environmental (shared and
nonshared) contributions to the covariation between car-
diometabolic traits, by applying both twin and SNP models
within the same study base.

Methods
The data and study materials are available to other
researchers on application and approval from the steering

group of the Swedish Twin Registry.14 Access to the analytic
methods may be requested from the corresponding author.

Study Population
All participants in this study were from the TwinGene project,
a Swedish population-based cohort of twins born between
1911 and 1958.15 From 2004 to 2008, 12 614 twins donated
venous blood samples after overnight fasting and had a health
checkup at their local healthcare facility. Blood samples were
sent to Karolinska Institutet Biobank before the weekend by
overnight post. The TwinGene project was approved by the
local ethics committee at Karolinska Institutet, and all
participants gave informed consent.

Phenotypes
Twenty-four continuous cardiometabolic traits were measured
or calculated for �12 000 TwinGene participants. Serum
levels of apolipoprotein (apo) A1 and B, total cholesterol (TC),
low- and high-density lipoprotein (LDL and HDL, respectively),
triglycerides, hemoglobin, C-reactive protein, and fasting
glucose were measured by routine methods on semiauto-
mated biochemistry analyzer (Beckman Coulter, CA). Non-
HDL was calculated as TC minus HDL. Hemoglobin A1c was
measured by ion exchange chromatography. Creatinine was
measured by an enzymatic method using Arcitect c8000 and
Arcitect c16000 immunoassay analyzers (Abbott, IL). Cystatin
C was measured by particle-reinforced immunoturbidimetric
method using Architect ci8200, and estimated glomerular
filtration rate was calculated as 79.9019(cystatin C [mg/
L])�1.4389. Height, weight, and waist and hip circumference
were measured without shoes and in light clothing. Body
mass index was calculated as weight (kg)/height (m)2, and
waist/hip ratio (WHR) was calculated as waist circumference
(cm)/hip circumference (cm). Systolic and diastolic blood
pressures (SBP and DBP, respectively) were measured in
mm Hg, mean arterial pressure (MAP) was calculated as 0.33
SBP+0.67 DBP, and pulse pressure (PP) was calculated as
SBP minus DBP. The same transformation was used to make
all cardiometabolic traits comparable and to achieve standard
normal distribution: the raw values were adjusted for age, sex,
and 10 genetic principal components in a linear regression
model, after which the residuals were rank order normalized
and used as phenotypes in the further analyses. Subjects with
missing values (after adjustments) for >5 blood biomarkers or
who had unknown zygosity were excluded; finally, 10 682
twins remained to constitute the study base.

Genotypes
Genomic DNA was extracted from whole blood samples by
using Puregene extraction kit (Gentra Systems, Minneapolis,

Clinical Perspective

What Is New?

• This was a comprehensive investigation about the relative
importance of genes and environment for the covariation
between cardiometabolic traits, by using both twin- and
single-nucleotide polymorphism–based models within the
same study base.

What Are the Clinical Implications?

• The contributions of genetic and environmental effects vary
by different clusters of cardiometabolic traits.

• Additive genetic effects and nonshared environmental
effects influence the covariation between blood pressure
traits.

• Beside additive genetic effects and nonshared environmen-
tal effects, dominant genetic effects are important for the
covariation between obesity traits.

• Contributions from shared environment seem to be weak
between these cardiometabolic traits.
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MN). After excluding subjects with DNA concentration
<20 ng/mL, DNA samples of other available dizygotic twins
and 1 twin from each monozygotic twin pair (n=9896) were
sent for genotyping. SNPs were genotyped by using Illumina
OmniExpress BeadChip (700K), with quality controls as
follows: individual missingness ≤0.03, genotype missingness
≤0.03, minor allele frequency ≥0.01, Hardy-Weinberg equilib-
rium P≥10�7, no sex mismatch, no excess heterozygosity
(individuals with an F-statistic beyond 5 SDs from the sample
mean), and no cryptic (unknown) relatedness. Finally, 9617
individuals and 644 556 SNPs were kept.

Twin and SNP Models
For each cardiometabolic trait and highly correlated trait pair
(absolute phenotypic correlation coefficient |rP|≥0.4), twin-
based structural equation model (SEM) and SNP-based
GREML (dominant) method were performed to get the twin-
and SNP-based estimates, respectively. Paired t test was used
to test the agreement (or difference) between significant twin-
and SNP-based estimates.

From the study base, 3870 complete twin pairs (1088
monozygotic, 1443 same-sex dizygotic, and 1339 opposite-
sex dizygotic pairs) were used in twin models. The zygosity
was determined by DNA markers (for 57% of the study
sample) or by using an algorithm on self-reported childhood
resemblance data.15 Twin studies are based on 3 main
assumptions: cotwins within monozygotic pair share 100%
while cotwins within dizygotic pair share 50% of segregating
genes, and cotwins within the same pair share 100% of the
raising environment.2 By using OpenMx 2.8.3 package in R
3.4.1, twin-based SEMs were constructed to partition pheno-
typic variation of each trait and covariation between traits into
genetic and environmental components.16 Akaike information
criterion was used to compare the goodness of model fitting,
in which the parameters of the covariance matrices were
estimated by maximum likelihood methods.17

The GREML(d) method implemented in genome-wide
complex trait analysis tool, version 1.26.0, was used to get
SNP-based estimates.5,18 The method relies on comparisons
between measured phenotypic similarities and estimated
genetic sharing. All directly genotyped SNPs (passing the
quality controls) were fitted as random effects in a mixed
linear model. To avoid bias from shared environment, 1 twin
from each twin pair was randomly removed first, and
remaining related individuals (relatedness >0.025) were
further removed on the basis of pair-wise genomic relation-
ship matrix. Finally, 5779 unrelated individuals from the same
study base were used in SNP-based GREML(d) model.
Restricted maximum likelihood approach was used to calcu-
late the parameter values with the best probability, and
likelihood ratio test was used to test for the best model fitting.

For each trait, the phenotypic variation can be mainly
partitioned into the following: additive genetic variance (a2;
sum of individual effect of each locus or SNP), dominant
genetic variance (d2; interactions between alleles at the same
locus or SNP) or common/shared environmental variance (c2;
contributes to the similarities between relatives who live
together, only from twin model), and unique/nonshared
environmental variance (e2; specific to individuals, contributes
to the dissimilarities between family members).

To decompose the covariation between 2 correlated traits,
bivariate “Cholesky model” was constructed in twin-based
SEM,2 and SNP-based bivariate GREML(d) analyses were
performed in genome-wide complex trait analysis.6 The
phenotypic correlation between 2 traits can be decomposed
into bivariate a2 (proportion explained by additive genetic
effects), bivariate d2 (proportion explained by dominant
genetic effects) or bivariate c2 (proportion explained by
shared environment, only from twin model), and bivariate e2

(proportion explained by nonshared environment). The over-
laps of genetic and environmental effects (to what extent it is
the same effects in action) were investigated by estimating
additive and dominant genetic correlations (rA and rD,
respectively), as well as shared and nonshared environmental
correlations (rE).

Results
General characteristics of 10 682 twins in the study base
are presented in Table 1. The distribution of each car-
diometabolic trait was similar between the 3870 complete
twin pairs and the 5779 unrelated individuals (Table 2).
Results from the univariate models for 17 of the 24 traits
from the same sample have been published previously
(Table S1).13 In short, for all traits, but not apolipoprotein
A1 and height, the intrapair correlation coefficients were
more than twice larger in monozygotic than dizygotic twin
pairs. In the univariate twin SEM, the model including a2

and e2 (AE) was the best-fitted model for HDL, apolipopro-
tein A1, DBP, MAP, and PP; the model including a2, c2, and
e2 components (ACE) was the best-fitted model for height;
the model including a2, d2, and e2 (ADE) was the best-fitted
model for the remaining 18 traits. SNP-GREML(d) identified
significant d2 for triglycerides and waist circumference.
Except for C-reactive protein, waist circumference, and
WHR, the twin-based a2 values were larger than the
corresponding SNP-based estimates; SNP-based a2 was
not significant for SBP, DBP, and MAP.

The phenotypic correlation pattern for the investigated
cardiometabolic traits was also similar between the complete
twin pairs and samples restricted to unrelated individuals
(Figure 1). Twenty-seven pairs (9 for blood lipids, 4 for
metabolic biomarkers, 9 for obesity traits, and 5 for blood
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pressure traits) showed strong or moderate phenotypic
correlations (|rP|≥0.40), and they were selected for further
investigation in the bivariate analyses.

Negative phenotypic correlation was found between
triglycerides and HDL (rP=�0.46), but positive phenotypic
correlations were found for the other 8 pairs of blood lipids
(average rP=0.85, Table 3). AE was the best-fitted twin model
for triglycerides-HDL and TC-apoB. ACE was the best-fitted
model for HDL–apolipoprotein A1, LDL-apoB, and apoB–non-
HDL, but the estimates of bivariate c2 were close to zero. In
twin models, significant contributions of dominance genetic
effects were identified for 3 lipids pairs (TC-LDL, TC–non-HDL,
and LDL–non-HDL), and the average bivariate d2 was 23% and
rD was 0.96. For these 9 pairs of blood lipids, the average

estimates of bivariate a2 were 42% from the twin models,
whereas the SNP models provided lower estimates of 16%.

ADE was the best-fitted twin model for 3 of 4 pairs of
metabolic biomarkers (hemoglobin A1c–glucose, creatinine–
cystatin C, and creatinine–estimated glomerular filtration
rate), but bivariate d2 and rD were only significantly identified
for hemoglobin A1c–glucose (Table 4). ACE model was best
fitted for cystatin C–estimated glomerular filtration rate,
whereas bivariate c2 was also close to zero. For these 4 pairs
of metabolic biomarkers, the average twin- and SNP-based
bivariate a2 values were 43% and 23%, respectively.

For all of the 9 pairs of obesity traits, bivariate d2 (48% on
average) and rD (0.84 on average) were significantly identified
from twin models (Table 5). However, bivariate a2 was not

Table 1. General Characteristics of Participants in the Study Base

Characteristics All Men Women

Participants 10 682 (100) 5074 (47.50) 5608 (52.50)

Age, y* 64.89�8.08 65.45�7.99 64.38�8.13

Triglycerides, mmol/L* 1.20 (0.86–1.60) 1.20 (0.88–1.70) 1.10 (0.84–1.60)

Total cholesterol, mmol/L* 5.77�1.12 5.52�1.10 6.00�1.09

Low-density lipoprotein, mmol/L* 3.76�0.99 3.65�0.98 3.86�0.99

Apolipoprotein B, g/L* 1.08�0.25 1.07�0.24 1.10�0.25

Non-high-density lipoprotein, mmol/L* 4.37�1.07 4.28�1.06 4.44�1.07

High-density lipoprotein, mmol/L* 1.41�0.42 1.24�0.34 1.56�0.42

Apolipoprotein A1, g/L* 1.64�0.30 1.53�0.26 1.75�0.30

Hemoglobin, g/dL* 14.26�1.21 14.87�1.13 13.72�1.00

Hemoglobin A1c, %* 4.82�0.68 4.85�0.74 4.78�0.61

Glucose, mmol/L* 5.59�1.22 5.76�1.33 5.44�1.08

Creatinine, lmol/L* 75 (66–86) 84 (76–93) 68 (62–76)

Cystatin C, mg/L* 0.97 (0.86–1.11) 0.99 (0.88–1.14) 0.95 (0.84–1.09)

eGFR, mL/min per 1.73 m2* 83.55�21.88 80.74�21.94 86.08�21.53

C-reactive protein, mg/L 1.70 (0.72–3.50) 1.70 (0.73–3.40) 1.70 (0.72–3.60)

Height, m* 1.69�0.10 1.76�0.09 1.63�0.08

Weight, kg* 74.94�13.81 81.77�12.33 68.75�12.05

Body mass index, kg/m2* 26.31�7.33 26.59�6.83 26.07�7.75

Waist circumference, cm* 91.78�12.18 97.16�10.26 86.91�11.72

Hip circumference, cm 103.26�8.93 103.20�8.06 103.30�9.64

Waist/hip ratio* 0.89�0.15 0.94�0.13 0.84�0.16

Systolic blood pressure, mm Hg* 139.07�19.80 140.10�19.43 138.20�20.10

Diastolic blood pressure, mm Hg* 82.10�10.61 83.19�10.63 81.12�10.49

Mean arterial pressure, mm Hg* 101.09�12.22 102.20�12.11 100.10�12.24

Pulse pressure, mm Hg 56.97�15.94 56.89�15.65 57.04�16.19

Values are in number (percentage) for sex, mean�SD for the normal distribution, or median (25th–75th percentile) for the skewed distribution. eGFR indicates estimated glomerular
filtration rate.
*The difference between men and women is statistically significant (P<0.05) from t test, in which triglycerides, creatinine, cystatin C, and C-reactive protein are log transformed before
performing the t test.
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significant for weight-WHR, body mass index–WHR, or waist
circumference–WHR. For the remaining 6 obesity-related
pairs, on average, the twin- and SNP-based bivariate a2

values were 26% and 21%, respectively.
AE was the best-fitted twin model for all 5 pairs of blood

pressure traits (Table 6). The average estimates of bivariate
a2 were �40% in the twin models, whereas in SNP models,
they were smaller and significant only for SBP-PP (bivariate
a2=11%; 95% confidence interval, 0%–22%). The twin- and
SNP-based estimates of rA and rE were similar for SBP-MAP,
SBP-PP, and DBP-MAP (>0.80); SNP-based estimates of rA
and rE were not significant for SBP-DBP or MAP-PP.

The overall agreements between significant twin- and SNP-
based estimates for these highly correlated cardiometabolic

pairs are plotted in Figure 2. The twin-based bivariate a2 (36%
on average) was significantly larger than SNP-based estimates
(19% on average). The estimates of rA were not significantly
different between twin-SEM and SNP-GREML (both were 0.67
on average). However, the twin-based rP (0.66 on average)
and rE (0.64 on average) values were slightly but significantly
different from the SNP-based rP (0.65 on average) and rE
(0.68 on average) values.

Discussion
This study mainly aims to quantify the contribution of
genetic and environmental effects to the covariation
between cardiometabolic traits and to compare the

Table 2. General Characteristics of Subjects in Twin and SNP Models

Characteristics

Complete Twin Pairs in Twin Model Unrelated Individuals in SNP Model

N Value N Value

Men, % 3653 47.20 2755 47.67

Age, y 7740 65.03�7.75 5779 64.91�8.33

Triglycerides, mmol/L 7739 1.20 (0.86–1.60) 5778 1.20 (0.85–1.60)

Total cholesterol, mmol/L 7740 5.78�1.13 5779 5.76�1.11

Low-density lipoprotein, mmol/L 7639 3.77�0.99 5704 3.75�0.98

Apolipoprotein B, g/L 7738 1.09�0.25 5776 1.08�0.25

Non-high-density lipoprotein, mmol/L 7740 4.38�1.07 5779 4.35�1.06

High-density lipoprotein, mmol/L 7740 1.41�0.42 5779 1.41�0.42

Apolipoprotein A1, g/L 7738 1.64�0.30 5776 1.64�0.30

Hemoglobin, g/dL 7726 14.26�1.19 5769 14.26�1.21

Hemoglobin A1c, % 7727 4.82�0.66 5770 4.82�0.68

Glucose, mmol/L 7736 5.59�1.20 5775 5.59�1.19

Creatinine, lmol/L 7534 75 (66–86) 5634 76 (66–87)

Cystatin C, mg/L 7534 0.97 (0.86–1.11) 5634 0.97 (0.86–1.12)

eGFR, mL/min per 1.73 m2 7534 83.62�21.50 5633 83.09�22.26

C-reactive protein, mg/L 7738 1.70 (0.74–3.50) 5777 1.70 (0.71–3.50)

Height, m 7685 1.69�0.10 5701 1.69�0.10

Weight, kg 7684 74.74�13.67 5699 75.06�13.69

Body mass index, kg/m2 7679 26.29�7.48 5695 26.26�6.72

Waist circumference, cm 7671 91.70�12.12 5693 91.89�12.13

Hip circumference, cm 7655 103.24�8.83 5680 103.41�8.77

Waist/hip ratio 7652 0.89�0.15 5680 0.89�0.10

Systolic blood pressure, mm Hg 7334 139.11�19.79 5420 139.42�20.01

Diastolic blood pressure, mm Hg 7333 82.14�10.68 5420 82.13�10.67

Mean arterial pressure, mm Hg 7333 101.13�12.30 5420 101.23�12.31

Pulse pressure, mm Hg 7333 56.96�15.78 5420 57.28�16.13

Values are in number (percentage) for sex, mean�SD for the normal distribution, or median (25th–75th percentile) for the skewed distribution. eGFR indicates estimated glomerular
filtration rate; SNP, single-nucleotide polymorphism.
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estimates obtained from both twin and SNP models within
the same study base. Beside additive genetic effects and
nonshared environment, the twin models also find signifi-
cant contributions of dominant genetic effects to the
covariation between certain cardiometabolic traits (espe-
cially for obesity-related pairs); contributions of shared
environment generally seem to be weak for their covaria-
tion. The results show that the twin model captures
significantly more bivariate additive genetic variance than
SNP model, whereas the estimates of additive genetic
correlation from these 2 models are not significantly
different.

Twenty-seven highly correlated pairs of cardiometabolic
traits were investigated in this study. They were grouped into
4 biological clusters: blood lipids, metabolic biomarkers,
obesity traits, and blood pressure traits. The magnitudes of rP,

rA, and rE are similar for each pair (Figure 2), perhaps
because the correlated traits are calculated from each other,
represent similar features, or are involved in the same
biological process. For example, apoB is the primary
apolipoprotein of LDL, LDL constitutes the majority of TC,
and non-HDL is calculated as TC minus HDL; thus, apoB–LDL–
TC–non-HDL are strongly and positively correlated.

ApoA1 is the major component of HDL, and genetic effects
contribute more (66%) to their phenotypic correlation than
environment in twin model. Similarly, twin model also
indicates that 66% of the negative correlation between
triglycerides and HDL is explained by genes (Table 3). On
the contrary, environmental factors contribute more (�60%)
than genes to the phenotypic correlations for 5 pairs of blood
pressure traits (Table 6), perhaps because blood pressure
fluctuates more from environmental or behavioral factors (eg,

Figure 1. Phenotypic correlation matrix among 24 cardiometabolic traits. Statistically significant (P<0.05) estimates of Pearson correlation
coefficient (r) are boldfaced. Estimates in the top triangle are from the 3870 complete twin pairs used in twin models, and estimates in the
bottom triangle are from the 5779 unrelated individuals used in single-nucleotide polymorphism models. apoA1 indicates apolipoprotein A1;
apoB, apolipoprotein B; BMI, body mass index; Crea, creatinine; CRP, C-reactive protein; CysC, cystatin C; DBP, diastolic blood pressure; eGFR,
estimated glomerular filtration rate; Glu, fasting glucose; Hb, hemoglobin; HDL, high-density lipoprotein; Hip, hip circumference; LDL, low-density
lipoprotein; MAP, mean arterial pressure; PP, pulse pressure; SBP, systolic blood pressure; TC, total cholesterol; TG, triglycerides; WC, waist
circumference; WHR, waist/hip ratio.
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physical activity, smoking, alcohol drinking, and psychological
stress) than genes.19

On the basis of different assumptions, twin and SNP
models are used to estimate the relative importance of
genes and environment for complex traits (represented by
the concept of heritability). Twin studies have historically
been the most frequently used design to provide estimates
of “traditional heritability.” By using directly genotyped
SNPs in unrelated individuals, GREML(d) estimates the so-
called “chip heritability.” LDSC uses the summary genome-
wide association study results (including both directly
genotyped and imputed SNPs) to estimate the “SNP
heritability.” For most cardiometabolic traits in our study,
a trend can be found that the estimates of traditional
heritability ≥ chip heritability ≥ SNP heritability (Table S1). A
similar significant trend was also observed for bivariate
heritabilities (Figure 2). The causes of the gap between
twin- and SNP-based estimates of heritability are of direct
relevance for the discussions about the “missing” or
“hidden” heritability.11,20

The issue of missing heritability was raised because of the
fact that robustly associated genome-wide significant SNPs
generally explain <5% of traits’ variation.20 However, the
explained variance becomes larger (�50%) when all common
SNPs are taken into account in GREML methods.21 Our
previous study also indicated that genome-wide common
SNPs could capture large proportions (�70%) of the “tradi-
tional narrow-sense heritability (a2)” if the power in the twin
model was enough to identify and discriminate dominant from
additive genetic contributions.13

Classic twin studies based solely on monozygotic and
dizygotic twins reared together are unable to simultaneously
estimate shared environmental variance (c2) and dominant
genetic variance (d2). However, because c2 and d2 are likely to
coexist in reality, it is fully possible that both of them
contribute simultaneously to similarities between twins and
relatives. Whenever c2 and d2 are both present, their
contributions will tend to mask each other in the twin model;
thus, the net effect may appear as contribution from neither.
Although an extended twin-family study design including more
family members (eg, parents, offspring, and nontwin siblings)
is the optimal design to detect the existence of nonadditive
genetic effects, such materials of adequate sample size are
exceptionally rare.22–24

The identification of true d2 depends heavily on the
sample size. Most previous twin studies are small, <1000
twin pairs on average.8 It might lead to inadequate power to
significantly declare contributions from less prominent vari-
ance components; thus, d2 or c2 may be attributed to a2

instead.13 This is in line with the observation that most
previous twin studies report the estimates from the most
parsimonious AE model.8Ta
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There are 3870 complete twin pairs in present study, and
bivariate d2 is significantly distinguished from bivariate a2 for
13 of 16 ADE best-fitted pairs. Among these pairs, the directly
genotyped common SNPs captured 75% of twin-based
bivariate a2 (narrow-sense heritability). Previous genome-wide
association studies have identified 47 loci that associated
with both LDL and TC25; the significant bivariate d2 for TC-LDL
in our twin model suggests potential interactions between the
alleles within the same locus. However, our SNP model did
not identify significant dominant genetic effects for any pairs,
perhaps because of the inadequate power for bivariate
GREML(d). Therefore, more SNPs in larger samples need to
test such potential interactions.

For ADE fitted traits or pairs, the separation between
additive and dominant genetic variation is important to
understand the gap between twin- and SNP-based univariate
or bivariate narrow-sense heritability. Even so, the twin-based
bivariate a2 values are still significantly higher (on average
25% for ADE fitted pairs and 48% for all pairs) than SNP-based
estimates. Potential explanations might be the following: twin-
based SEM captures all genetic effects, whereas GREML(d) is
just based on common SNPs; other mutations, like rare SNPs,
copy number variations, insertions, or deletions, will not be
taken into account; and violations of the assumptions of twin
studies (monozygotic and dizygotic twin pairs share environ-
ment to the same extent, minimal gene-environment corre-
lations or interactions) may inflate the twin-based heritability
estimation.26

For all ACE best-fitted pairs, estimates of bivariate shared
environmental variance (c2) are close to zero, perhaps
reflecting the relative old age of the participants in our study
base (65�8 years on average). It is reasonable to assume
that most cotwins of old age live separately and that the
influences of shared environment decrease with age. A
weaker contribution from c2 may lend d2 less masked and
thus more prominent at older ages. Therefore, the influence
on twin similarity stemming from c2 can be expected to be
largest during childhood, with subsequent diminishing impor-
tance with advancing age. However, a thorough investigation
of the potential role of age for the relative importance
between c2 and d2 (eg, the age-related changes in contribu-
tion from c2 and d2 to trait covariation) requires even larger
sample size.

Previous twin studies, including small numbers of monozy-
gotic twins reared apart, identified that shared environmental
effects contribute to the variation of some cardiometabolic
traits27,28; this occurs perhaps because such study setting
allows researchers to directly use ACE decomposing model
rather than choosing the best-fitted one among ACE, ADE, and
AE models. After removing pairs with relatedness >0.025, it
is unlikely to have contributions from c2 in GREML(d).
Therefore, the estimates from SNP-GREML(d) represent aTa
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lower bound of a2. In Table S1, the estimates of univariate
heritability from SNP-based GREML(d) (22% on average, using
644 556 directly genotyped SNPs in our samples) are
significantly higher than LDSC-based estimates (14% on
average, including up to �10 million directly genotyped and
imputed SNPs in LD Hub). Both GREML(d) and LDSC assume
that heritability is independent of linkage disequilibrium
pattern, which has been suggested to underestimate the
SNP-based heritability.29,30 However, the estimates of rA
from LDSC were >1 for 4 pairs of blood lipids, indicating
potential inflation in signal, potentially resulting from using
overlapped individuals (Table S2) or imputed SNPs to capture
the covariation. Recently, a study suggested that rA
estimates from LDSC are less accurate than rA obtained by
GREML(d), perhaps because of the uncertainty of homogene-
ity among combined data sets.31 Still, our twin-SEM and SNP-

GREML(d) models give estimates of rA and rE largely in
agreement with each other for most correlated car-
diometabolic pairs.

In summary, this study indicates that contributions of
genetic and environmental effects vary by different clusters of
cardiometabolic traits. Contributions from the shared envi-
ronment seem to be weak between these cardiometabolic
traits. Additive genetic effects and nonshared environmental
effects influence the covariation between blood pressure
traits. Dominant genetic effects are important between
obesity traits, and the gap between twin- and SNP-based
bivariate narrow-sense heritability would become smaller if
dominance can be significantly distinguished from additive
genetic effects. However, larger sample size of unrelated
individuals is still required to test the significance of dominant
genetic effects from SNP-based models.

Table 5. Bivariate Analyses Between Obesity Traits in Twin and SNP Models

Pairs rP (SE) BM

Bivariate a2 (SE), % Bivariate d2 (SE), %* rA (SE) rD (SE)* rE (SE)

Twin SNP Twin Twin SNP Twin Twin SNP

Weight-BMI 0.86 (0.02)† ADE 25 (8)† 18 (6)† 45 (8)† 0.68 (0.08)† 0.66 (0.09)† 1.00 (0.00)† 0.89 (0.01)† 0.93 (0.09)†

Weight-WC 0.82 (0.02)† ADE 25 (8)† 22 (6)† 47 (8)† 0.83 (0.09)† 0.87 (0.06)† 0.93 (0.04)† 0.74 (0.01)† 0.82 (0.06)†

Weight-Hip 0.83 (0.02)† ADE 33 (8)† 28 (6)† 40 (8)† 0.91 (0.05)† 0.99 (0.04)† 0.90 (0.04)† 0.70 (0.02)† 0.78 (0.04)†

Weight-WHR 0.42 (0.01)† ADE 14 (13) 7 (6) 54 (14)† 0.26 (0.51) 0.14 (0.19) 0.62 (0.12)† 0.38 (0.03)† 0.49 (0.20)†

BMI-WC 0.81 (0.02)† ADE 21 (8)† 17 (6)† 50 (8)† 0.80 (0.14)† 0.76 (0.09)† 0.93 (0.04)† 0.70 (0.02)† 0.83 (0.08)†

BMI-Hip 0.77 (0.02)† ADE 26 (8)† 21 (6)† 46 (9)† 0.76 (0.10)† 0.78 (0.08)† 0.89 (0.05)† 0.66 (0.02)† 0.78 (0.08)†

BMI-WHR 0.47 (0.01)† ADE 15 (12) 10 (6) 56 (13)† 0.36 (0.51) 0.24 (0.20) 0.66 (0.11)† 0.37 (0.03)† 0.52 (0.18)†

WC-Hip 0.76 (0.02)† ADE 23 (8)† 22 (6)† 46 (9)† 0.94 (0.09)† 0.90 (0.08)† 0.80 (0.05)† 0.66 (0.02)† 0.73 (0.08)†

WC-WHR 0.73 (0.01)† ADE 12 (9) 10 (6) 48 (9)† 0.64 (0.51) 0.46 (0.19)† 0.80 (0.06)† 0.72 (0.01)† 0.79 (0.19)†

a2 Indicates additive genetic variance; ADE, model including a2, d2, and nonshared environmental (e2) components; BM, best-fitted model according to Akaike information criterion; BMI,
body mass index; d2, dominant genetic variance; Hip, hip circumference; rA, additive genetic correlation; rD, dominant genetic correlation; rE, nonshared environmental correlation; rP,
phenotypic correlation; SNP, single-nucleotide polymorphism–based genomic relatedness matrix restricted maximum likelihood model; WC, waist circumference; WHR, waist/hip ratio.
*Bivariate d2 and rD are not significantly identified from SNP models for any pairs.
†Statistically significant estimates (P<0.05).

Table 6. Bivariate Analyses Between Blood Pressure Traits in Twin and SNP Models

Pairs rP (SE) BM

Bivariate a2 (SE), % rA (SE) rE (SE)

Twin SNP Twin SNP Twin SNP

SBP-DBP 0.67 (0.01)* AE 41 (3)* 7 (6) 0.71 (0.02)* 0.55 (0.34) 0.63 (0.01)* 0.67 (0.50)

SBP-MAP 0.92 (0.02)* AE 40 (2)* 9 (6) 0.92 (0.01)* 0.88 (0.11)* 0.89 (0.01)* 0.90 (0.16)*

SBP-PP 0.84 (0.02)* AE 39 (2)* 11 (6)* 0.85 (0.01)* 0.83 (0.13)* 0.81 (0.01)* 0.83 (0.10)*

DBP-MAP 0.93 (0.02)* AE 38 (2)* 7 (6) 0.93 (0.01)* 0.88 (0.11)* 0.92 (0.00)* 0.92 (0.22)*

MAP-PP 0.51 (0.01)* AE 42 (3)* 9 (6) 0.57 (0.03)* 0.46 (0.35) 0.46 (0.02)* 0.51 (0.34)

a2 Indicates additive genetic variance; AE, model including a2 and nonshared environmental components; BM, best-fitted model according to Akaike information criterion; DBP, diastolic
blood pressure; MAP, mean arterial pressure; PP, pulse pressure; rA, additive genetic correlation; rE, nonshared environmental correlation; rP, phenotypic correlation; SBP, systolic blood
pressure; SNP, single-nucleotide polymorphism–based genomic relatedness matrix restricted maximum likelihood model.
*Statistically significant estimates (P<0.05).
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SUPPLEMENTAL MATERIAL



Table S1. Univariate Analyses in Twin and SNP Models. 

Traits rMZ/rDZ* BM 
a2

 (se) d2
 (se) 

Twin SNP LDSC† Twin SNP 

Triglycerides 2.27 ADE 42% (7%)* 31% (6%)* 15% (2%)* 14% (8%) 28% (9%)* 

Total cholesterol 2.50 ADE 28% (8%)* 15% (6%)* 15% (2%)* 19% (8%)* 0% (9%) 

LDL 2.64 ADE 23% (8%)* 16% (6%)* 13% (2%)* 24% (8%)* 0% (9%) 

Apolipoprotein B 2.24 ADE 39% (7%)* 14% (6%)* 11% (3%)* 14% (8%) 0% (9%) 

nonHDL 2.61 ADE 24% (8%)* 13% (6%)* NA 25% (8%)* 0% (9%) 

HDL 2.17 AE 66% (2%)* 24% (6%)* 16% (2%)* - 1% (9%) 

Apolipoprotein A1 1.93 AE 66% (2%)* 17% (6%)* 9% (3%)* - 9% (9%) 

Hemoglobin 2.24 ADE 41% (7%)* 21% (6%)* NA 15% (8%) 0% (9%) 

Hemoglobin A1c 2.50 ADE 37% (7%)* 20% (6%)* 7% (1%)* 35% (7%)* 0% (9%) 

Glucose 2.55 ADE 24% (7%)* 17% (6%)* 10% (2%)* 30% (8%)* 15% (9%) 

Creatinine 2.41 ADE 35% (7%)* 18% (6%)* 11% (2%)* 24% (8%)* 0% (9%) 

Cystatin C 2.19 ADE 42% (7%)* 27% (6%)* NA 18% (8%)* 5% (9%) 

eGFR 2.35 ADE 38% (7%)* 32% (6%)* NA 21% (8%)* 3% (9%) 

C-reactive protein 2.19 ADE 30% (7%)* 37% (6%)* NA 14% (8%) 0% (9%) 

Height 1.81 ACE 77% (3%)* 62% (6%)* 27% (1%)* - 0% (9%) 

Weight 2.66 ADE 37% (7%)* 26% (6%)* NA 35% (7%)* 11% (9%) 

Body mass index 2.80 ADE 28% (7%)* 21% (6%)* 19% (1%)* 41% (7%)* 3% (9%) 

Waist circumference 3.14 ADE 15% (7%)* 16% (6%)* 12% (0%)* 49% (7%)* 19% (9%)* 

Hip circumference 2.86 ADE 24% (7%)* 22% (6%)* 13% (1%)* 40% (8%)* 13% (9%) 

Waist-hip ratio 3.12 ADE 13% (7%) 19% (6%)* 11% (1%)* 40% (8%)* 3% (9%) 

SBP 2.50 ADE 27% (8%)* 10% (6%) NA 15% (9%) 0% (9%) 

DBP 2.33 AE 37% (2%)* 8% (6%) NA - 0% (10%) 

MAP 2.50 AE 39% (2%)* 8% (6%) NA - 0% (9%) 

Pulse pressure 2.17 AE 36% (2%)* 12% (6%)* NA - 2% (9%) 

rMZ/rDZ, ratio of intra-pair correlation in monozygotic and dizygotic twin pairs; BM, the best-fitted model according to Akaike 
information criterion; SNP, single nucleotide polymorphism-based genomic-relatedness-matrix restricted maximum likelihood model; 
LDSC: linkage disequilibrium score regression model; a2, additive genetic variance; d2, dominant genetic variance; se, standard error; 
ADE, model including a2, d2 and non-shared environmental (e2) components; AE, model including a2 and e2; ACE, model including a2, 
c2 and e2; LDL, low-density lipoprotein; HDL, high-density lipoprotein; SBP, systolic blood pressure; DBP, diastolic blood pressure; 
MAP, mean arterial pressure; NA, not available from LD Hub. 
* Statistically significant estimates (P-value<0.05). 
† Estimates are based on the largest European ancestry genome-wide association study reported from LD Hub. 

 

  



Table S2. LDSC-based Estimates of Cardiometabolic Traits from European Ancestry Data in the LD Hub. 

Traits Consortium Sample size NSNP h2 SE λGC PMID 

Triglycerides GLGC 96598 2692561 15% 2% 1.1294 20686565 

 Kettunen 21545 11820641 12% 3% 1.0195 27005778 

Total Cholesterol GLGC 99900 2692414 15% 2% 1.1232 20686565 

 Kettunen 21491 11866342 9% 3% 1.0225 27005778 

Low-density lipoprotein GLGC 95454 2692565 13% 2% 1.1151 20686565 

Apolipoprotein B Kettunen 20690 11813266 11% 3% 1.0255 27005778 

High-density lipoprotein  GLGC 100184 2692430 16% 2% 1.1622 20686565 

Apolipoprotein A1 Kettunen 20687 11760646 9% 3% 1.0165 27005778 

Hemoglobin A1c MAGIC 46368 2576680 7% 1% 1.0405 20858683 

Glucose MAGIC 58074 2628880 10% 2% 1.0679 22581228 

 Kettunen 24679 12052259 9% 2% 1.0315 27005778 

Creatinine Kettunen 24810 12087816 11% 2% 1.0496 27005778 

Height GIANT 133859 2469636 27% 1% 1.4122 20881960 

Body mass index GIANT 123912 2471517 19% 1% 1.3675 20935630 

Waist circumference GIANT 232101 2565409 12% 0% 1.1085 25673412 

Hip circumference GIANT 213038 2559740 13% 1% 1.1085 25673412 

Waist-hip ratio GIANT 212244 2560783 11% 1% 1.1617 25673412 

LDSC, linkage disequilibrium score regression model; NSNP, number of single nucleotide polymorphisms; h2, estimate of heritability; 
SE, standard error; λGC, genomic inflation factor; PMID, PubMed Unique Identifier; GLGC, the Global Lipids Genetics Consortium;  
MAGIC, the Meta-Analyses of Glucose and Insulin-related traits Consortium; GIANT, the Genetic Investigation of ANthropometric 
Traits consortium. 
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