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Abstract

Background: Pharmacological profiles of new psychoactive substances can be established rapidly in vitro and provide 
information on potential psychoactive effects in humans. The present study investigated whether specific in vitro monoamine 
transporter and receptor interactions can predict effective psychoactive doses in humans.
Methods: We correlated previously assessed in vitro data of stimulants and psychedelics with human doses that are reported 
on the Internet and in books.
Results: For stimulants, dopamine and norepinephrine transporter inhibition potency was positively correlated with 
human doses, whereas serotonin transporter inhibition potency was inversely correlated with human doses. Serotonin 
5-hydroxytryptamine-2A (5-HT2A) and 5-HT2C receptor affinity was significantly correlated with psychedelic doses, but 5-HT1A 
receptor affinity and 5-HT2A and 5-HT2B receptor activation potency were not.
Conclusions: The rapid assessment of in vitro pharmacological profiles of new psychoactive substances can help to predict 
psychoactive doses and effects in humans and facilitate the appropriate scheduling of new psychoactive substances.
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Introduction
The unprecedented proliferation of new psychoactive sub-
stances (NPSs) over the last decade has introduced a variety 
of substance classes to recreational drug users worldwide. The 
Internet plays a major role in the distribution of such com-
pounds and in acquiring information about their effects and 
reported subjective effective doses in substance users. From 2011 
to 2017, we assessed the monoamine transporter and receptor 
interaction profiles of more than 100 NPSs and related classic 
amphetamine-type and psychedelic drugs of abuse using the 
same in vitro assays and procedures in our laboratory (Simmler 
et  al., 2013; Simmler et  al., 2014a, 2014b; Rickli et  al., 2015a, 
2015b, 2015c, 2016; Luethi et al., 2018a, 2018b, 2018c, 2018d).  

The compounds that we investigated can predominantly be 
classified as stimulants or psychedelics based on their pharma-
cological and reported psychoactive effect profiles. Stimulants 
exert their pharmacological effects mainly by interacting with 
transmembrane monoamine transporters (i.e., norepineph-
rine [NE], dopamine [DA], and serotonin [5-hydroxytryptamine 
(5-HT)] transporters [NET, DAT, and SERT, respectively]), either 
as inhibitors or as transporter substrates that mediate the 
non-exocytotic release of neurotransmitters (Rothman and 
Baumann, 2003). Psychedelics mediate their mind-altering 
effects by interacting with 5-HT receptors, mainly 5-HT2A recep-
tor agonism (Nichols, 2016; Liechti, 2017). The present study 
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investigated whether (1) in vitro monoamine transporter inhib-
ition potencies and (2) in vitro serotonin receptor binding and 
activation can be used to predict human doses of stimulants 
and psychedelics, respectively, that are reported on online drug 
information websites and in books.

Methods

Drugs

The present study included drugs for which we previously inves-
tigated and published in vitro pharmacological profiles using 
identical assays and procedures in our laboratory (Simmler 
et al., 2013; Simmler et al., 2014a, 2014b; Rickli et al., 2015a, 2015b, 
2015c, 2016; Luethi et al., 2018a, 2018b, 2018c, 2018d).  These drugs 
could be categorized as either psychostimulants or psychedelics 
based on their chemical structure and reported pharmacological 
effects. Substances that predominantly inhibited monoamine 
transporters were classified as stimulants. Substances that 
most potently bound to 5-HT2 receptors were pharmacologically 
classified as psychedelics. Five aminoindanes, 8 benzofurans, 28 
cathinones, 3 piperazines, 10 piperidines, and 6 other NPSs were 
categorized as psychostimulants. One benzodifuran, 1 ergo-
line, and 7 tryptamines were categorized as psychedelics. The 
class of phenethylamines was further divided into 15 stimulant 
phenethylamines (amphetamine-type substances) and 36 psy-
chedelic phenethylamines (ring-substituted phenethylamines, 
including 2C drugs and their methoxybenzyl [NBOMe] analogs). 
The stimulants are listed in supplementary Table 1. The psych-
edelics are listed in supplementary Table 2.

Dose Estimates

Dose estimates for human psychoactive doses were based on 
information that is found on the websites erowid.org, psycho-
nautwiki.org, and tripsit.me (accessed December 17, 2017) and 
in published books and other publications (Shulgin and Shulgin, 
1995, 1997; Simmler et al., 2013; Trachsel et al., 2013). The aver-
age midrange of the common dose range that is reported on the 
websites or in the books was taken as the dose estimate. Unless 
stated otherwise, oral doses of the racemic mixtures were used 
for this study.

Monoamine Transporter Inhibition

Norepinephrine, DA, and 5-HT uptake inhibition was assessed 
in human embryonic kidney 293 cells that were transfected 
with the human NET, DAT, or SERT as previously described in 
detail (Luethi et al., 2018c). Briefly, the cells were suspended in 
buffer and incubated with the drugs for 10 minutes before [3H]-
NE, [3H]-DA, or [3H]-5-HT at a final concentration of 5 nM was 
added for an additional 10 minutes to initiate uptake transport. 
The cells were then separated from the uptake buffer by cen-
trifugation through silicone oil. The centrifugation tubes were 
frozen in liquid nitrogen, and the cell pellet was cut into scin-
tillation vials that contained lysis buffer. Scintillation fluid was 
added, and uptake was quantified by liquid scintillation count-
ing. Transporter inhibitors (10 μM nisoxetine for the NET, 10 μM 
mazindol for the DAT, and 10 μM fluoxetine for the SERT) were 
added to assess nonspecific monoamine uptake. Monoamine 
uptake data were fit by nonlinear regression to variable-slope 
sigmoidal dose-response curves, and IC50 values were deter-
mined using Prism 7.0a software (GraphPad).

5-HT Receptor Binding Affinities

Radioligand binding affinities for 5-HT receptors were assessed 
as previously described in detail (Luethi et al., 2018d). Briefly, 
membrane preparations overexpressing the respective human 
receptors were incubated for 30 minutes (5-HT1A and 5-HT2A 
receptors) or 2 hours (5-HT2C receptor) with radiolabeled select-
ive ligands at concentrations equal to Kd, and ligand displace-
ment by the compounds was measured. Specific binding of 
the radioligand to the target receptor was defined as the dif-
ference between total binding and nonspecific binding that 
was determined in the presence of competitors. The following 
radioligands and competitors, respectively, were used: 1.39 nM 
[3H]8-hydroxy-2-(di-n-propylamine)tetralin and 10  μM pindolol 
(5-HT1A receptor), 0.45 nM [3H]ketanserin and 10 μM spiperone 
(5-HT2A receptor), and 1.6 nM [3H]mesulgerine and 10 μM mian-
serin (5-HT2C receptor).

Activity at the 5-HT2A Receptor

Activity at the 5-HT2A receptor was assessed as previously 
described in detail (Luethi et al., 2018a). Briefly, NIH-3T3 cells 
expressing the human 5-HT2A receptor were incubated in buffer 
for 1 hour at 37°C before 100  μL of dye solution (fluorescence 
imaging plate reader [FLIPR] calcium 5 assay kit; Molecular 
Devices) was added to each well, and the plates were again incu-
bated for 1 hour at 37°C. The plates were then placed in a FLIPR, 
and 25 μL of the test drugs that were diluted in buffer was added 
online. The increase in fluorescence was measured for 51 s. EC50 
values were derived from the concentration-response curves 
using nonlinear regression.

Activity at the 5-HT2B Receptor

Activity at the 5-HT2B receptor was assessed as previously 
described in detail (Luethi et al., 2018a). Briefly, human embry-
onic kidney 293 cells that expressed the human 5-HT2B recep-
tor were incubated in growth medium overnight. The growth 
medium was then removed by snap inversion, and 100  μL of 
the calcium indicator Fluo-4 solution (Molecular Probes) was 
added to each well. The plates were incubated for 45 minutes 
at 31°C. The Fluo-4 solution was then removed by snap inver-
sion, and 100  μL of Fluo-4 solution was added a second time 
for 45 minutes at 31°C. The cells were washed using an EMBLA 
cell washer, and 100 μL of assay buffer was added. The plates 
were then placed in a FLIPR, and 25 μL of the test substances 
that were diluted in buffer was added online. The increase in 
fluorescence was measured for 51 seconds. EC50 values were 
derived from the concentration-response curves using nonlin-
ear regression.

Statistical Correlation

Mean estimated dose values were correlated with previously 
published mean IC50 values for the monoamine transporter 
inhibition of stimulants and the mean serotonin receptor 
affinity (Ki) and receptor activation (EC50) values of psych-
edelics. The Spearman rank-order correlation coefficient (rs) 
was computed using Prism 7.0a software (GraphPad). Values 
of P < .05 (2-tailed) were considered statistically significant. 
Multiple regression analysis was conducted to assess the rela-
tive contribution of different predictors to the dose estimate 
using Statistica 12 software (StatSoft) after logarithmic trans-
formation of the data.

http://academic.oup.com/ijnp/article-lookup/doi/10.1093/ijnp/pyy047#supplementary-data
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Results

Based on the reported information, dose estimates could be 
made for 54 of 75 stimulants and 35 of 45 psychedelics. The 
doses apply to the oral route of administration if not indicated 
otherwise (supplementary Tables  1 and 2). References for the 
information sources of the pharmacological data and for the 
dose estimates for each substance are listed in supplementary 
Tables 1 (stimulants) and 2 (psychedelics).

Stimulants

Correlations between transporter inhibition potencies (mean 
IC50 values) of stimulants and their mean dose estimates are 
shown in Figure 1. Inhibition potency values of the NET and DAT 
were significantly correlated with the human dose estimates 
(rs = 0.48, P < .001, n = 54, and rs = 0.60, P < .001, n = 54, respectively). 
Furthermore, the NET and DAT inhibition potencies were sig-
nificantly intercorrelated (rs = 0.61, P < .001, n = 74). In contrast, the 
inhibition potency values of the SERT were inversely correlated 
with the dose estimates (rs = -0.41, P < .01, n = 54) and inversely 
intercorrelated with DAT inhibition (rs = 0.26, P < .05, n = 73) but 
not NET inhibition. When DAT and NET inhibition was used as 
the predictor within a multiple regression analysis to predict the 
dose, DAT inhibition and NET inhibition alone were significant 
predictors (R = 0.55, P < .001, and R = 0.51, P < .001, respectively) 
when entered alone, but adding NET to DAT inhibition only 
minimally and nonsignificantly increased the overall predic-
tion (multiple R = 0.59, P < .001). However, SERT inhibition was 
inversely correlated with dose when analyzed alone (R = 0.36, 
P < .01) and relevantly and significantly increased the overall pre-
diction when it was added to NET and DAT inhibition (multiple 
R = 0.63, P < .001, n = 54).

Psychedelics

Correlations between 5-HT receptor affinities (mean Ki values) 
and their dose estimates are shown in Figure 2. Reported human 
doses for psychedelics were significantly correlated with 5-HT2A 
and 5-HT2C receptor binding (rs = 0.62, P < .001, n = 35, and rs = 0.69, 
P < .001, n = 35, respectively) but not with 5-HT1A receptor binding 
(rs = -0.18, P = .3, n = 35). The 5-HT2A and 5-HT2C affinity values were 
significantly intercorrelated (rs = 0.90, P < .001, n = 45), and the 
5-HT1A and 5-HT2A affinity values were inversely intercorrelated 
(-0.32, P < .05, n = 45). No correlation was found between 5-HT1A 
receptor binding and 5-HT2c receptor binding.

5-HT2A receptor activation potencies (mean EC50 values) did 
not correlate with reported human doses (rs = -0.08, P = .6, n = 35). 
Four substances did not activate the 5-HT2B receptor in the inves-
tigated concentration range, and these substances thus could 
not be included in the statistical analysis. The 5-HT2B receptor 
activation of the remaining psychedelics did not correlate with 
the dose estimates (rs = 0.25, P = .2, n = 31).

Discussion

Stimulants

In the present study, we found that both NET and DAT inhib-
ition potencies were correlated highly significantly with human 
doses that are reportedly used across a larger set of psycho-
active, mostly amphetamine-type stimulants. In contrast, SERT 
inhibition potency was inversely correlated with human doses, 
a finding that is consistent with the notion that serotonergic 

activity is inversely linked to the drug abuse liability of amphet-
amine-type substances (Ritz et al., 1987; Kuhar et al., 1991; Wee 
et al., 2005; Wee and Woolverton, 2006). We also found a signifi-
cant intercorrelation between NET and DAT inhibition potencies 

Figure  1. Correlations between dose estimates of stimulants and their trans-

porter inhibition potencies (mean IC50 values).
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across substances, which is unsurprising given their similar-
ity (i.e., high amino acid sequence similarity [Andersen et  al., 
2015]) and the ability of both transporters to transport NE and 
DA across the cell membrane (Gu et al., 1994). The present data 
are consistent with a small previous study that reported that 

oral doses of 5 classic amphetamine-type stimulants used in 
clinical studies correlated with their NE-releasing potencies, 
although no significant correlation was shown for DA release 
(Rothman et al., 2001). In another study, Iversen and colleagues 
found no correlation between uptake inhibition potency and 
doses of stimulant drugs producing subjective effects (Iversen 
et al., 2013). The lack of correlation may relate to the small num-
ber of compounds tested.

We previously showed that DAT and NET inhibition potency 
but not SERT inhibition potency (IC50 values) were correlated 
with psychotropic effective doses within a subset of substances 
that were also included in the present analysis (Simmler et al., 
2013). Altogether, the present study showed that DAT and NET 
inhibition potency values that are defined in vitro can be used to 
estimate whether a novel substance is psychoactive in humans, 
and the dose can be predicted when other known substances are 
co-analyzed as references. This finding has important implica-
tions because it indicates that relatively fast and simple in vitro 
measures are useful for legally scheduling novel substances as 
psychoactive and thus as illegal NPSs. Both the DAT and NET 
may serve as predictors of the human dose, whereas SERT inhi-
bition potency can be used as an additional indicator, predicting 
lower clinical potency of the substance. Furthermore, the DAT/
SERT inhibition ratio, which is defined as 1/DAT IC50: 1/SERT IC50 
(Baumann et al., 2012), is a marker of the reinforcing effects and 
abuse liability of a substance (Baumann et al., 2000). Compounds 
with higher SERT vs DAT inhibition potency are typically associ-
ated with 3,4-methylenedioxymethamphetamine-like entacto-
genic effects, whereas drugs with high DAT vs SERT inhibition 
potency exert amphetamine-type psychostimulant effects and 
pose a higher risk for addiction (Simmler et  al., 2013, 2014a; 
Liechti, 2014; Suyama et al., 2016).

Psychedelics

We showed that the doses of psychedelics were correlated with 
5-HT2A receptor affinity (Ki values) but not with receptor activa-
tion potency in the calcium release assay used to determine 
EC50 values. 5-HT2A receptor activation is assumed to mediate 
the mind-altering effects of psychedelics (Glennon et al., 1984; 
Titeler et  al., 1988) and such effects can be blocked by 5-HT2A 
receptor antagonists, such as ketanserin (Preller et  al., 2017). 
All of the psychedelics that were included in our study were 
receptor agonists, and the correlation with receptor binding but 
not activation might be explained by higher sensitivity of the 
ligand-binding assays compared with the receptor activation 
assay. There are different 5-HT2A receptor activation assays, and 
the potencies for inducing calcium release in the assay that was 
used in the present study may not reflect the same pathway or 
mechanism that mediates the subjective effects of hallucinogens 
in humans. In fact, others have also reported that high-affinity 
agonist binding did not correlate well with the receptor activa-
tion of 5-HT2 receptors (Roth et al., 1997; Acuña-Castillo et al., 
2002). Despite the lack of utility for predicting doses, the deter-
mination of 5-HT2A receptor activity remains crucial for deter-
mining whether a NPS has receptor agonist properties and may 
thus be classified as a psychedelic or whether it is an antagonist 
that only binds to the receptor. The present study showed that 
5-HT2A receptor binding allows an estimate of the dose at which 
the substance is psychoactive in humans. Besides the correla-
tion of the dose estimates for psychedelics with 5-HT2A receptor 
affinities, we also found a correlation with 5-HT2C receptor affini-
ties. Today, it is widely accepted that 5-HT2A receptor activation 
is crucial for the action of psychedelics (Preller et al., 2017); the 

Figure 2. Correlations between dose estimates of psychedelics and their seroto-

nin 5-HT receptor affinities (mean Ki values).
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role of 5-HT2C receptor activation, however, remains enigmatic. 
As all known psychedelics are both 5-HT2A and 5-HT2C agonists, 
a contribution of 5-HT2C activation to psychedelic effects cannot 
be excluded (reviewed in Nichols, 2004, 2016).

Limitations

The outcomes of the present analysis highly depended on the 
types of substances that were included and may be different 
for other sets of psychoactive compounds. Although valid phar-
macological data were used, the dose estimates were mainly 
derived from user reports. No controlled studies are currently 
available for most NPSs, but doses for some of the substances 
included in the present analysis are available from clinical 
studies. These doses were comparable to the reported recrea-
tional doses. Doses derived from clinical studies are available 
for mephedrone (200  mg; Papaseit et  al., 2016), 3,4-methylen-
edioxymethamphetamine (100–125  mg; Tancer and Johanson, 
2003; Papaseit et al., 2016; Vizeli and Liechti, 2017); MDAI (3 mg/
kg; V.  Auwärter et  al., personal communication); cathinone 
(0.5 base mg/kg; Brenneisen et  al., 1990); 4-fluoroampheta-
mine (100  mg; K.  Kuypers et  al., personal communication); 
D-amphetamine (15–40 mg; Martin et al., 1971; Brauer and de 
Wit, 1996; Dolder et al., 2017b); methamphetamine (15–30 mg; 
Martin et  al., 1971; Gouzoulis-Mayfrank et  al., 1999); MDEA 
(2  mg/kg; Gouzoulis-Mayfrank et  al., 1999); BZP (100  mg; Lin 
et al., 2011); mCPP (0.5–0.75 mg/kg; Tancer and Johanson, 2003); 
methylphenidate (40–60 mg; Schmid et al., 2014); cocaine (48–
96  mg; Volkow et  al., 2000); diclofensine (50  mg; Funke et  al., 
1986); LSD (0.1 mg; Dolder et al., 2017a); 2C-B (20 mg; Gonzalez 
et al., 2015); mescaline sulfate (500 mg; Hermle et al., 1992); and 
psilocin/psilocybin (5–20  mg; Studerus et  al., 2012). Therefore, 
even though the dose estimates of the current study were not 
derived from clinical studies, they are in accordance with the 
available clinical data.

Not accounted for in the in vitro assays were in vivo factors 
(e.g., bioavailability, route of administration, distribution, and 
brain penetration), which may influence clinical potency.

Conclusion

The present study found that in vitro pharmacological profiles 
of substances that interact with monoaminergic systems allow 
the characterization of substances as stimulants or psyche-
delics and may be used to predict human psychoactive doses. 
For stimulants, potent DAT and NET inhibition was associated 
with lower pharmacological doses in humans. In contrast, 
higher SERT inhibition potency was an additional indicator of 
lower stimulant potency and higher human doses. The potency 
of psychedelics was best predicted by 5-HT2A and 5-HT2C bind-
ing affinity. In contrast, the calcium mobilization assay used to 
determine 5-HT2A receptor activation potency did not predict 
the clinical potency of psychedelics. However, it is a necessity 
to determine whether a drug is a 5-HT2A agonist and therefore 
likely a psychedelic in humans.
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