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ABSTRACT
Background: Studies on the accuracy of microRNAs (miRNAs) in diagnosing non-

small cell lung cancer (NSCLC) have still controversial. Therefore, we conduct to 
systematically identify miRNAs related to NSCLC, and their target genes expression 
changes using microarray data sets.

Methods: We screened out five miRNAs and six genes microarray data sets that 
contained miRNAs and genes expression in NSCLC from Gene Expression Omnibus. 

Results: Our analysis results indicated that fourteen miRNAs were significantly 
dysregulated in NSCLC. Five of them were up-regulated (miR-9, miR-708, miR-296-
3p, miR-892b, miR-140-5P) while nine were down-regulated (miR-584, miR-218, 
miR-30b, miR-522, miR486-5P, miR-34c-3p, miR-34b, miR-516b, miR-592). The 
integrating diagnosis sensitivity (SE) and specificity (SP) were 82.6% and 89.9%, 
respectively. We also found that 4 target genes (p < 0.05, fold change > 2.0) were 
significant correlation with the 14 discovered miRNAs, and the classifiers we built 
from one training set predicted the validation set with higher accuracy (SE = 0.987, 
SP = 0.824). 

Conclusions: Our results demonstrate that integrating miRNAs and target genes 
are valuable for identifying promising biomarkers, and provided a new insight on 
underlying mechanism of NSCLC. Further, our well-designed validation studies surely 
warrant the investigation of the role of target genes related to these 14 miRNAs in 
the prediction and development of NSCLC.

INTRODUCTION

Non-small cell lung cancer (NSCLC) remains one of 
the leading causes of cancer death, with a high mortality 
rate worldwide[1, 2], accounting for over one quarter of 
cancer deaths in 2014 [1-3]. Recently, many studies have 

reported promising biomarkers for differential diagnosis of 
NSCLC [4 -13]. However, accurate biomarkers of NSCLC 
still remain largely unexplored. 

Currently, the discovery of microRNAs (miRNAs), 
a class of small non-coding RNAs, has opened up a new 
perspective for cancer prediction and provides a novel 
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approach for the initial screening of cancer, including 
NSCLC [14][4]. Emerging evidence has reported that 
miRNAs are remarkably aberrant in tumors [15-17][5-
7], and may be involved in initiation and progression of 
NSCLC [18-20][8-10]; in addition, due to their inherent 
nature, miRNAs seem to remain highly stable and provide 
more accurate prediction factors for clinical specimens 
[21, 22][11, 12]. The above discovery shows that miRNAs 
are suitable as biomarkers for the diagnosis of NSCLC. 

Unfortunately, several conflicting results are still 
present in independent studies [23, 24][13, 14], which are 
often explained by different miRNA profiling systems and 
platforms. Although they separately have promising value 
for cancer differentiation, a systematic analysis of these 
collected data may be essential for further exploration 
of the applicability of miRNAs as biomarkers for the 
prediction of NSCLC. 

Thus, our meta-analysis answers three questions: 
(1) whether some of the miRNAs could differentiate 
tissues as NSCLC or control, (2) whether there were 
relationships between promising miRNAs with target 
genes in functional annotation and pathways, and (3) 
whether genes targeted by these miRNAs are associated 
with NSCLC initiation and progression.

RESULTS

Regulation and predictive value of miRNA 
expression in lung cancer tissue 

To determine whether the expression of miRNAs 
could be used to identify NSCLC and control cases, our 
initial search yielded 19 relevant data sets. After removing 
3 duplicated data sets and 11 unqualified data sets (Figure 
1),  three primary  data sets(GSE15008, GSE36681, 
GSE29248) as a training cohort were further examined 
in this meta-analysis, which was comprised of a total of 
263 cancer tissue samples and 236 control tissue samples. 
We received another two complete sets of miRNA data 
(GSE51853, GSE19945) as a validation cohort, which was 
composed of a total of 127 tissue samples. The five lung 
cancer microarray data sets was used to used to analyze 
the miRNA expression profiles of NSCLC tissues relative 
to their normal controls. The characteristics of these 
samples are shown (Table 2, Table 4). Microarray data 
sets were normalized by control normalization algorithm 
using Agilent’s GeneSpring 13.0. After normalization, 
batch effect was removed (Figure 2).

Figure 1: Flowchart of miRNAs studies in this meta-analysis.
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Figure 2: 3D plot of principal components analytic scores (6 = GSE15008, 9 = GSE36681, 10 = GSE29248). A. raw data 
without normalization, B. with normalization and batch effect removal.

Table 1: Top 14 Significantly differentiated miRNAs in lung cancer
Gene name    P-value FC(abs) FDR Regulation
has-miR-9 4.18E-11 2.002815 2.09E-09 up
has-miR-584 2.26E-13 1.568074 6.78E-12 down
has-miR-708 1.27E-10 1.553729 1.016E-08 up
has-mir-218 3.73E-13 1.608805 7.46E-12 down
has-miR-296-3P 5.64E-11 1.591363 1.974E-09 up
has-miR-30b 1.25E-06 1.724754 0.00003875 down
has-miR-522 1.37E-09 1.603749 3.699E-08 down
has-miR-486-5P 9.52E-07 1.759159 0.000021896 down
has-miR-34C-3P 1.49E-11 1.737232 2.831E-10 down
has-miR-892b 9.28E-13 2.103988 1.392E-11 up
has-miR-34b 1.30E-11 1.872982 1.43E-10 down
has-miR-516b 1.25E-10 1.561706 8.75E-10 down
has-mir-140-5p 1.77E-08 2.321465 5.31E-08 up
has-mir-592 4.98E-12 1.635831 4.98E-12 down
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Figure 3: Most significant canonical pathways of putative target genes of lung cancer regulated 14 promising miRNAs. 
(The threshold lines indicate 5% P-value. The bigger the -log (p-value) of pathway is, the more significantly the pathway is adjusted.) 

Table 2: all samples ' characteristics of microarray data sets used in both training and validation stage
Training Validation

Cancer  (236) Healthy (136) Cancer (88) Healthy (39)

Sex
                  Male 136 87 57 22
                  Female 100 49 31 17

Age, yr
                 Median 67 63 67 58
                SD 8.26 10.24 8.12 10.94
                Range 46 - 72 30 - 70 43 - 71 38 - 64
Smoking history, pack-years
                Median 32 51 45 33
                SD 22.1 23.8 25.8 32.2
                Range 3 - 77 5 - 56 1 - 76 5 - 65
Tumor subtype
               Adenocarcinoma 98 58
               Squamous 138 30
Tumor stage
               Stage I 130 49

               Stage II 106 39
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470 overlapped miRNAs were differentially 
regulated by cancer cases with a cut off p-value of 0.05 
and fold change of 1.5. Meanwhile we developed an 
algorithm based on the Weka tool to construct miRNAs 
predictive models by data mining; subsequently, we 
selected 14 miRNAs as a new integrated training set to 
construct a predictive model. 

The 14 miRNAs model performed stably in 
distinguishing between NSCLC and control cases, with 
a sensitivity of 82.6%, a specificity of 89.9%, a positive 
predictive value (PPV) of 87.5%, and a negative predictive 
value (NPV) of 85.8%. The AUC of the training set was 
0.913. Up-regulated miRNAs (miR-9, miR-708, miR-
296-3p, miR-892b, miR-140-5P) and nine down-regulated 
(miR-584, miR-218, miR-30b, miR-522, miR486-5P, 
miR-34c-3p, miR-34b, miR-516b, miR-592) in the 14 
top miRNAs were significantly regulated by tumor cases 
(Table 1). Moreover, in validation, the 14 miRNAs model 
produced prediction sensitivity that increased continually 
and significantly: SE=88.14%, SP=91.18%, PPV=89.66%, 
NPV=89.86%, AUC=0.905

A study [25] reported that the target genes of 
multiple miRNAs play a crucial role in controlling 

stimulatory or inhibitory activity in tumorigenesis. Thus, 
the potential target genes of these miRNAs need to be 
identified.

MiRNA target prediction and functional analysis

In order to identify potential miRNA target genes, 
we first queried the three most popular computational 
databases MiRBase [26], PicTar [27], and Targetscan 
[28] to scan target genes on the principle of mutual 
recognition. 1743 overlapping target genes related to 
the top 14 miRNAs emerged as a particular group. Then 
physiological pathways of target genes were analyzed 
using the Ingenuity Pathway Analysis (IPA) tool. 

Interestingly, the top 10 significant pathways which 
are shown in Figure 3 were enriched by the 1473 genes 
associated with cancer initiation and progression. Among 
them, Axonal Guidance Signaling Pathway, Insulin-like 
growth factor-1(IGF-1) Signaling, Integrin Signaling 
Pathway, and Ephrin Receptor Signaling Pathway were 
highly associated with NSCLC initiation and progression. 
The Axonal Guidance Signaling Pathway involves 77 
target genes with NSCLC, the IGF-1 Signaling Pathway 

Figure 4: Gene network using target genes from 14 promising miRNAs. The network was produced by IPA. Nodes colored in 
red or green indicate up-regulated and down-regulated gene, respectively.
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involves 22, the Integrin Pathway involves 35, and 
Ephrin Receptor Signaling Pathway involves 31. In 
general, these genes were regulated by each other either 
directly or indirectly. Yet the underlying values for these 
genes associated with pathways have not been clearly 
illuminated. Thus, it is necessary to investigate the 
interaction between target genes and the 14 significant 
miRNAs.

Validate the 14 significant miRNAs using gene 
microarray data, and explore the correlation with 
target genes

In this meta-analysis, the predicted performance of 
miRNAs was further verified by gene expression data sets. 
After excluding those studies according to the previous 
including criteria, 6 studies remained. Gene expression 
data sets (GSE1987, GSE43458, GSE33532 (paired), 
GSE2514, GSE19804, GSE33532 (unpaired)) with 7254 
common genes were extracted from Gene Expression 
Omnibus, which included 195 NSCLC and 178 normal 
cases. After normalizing the raw data, controlling sample 
quality, correcting background, and performing log2 
transformation, the miRNAs were filtered according to a 
t-test p-value cut off of 0.05 and a 1.5 fold change cut off. 
A Bayesian statistical analysis with 5% false discovery 

rate (FDR) was selected as one of three criteria for 
significant variable value.

Statistical analysis identified 1263 differentially 
expressed genes (p < 0.05, FC > 1.5) in NSCLC versus 
normal cases. Moreover, we found 900 genes with FDR 
< 0.05 and FC > 1.5 targeted by 14 miRNAs, in which 
100 genes had an FDR < 0.05 and FC > 2.0. Among 
them 71 genes were down-regulated and 29 genes were 
up-regulated in NSCLC cases. The 100 gene list of better 
FDR score were uploaded into the IPA tool. A gene 
network was computed (Figure 4). Nodes colored in red 
and green indicate up-regulated and down-regulated gene 
respectively. We could clearly see the gene interaction 
between the two regulation directions. The top 20 
significant genes are listed in Table 3.

To further assess the prediction abilities of gene 
cross-validation, we divided six data sets which were 
retrieved from PubMed into two sets (training set, testing 
set) according to sample size. The training set was 
composed of 3 paired specimens (GSE19804, GSE33532, 
GSE43458) containing a total of 230 samples respectively. 
The remaining 3 data sets for testing were comprised of 
3 unpaired specimens (GSE1987, GSE43458, GSE2514) 
containing a total of 143 samples. The characteristics of 
these samples are shown in Table 3. 

Meanwhile we developed an algorithm based on 
the Weka tool to construct gene predictive models by data 

Figure 5: Hierarchical clustering analysis of two sets based on 4 core genes was performed using samples from (A) 
training set and (B) testing set. The relative level of gene expression is indicted by the color scale at the bottom word “c” on the each 
clustering plot represent cancer sample. Word “n” on each clustering plot represent control sample.
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mining; subsequently, we selected 4 core genes as a new 
integrated training set to construct a predictive model. 
The 4 gene model performed stably in distinguishing 
between NSCLC and control cases, with a sensitivity of 
96.7%, a specificity of 88.1%, a positive predictive value 
(PPV) of 89.9%, and a negative predictive value (NPV) of 
96.0%. The AUC of the training set was 0.984. Moreover, 
in validation, the 4 genes model produced prediction 

sensitivity that increased continually and significantly: SE 
= 98.7%, SP = 82.4%, PPV = 86.1%, NPV = 98.3%, AUC 
= 0.933 (Table 5). In addition, hierarchical cluster analysis 
showed that the samples of training set and testing set 
were also clearly separated into 2 main classes (Figure 5). 
This shows that these core genes can discriminate between 
NSCLC cases and normal cases.

 Table 4: Characteristics of the 9 studies in our meta-analysis of diagnosis NSCLC using microarray data sets

Database GEO Platform PMID Ethnicity
No. of 
miRNA/
gene 

NSCLC cases 
(No)

Healthy 
cases(No)

Analysis 
miRNA/Gene

1 GSE15008 GPL8176 21890451 China 1146 174 201 miRNA
2 GSE36681 GPL8179 22573352 USA 1146 56 56 miRNA
3 GSE29248 GPL8179 22046296 China 1146 6 6 miRNA 
4
5
6

GSE51853
GSE19945
GSE1987

GPL7341
GPL9948
GPL91

24903339
NA
17258348

Japan
Japan
Israel

1146
1146
10610 

80
8
25

31
8
9

miRNA   
miRNA
GENE (testing)

7 GSE33532 GPL570 NA Germany 25906 20 19 GENE (testing)
8 GSE2514 GPL8300 16314486 USA 8943 30 40 GENE (testing)
9 GSE19804 GPL570 20802022 China 54656 60 60 GENE (training)
10 GSE33532 GPL570 NA Germany 25906 20 20 GENE (training)
11 GSE43458 GPL6244 23659968 USA 33251 40 30 GENE (training)

Table 3:  Top 20 Significantly differentiated target Genes in lung cancer

Gene name
Training set Testing set
P-value   FC FDR P-value   FC FDR

KIAA1462 2.23E-45 -3.41 1.72E-44 1.28E-20 -3.26 9.84E-20
MMD 2.58E-41 -4.46 2.17E-40 5.85E-16 -3.11 9.36E-15
CBX7 2.57E-33 -2.11 2.34E-32 5.42E-23 -2.19 1.19E-21
FAP 1.23E-27 3.07 9.47E-27 8.36E-15 3.01 1.08E-13
GPM6A 7.11E-61 -7.49 5.98E-60 2.15E-23 -4.40 1.66E-22
FAM107A 2.17E-46 -6.39 1.67E-45 2.05E-21 -3.16 1.87E-20
SEMA6A 3.49E-39 -2.98 2.69E-38 8.42E-04 -1.59 6.48E-03
THBD 1.91E-38 -3.19 1.34E-37 5.89E-18 -2.41 5.36E-17
COL1A1 9.58E-37 3.06 8.72E-36 1.75E-05 2.33 1.05E-03
STK39 1.24E-35 2.31 8.67E-35 3.62E-08 1.49 2.78E-07
PDK4 8.50E-33 -3.72 7.74E-32 3.36E-11 -2.72 2.82E-10
LIMCH1 1.49E-32 -2.52 1.35E-31 8.04E-16 -2.47 6.76E-15
OLFML1 2.60E-30 -2.60 2.18E-29 3.55E-18 -2.56 2.73E-17
TOX3 3.66E-26 3.93 3.07E-25 2.13E-09 3.50 1.79E-08
GREM1 2.28E-24 6.76 1.75E-23 5.18E-05 2.06 3.99E-04
SLC2A1 1.19E-23 2.56 8.32E-23 2.19E-06 1.76 1.61E-05
TTK 1.25E-23 3.19 9.66E-23 2.39E-11 2.61 2.17E-10
OLR1 6.33E-20 -3.22 5.76E-19 1.24E-07 -2.07 1.13E-06
SIX1 5.12E-18 2.46 3.59E-17 2.74E-08 2.03 2.11E-07
IGF2BP3 2.04E-13 2.01 1.71E-12 9.76E-11 2.66 8.88E-10

Table 5: Significantly differentiated target genes in lung cancer
Group(gene name) SE SP PPV NPV AUC
Training set (MMD,CBX7, FAP,KIAA1462) 0.967 0.881 0.899 0.96 0.984
Testing set (MMD,CBX7, FAP,KIAA1462) 0.987 0.824 0.861 0.983 0.933

SE: sensitivity SP: specificity PPV: positive predictive value  NPV: negative predictive value AUC: area under the curve
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Figure 6: Flowchart of studies (including miRNA and target gene) in this research.
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Figure 7: A hypothetical model to explain the molecular mechanisms of NSCLC based on enrolled data sets.

Figure 8: Verification of miRNA and gene expression of integrative microarray results using real time QRT-PCR. A. 
Verification of 4 miRNA results. B. Verification of 4 gene results. The positive value indicates up-regulated fold change of lung cancer 
cell line A549 compared to normal lung epithelial cells NL20. The negative value indicates the down-regulated fold change of lung cancer 
cell line A549 compared to normal lung epithelial cells NL20. Values refer to the mean ± SD of three independent samples, each run in 
triplicate.



Oncotarget8450www.impactjournals.com/oncotarget

Verification of microarray responses using 
real time QRT-PCR to verify the credibility of 
microarray and gene network modeling results

To verify our microarray meta-analysis results, 
we chose two cell lines, A549 lung adenocarcinoma cell 
lines and normal lung epithelial cells NL20, to conduct 
the experiments. We selected four miRNAs and all the 
four gene markers to perform real time quantitative PCR 
(QRT-PCR) in the two cell line. As illustrated in Figure 
8, compared to normal control cell lines, has-miR-9, has-
miR-296-3P, and the gene FAP were up-regulated whereas 
has-miR-522, has-miR-34b, the gene KIAA1462, the gene 
MMD and the gene CBX7 were down-regulated. 

DISCUSSION

In our study (Figure 6), we focused primary 
on whether promising miRNAs could act as accurate 
biomarkers to discriminate NSCLC from normal cases by 
taking advantage of miRNA array data sets. We selected 5 
microarray data sets and set out to systematically identify 
promising miRNAs that distinguish NSCLC and control. 

The top 14 miRNAs we found (has-miR-9, has-
miR-584, has-miR-708, has-miR-218, has-miR-296-3p, 
has-miR-30b, has-miR-522, has-miR-486-5p, has-miR-
34c-3p, has-miR-892b, has-miR-34b, has-miR-516b, has-
miR-140-5p, has-miR-592), as a combination of miRNAs, 
has more accurate predicted value in distinguishing cancer 
cases with control cases as measured by higher sensitivity, 
higher specificity, and statistically significant pathways. 
Aberrant expressions of 12 miRNAs (miR-9, miR-584, 
miR-218, miR-296-3p, miR-486-5p, miR-34, miR-592, 
miR-30b, miR-708, miR-522, miR-516b, and miR-140-
5p) were reported as potential biomarkers with diagnostic 
value in cancer patients, except for miR-516b and miR-
892b. Aberrant expression of miR-9 contributes to tumor 
cell invasion, partly through directly down-regulating 
CBX7 protein expression [29]. MiR-140-5p significantly 
reduces MMD protein levels in NSCLC cells leading to 
inhibit cell proliferation by regulating Erk1/2 signaling 
[30][27]. Several miRNAs such as miR-584, miR-218, 
miR-486-5p, miR-34, miR-592, miR-30b, miR-522, were 
reported respectively to target CMBL/ PIP4K2A [31][28], 
Robol [29]/BMI [32, 33], ARHGAP5 [34] [31], KRAS/ 
PDGFR [35], BMI1 [33], CCND3 [36], Rab18 [37], 
PHLPP1 [38] responsible for cell proliferation migration 
and invasion. It is noteworthy that miR-708 and miR-
296-3p were dysregulated in differential studies. Guo P 
et al. [36] reported that miR-708 positively influences cell 
proliferation, invasion, and migration by inhibiting the 
expression of Akt1, CCND1, EZH2, MMP2, Parp-1, and 
Bcl2 which are linked to an increase in death [39]. Lin KT 
et al. [37] mentioned that miR-708, through suppression of 
Rap1B, results in the reduction of integrin-mediated focal 

adhesion formation and the inhibition of cell migration 
and impaired metastasis, and that patients with high miR-
708 show significantly better survival [40]. Similarly, 
Bai Y et al. confirmed that miR-296-3p decreases cancer 
cell growth by repression of EAG1 [41]. Liu X et al. [39] 
pointed out that miR-296-3p inhibits ICAM1 expression 
leading to tumor metastasis [42] Overall, this finding 
suggested that alterations of these genes/pathways 
represent meaningful risk factors in NSCLC.

In order to explore these interactions between 
miRNAs and target genes, we decided to perform a 
pathway analysis using the list of overlapped target genes 
referenced by the three computational databases. The top 
10 significant pathways enriched 1473 genes associated 
with cancer initiation and progression. 

In our following study of target genes, we took 
advantage of statistical computer tools to mine some 
available data for target genes, and then subsequently hold 
overlapping genes. We found that over half of the target 
genes with better FDR and higher FC were involved in 
NSCLC. The gene networks showed that many of these 
genes related to NSCLC, and interacted with each other. 

To seek genes offering greater sensitivity and 
specificity, a statistical model based on six gene data 
sets was built. Finally, we selected the 4-gene index 
(KIAA, MMD, CBX7, and FAP) as a novel biomarker 
for diagnostic prediction of NSCLC. The index achieved 
96.7% sensitivity, 88.1% specificity, 89.9% PPV, 
and 96.0% NPV in the training set, and with higher 
significance in testing set (SE = 98.7%, SP = 82.4%, PPV 
= 86.1%, NPV = 98.3%). Emerging reports [27, 40, 41] 
showed that MMD, CBX7, FAP played an important 
role in the proliferation of lung cancer [30, 43, 44]. It is 
noteworthy that the gene KIAA has never been reported 
as related to cancer, serving only as a risk factor in 
coronary artery disease [45][42]. Our study showed 
KIAA was frequently directly or indirectly associated 
with the 14 promising miRNAs in NSCLC. Therefore, 
based on both miRNAs and target genes level, we 
generated a hypothetical model that can explain genetic 
and environmental factors that trigger NSCLC (Figure 
7). Genetic and environmental factors could affect the 
expression of miR-9, miR-584, miR-708, miR-218, miR-
296-3p, miR-30b, miR-522, miR-486-5p, miR-34c-3p, 
miR-892b, miR-34b, miR-516b, miR-140, miR-592, 
then that of KIAA, MMD, CBX7, and FAP, and through 
interaction finally result in tumorigenesis. As illustrated 
in our experiment, has-miR-9, has-miR-296-3P, and the 
gene FAP were up-regulated whereas has-miR-522, has-
miR-34b, the gene KIAA1462, the gene MMD and the 
gene CBX7 were down-regulated. The QRT-PCR results 
were consistent with the microarray meta-analysis results.

Overall, our results not only demonstrate that 
combining miRNAs and target genes improves our ability 
to identify promising biomarkers, but it also contributes to 
greater insight on new potential mechanisms and functions 
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for predicting NSCLC.
Although we tried to avoid bias in our study, certain 

limitations still need to be considered while interpreting 
the result of our study. More research with experimental 
validation is clearly needed in order to find promising 
miRNAs and target genes using microarray platform to 
real-time RT-PCR assays, allowing broader accession and 
utilization in future clinical application. Third, further 
work is needed to investigate the relationship between 
miRNAs and genes.

Despite the above limitations, our study is the first 
meta-analysis to predict NSCLC from microarray data 
sets at both miRNA and gene level. This study also avoids 
distinguishing expression patterns in promising target 
genes that contradict those of the miRNAs. Detecting 
NSCLC using miRNAs and core genes still needs further 
validation as well.

MATERIALS AND METHODS

Search strategy, eligibility and data extraction

Microarray data sets were extracted from NCBI and 
Gene Expression Omnibus by means of the MESH terms 
‘lung cancer/lung neoplasm/NSCLC’ and ‘microRNAs/
miRNA’, in combination with the keyword ‘lung tumor/
lung neoplasm/NSCLC’ and ‘gene expression/target gene’, 
without restriction of language or publication.

Three reviewers (Ling Hu, Junmei Ai, and Hui 
Long) independently extracted the following data from all 
eligible studies. Eligible data sets had to meet the following 
criteria: all sample data sets (i) were from humans, (ii) 
focused on the diagnostic potential of miRNAs/genes for 
LC tissue, (iii) included microRNA array, (iv) came from 
raw data rather than matrix data/normalized data, and (v) 
were part of studies with included false discovery rate 
(FDR) and fold-change (FC) calculations. All data sets 
used in this study are summarized in Table 4.

MiRNAs and genes microarray data processing

The scale of miRNAs/genes expression in 
microarray data sets was consistently different due to 
different platforms and different batches [46][15]. All 
statistical data sets were normalized and standardized to 
be approximately equal in scale and normally distributed. 
There is general agreement on the normalization of 
single miRNA/gene expression using the median value 
of expression of all miRNAs/genes of each data set [47, 
48][16, 17], and the expression of each case in each data 
set was compared with the respective control samples. 
We combined log2 transformed data sets from different 
platforms into three: the miRNA data set, a paired gene 
data set, and an unpaired gene data set. 5% FDR in 

Bayesian statistical analysis was used to find statistically 
significant differential miRNAs between cancer and 
control cases. 

Verification of miRNA and gene expression of 
integrative microarray results using real time 
QRT-PCR

Cell culture

 A549 lung adenocarcinoma cell lines and normal 
lung epithelial cells (NL20) were purchased from the 
American Type Culture Collection (ATCC). The cells 
were cultured in minimum essential medium, Dulbecco’s 
modified Eagle’s medium (DMEM), and Ham’s F12 
medium supplemented with 10% fetal bovine serum (FBS) 
(Sigma Chemical Co., St.Louis, USA), penicillin (100 U/ 
mL) and streptomycin (100 µg/ mL) as antibiotics in a 
humidified atmosphere of 5% CO2 at 37 oC.

RNA extraction

Total RNA was extracted using Qiagen miRNeasy 
kit (Qiagen, Valencia, CA) according to the manufacturer’s 
protocol. In brief, the cell pellet was mixed with QIAzol 
Lysis Reagent and chloroform. After centrifugation 
at 12,000g at 4°C for 15 min, the aqueous phase was 
transferred into another tube, and 1.5 volumes of absolute 
ethanol were added. The mixture was then applied to 
miRNeasy Mini kit columns, following by washing with 
RWT and RPE buffers. The RNAs were finally eluted in 
40 μl of RNase-free water. 

Quantitative RT-PCR

MiRNAs and genes were measured using Taqman 
miRNA assay kits (Applied Biosystems, USA) according 
to the manufacturer’s protocol. Briefly, about RNA was 
reverse transcribed with a TaqMan Reverse Transcription 
Kit (Applied Biosystems, USA). Expression levels 
of miRNAs and genes were quantified in triplicate by 
qRT-PCR using human TaqMan Assay Kits (Applied 
Biosystems, USA) on the ABI 7500 thermocycler (Applied 
Biosystems) according to the manufacturer’s protocol. The 
expression value of miRNAs were normalized against an 
internal control (U6 RNA) and expression value of genes 
(mRNAs) were normalized using the internal control 
GAPDH. 
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NSCLC: non-small cell lung cancer; SE: sensitivity; 
SP: specificity; PPV: positive predictive value; NPV: 
negative predictive value; ROC curve: receiver operating 
characteristic curve; AUC: area under ROC curve; 
FDR: False discovery rate; FC: fold change; GO: Gene 
Expression Omnibus;

ACKNOWLEDGMENTS

We thank Dr. Deng’s team (Departments of Internal 
Medicine and Biochemistry, Rush University Medical 
Center) for their analysis of statistical data. we thank 
Qian xin (Department of  Respiratory Medicine, Taihe 
Hospital, hubei provice, china) for giving some assistance 
of drawing. This work is supported by the NIH grant 
(R21CA164764) to Youping Deng.

 CONFLICTS OF INTERESTS

The authors declare that they have no competing 
interests. 

REFERENCES

1. Kanaan Z, Kloecker GH, Paintal A and Perez CA. Novel 
targeted therapies for resistant ALK-rearranged non-small-
cell lung cancer: ceritinib and beyond. Onco Targets Ther. 
2015; 8:885-892.

2. Feng B, Zhang K, Wang R and Chen L. Non-small-cell lung 
cancer and miRNAs: novel biomarkers and promising tools 
for treatment. Clin Sci (Lond). 2015; 128:619-634.

3. Nascimento AV, Bousbaa H, Ferreira D and Sarmento B. 
Non-small Cell Lung Carcinoma: An Overview on Targeted 
Therapy. Curr Drug Targets. 2014.

4. Xia S, Huang CC, Le M, Dittmar R, Du M, Yuan T, Guo 
Y, Wang Y, Wang X, Tsai S, Suster S, Mackinnon AC 
and Wang L. Genomic variations in plasma cell free DNA 
differentiate early stage lung cancers from normal controls. 
Lung Cancer. 2015; 90:78-84.

5. Hubers AJ, Heideman DA, Burgers SA, Herder GJ, Sterk 
PJ, Rhodius RJ, Smit HJ, Krouwels F, Welling A, Witte BI, 
Duin S, Koning R, Comans EF, Steenbergen RD, Postmus 
PE, Meijer GA, et al. DNA hypermethylation analysis in 
sputum for the diagnosis of lung cancer: training validation 
set approach. Br J Cancer. 2015; 112:1105-1113.

6. Liu Y, Sun W, Zhang K, Zheng H, Ma Y, Lin D, Zhang X, 
Feng L, Lei W, Zhang Z, Guo S, Han N, Tong W, Feng X, 
Gao Y and Cheng S. Identification of genes differentially 
expressed in human primary lung squamous cell carcinoma. 
Lung Cancer. 2007; 56:307-317.

7. Perez-Ramirez C, Canadas-Garre M, Jimenez-Varo E, 
Faus-Dader MJ and Calleja-Hernandez MA. MET: a new 

promising biomarker in non-small-cell lung carcinoma. 
Pharmacogenomics. 2015; 16:631-647.

8. Luo A, Yin Y, Li X, Xu H, Mei Q and Feng D. The clinical 
significance of FSCN1 in non-small cell lung cancer. 
Biomed Pharmacother. 2015; 73:75-79.

9. Su J, Liao J, Gao L, Shen J, Guarnera MA, Zhan M, Fang 
H, Stass-Feng Jiang SA and Jiang F. Analysis of small 
nucleolar RNAs in sputum for lung cancer diagnosis. 
Oncotarget. 2015. doi: 10.18632/oncotarget.4219.

10. Li HM, Guo K, Yu Z, Feng R and Xu P. Diagnostic value 
of protein chips constructed by lung-cancer-associated 
markers selected by the T7 phage display library. Thorac 
Cancer. 2015; 6:469-474.

11. Markou A, Sourvinou I, Vorkas PA, Yousef GM and 
Lianidou E. Clinical evaluation of microRNA expression 
profiling in non small cell lung cancer. Lung Cancer. 2013; 
81:388-396.

12. Ma L, Yue W, Teng Y, Zhang L, Gu M and Wang Y. Serum 
anti-CCNY autoantibody is an independent prognosis 
indicator for postoperative patients with early-stage 
nonsmall-cell lung carcinoma. Dis Markers. 2013; 35:317-
325.

13. Ronald JA, Chuang HY, Dragulescu-Andrasi A, Hori 
SS and Gambhir SS. Detecting cancers through tumor-
activatable minicircles that lead to a detectable blood 
biomarker. Proc Natl Acad Sci U S A. 2015; 112:3068-
3073.

14. Boeri M, Verri C, Conte D, Roz L, Modena P, Facchinetti F, 
Calabro E, Croce CM, Pastorino U and Sozzi G. MicroRNA 
signatures in tissues and plasma predict development and 
prognosis of computed tomography detected lung cancer. 
Proc Natl Acad Sci U S A. 2011; 108:3713-3718.

15. Farazi TA, Hoell JI, Morozov P and Tuschl T. MicroRNAs 
in human cancer. Adv Exp Med Biol. 2013; 774:1-20.

16. Nohata N, Hanazawa T, Enokida H and Seki N. microRNA-
1/133a and microRNA-206/133b clusters: dysregulation 
and functional roles in human cancers. Oncotarget. 2012; 
3:9-21. doi 10.18632/oncotarget.424.

17. Melo SA and Esteller M. Dysregulation of microRNAs in 
cancer: playing with fire. FEBS Lett. 2011; 585:2087-2099.

18. Bouyssou JM, Manier S, Huynh D, Issa S, Roccaro AM 
and Ghobrial IM. Regulation of microRNAs in cancer 
metastasis. Biochim Biophys Acta. 2014; 1845:255-265.

19. Zhang WC, Liu J, Xu X and Wang G. The role of 
microRNAs in lung cancer progression. Med Oncol. 2013; 
30:675.

20. Shen Y, Tang D, Yao R, Wang M, Wang Y, Yao Y, Li 
X and Zhang H. microRNA expression profiles associated 
with survival, disease progression, and response to gefitinib 
in completely resected non-small-cell lung cancer with 
EGFR mutation. Med Oncol. 2013; 30:750.

21. Jeong HC. Clinical Aspect of MicroRNA in Lung Cancer. 
Tuberc Respir Dis (Seoul). 2014; 77:60-64.

22. Zhang H, Yang H, Zhang R, Zhang C, Zhang J and Li D. 



Oncotarget8453www.impactjournals.com/oncotarget

In-depth bioinformatic analysis of lung cancer-associated 
microRNA targets. Oncol Rep. 2013; 30:2945-2956.

23. Gu XY, Wang J, Luo YZ, Du Q, Li RR, Shi H and Yu 
TP. Down-regulation of miR-150 induces cell proliferation 
inhibition and apoptosis in non-small-cell lung cancer by 
targeting BAK1 in vitro. Tumour Biol. 2014; 35:5287-5293.

24. Sun Y, Su B, Zhang P, Xie H, Zheng H, Xu Y, Du Q, Zeng 
H, Zhou X, Chen C and Gao W. Expression of miR-150 and 
miR-3940-5p is reduced in non-small cell lung carcinoma 
and correlates with clinicopathological features. Oncol Rep. 
2013; 29:704-712.

25. Brighenti M. MicroRNA and MET in lung cancer. Ann 
Transl Med. 2015; 3:68.

26. Griffiths-Jones S, Grocock RJ, van Dongen S, Bateman A 
and Enright AJ. miRBase: microRNA sequences, targets 
and gene nomenclature. Nucleic Acids Res. 2006; 34:D140-
144.

27. Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein 
EJ, MacMenamin P, da Piedade I, Gunsalus KC, Stoffel 
M and Rajewsky N. Combinatorial microRNA target 
predictions. Nat Genet. 2005; 37:495-500.

28. Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP and 
Burge CB. Prediction of mammalian microRNA targets. 
Cell. 2003; 115:787-798.

29. Xie D, Shang C, Zhang H, Guo Y and Tong X. Up-
regulation of miR-9 target CBX7 to regulate invasion 
ability of bladder transitional cell carcinoma. Med Sci 
Monit. 2015; 21:225-230.

30. Li W and He F. Monocyte to macrophage differentiation-
associated (MMD) targeted by miR-140-5p regulates tumor 
growth in non-small cell lung cancer. Biochem Biophys Res 
Commun. 2014; 450:844-850.

31. Niu N, Schaid DJ, Abo RP, Kalari K, Fridley BL, Feng 
Q, Jenkins G, Batzler A, Brisbin AG, Cunningham JM, Li 
L, Sun Z, Yang P and Wang L. Genetic association with 
overall survival of taxane-treated lung cancer patients - a 
genome-wide association study in human lymphoblastoid 
cell lines followed by a clinical association study. BMC 
Cancer. 2012; 12:422.

32. Tie J, Pan Y, Zhao L, Wu K, Liu J, Sun S, Guo X, Wang 
B, Gang Y, Zhang Y, Li Q, Qiao T, Zhao Q, Nie Y and 
Fan D. MiR-218 inhibits invasion and metastasis of gastric 
cancer by targeting the Robo1 receptor. PLoS Genet. 2010; 
6:e1000879.

33. Wang T, Chen T, Niu H, Li C, Xu C, Li Y, Huang R, Zhao 
J and Wu S. MicroRNA-218 inhibits the proliferation and 
metastasis of esophageal squamous cell carcinoma cells by 
targeting BMI1. Int J Mol Med. 2015; 36:93-102.

34. Wang J, Tian X, Han R, Zhang X, Wang X, Shen H, Xue 
L, Liu Y, Yan X, Shen J, Mannoor K, Deepak J, Donahue 
JM, Stass SA, Xing L and Jiang F. Downregulation of miR-
486-5p contributes to tumor progression and metastasis 
by targeting protumorigenic ARHGAP5 in lung cancer. 
Oncogene. 2014; 33:1181-1189.

35. Stahlhut C and Slack FJ. Combinatorial Action of 
MicroRNAs let-7 and miR-34 Effectively Synergizes with 
Erlotinib to Suppress Non-small Cell Lung Cancer Cell 
Proliferation. Cell Cycle. 2015; 14:2171-2180.

36. Liu Z, Wu R, Li G, Sun P and Xu Q. MiR-592 inhibited 
cell proliferation of human colorectal cancer cells by 
suppressing of CCND3 expression. Int J Clin Exp Med. 
2015; 8:3490-3497.

37. Zhong K, Chen K, Han L and Li B. MicroRNA-30b/c 
inhibits non-small cell lung cancer cell proliferation by 
targeting Rab18. BMC Cancer. 2014; 14:703.

38. Zhang S, Zhang H, Zhu J, Zhang X and Liu Y. MiR-522 
contributes to cell proliferation of human glioblastoma cells 
by suppressing PHLPP1 expression. Biomed Pharmacother. 
2015; 70:164-169.

39. Guo P, Lan J, Ge J, Nie Q, Mao Q and Qiu Y. miR-708 acts 
as a tumor suppressor in human glioblastoma cells. Oncol 
Rep. 2013; 30:870-876.

40. Lin KT, Yeh YM, Chuang CM, Yang SY, Chang JW, Sun 
SP, Wang YS, Chao KC and Wang LH. Glucocorticoids 
mediate induction of microRNA-708 to suppress ovarian 
cancer metastasis through targeting Rap1B. Nat Commun. 
2015; 6:5917.

41. Bai Y, Liao H, Liu T, Zeng X, Xiao F, Luo L, Guo H and 
Guo L. MiR-296-3p regulates cell growth and multi-drug 
resistance of human glioblastoma by targeting ether-a-go-go 
(EAG1). Eur J Cancer. 2013; 49:710-724.

42. Liu X, Chen Q, Yan J, Wang Y, Zhu C, Chen C, Zhao X, 
Xu M, Sun Q, Deng R, Zhang H, Qu Y, Huang J, Jiang 
B and Yu J. MiRNA-296-3p-ICAM-1 axis promotes 
metastasis of prostate cancer by possible enhancing survival 
of natural killer cell-resistant circulating tumour cells. Cell 
Death Dis. 2013; 4:e928.

43. Du H, Chen D, Zhou Y, Han Z and Che G. Fibroblast 
phenotypes in different lung diseases. J Cardiothorac Surg. 
2014; 9:147.

44. Forzati F, Federico A, Pallante P, Fedele M and Fusco A. 
Tumor suppressor activity of CBX7 in lung carcinogenesis. 
Cell Cycle. 2012; 11:1888-1891.

45. Murdock DG, Bradford Y, Schnetz-Boutaud N, Mayo P, 
Allen MJ, D’Aoust LN, Liang X, Mitchell SL, Zuchner S, 
Small GW, Gilbert JR, Pericak-Vance MA and Haines JL. 
KIAA1462, a coronary artery disease associated gene, is a 
candidate gene for late onset Alzheimer disease in APOE 
carriers. PLoS One. 2013; 8:e82194.

46. Campbell JD, Liu G, Luo L, Xiao J, Gerrein J, Juan-
Guardela B, Tedrow J, Alekseyev YO, Yang IV, Correll 
M, Geraci M, Quackenbush J, Sciurba F, Schwartz DA, 
Kaminski N, Johnson WE, et al. Assessment of microRNA 
differential expression and detection in multiplexed small 
RNA sequencing data. RNA. 2015; 21:164-171.

47. Deng Y, Ai J, Guan X, Wang Z, Yan B, Zhang D, Liu C, 
Wilbanks MS, Escalon BL, Meyers SA, Yang MQ and 
Perkins EJ. MicroRNA and messenger RNA profiling 



Oncotarget8454www.impactjournals.com/oncotarget

reveals new biomarkers and mechanisms for RDX induced 
neurotoxicity. BMC Genomics. 2014; 15 Suppl 11:S1.

48. Deng Y, Johnson DR, Guan X, Ang CY, Ai J and Perkins 
EJ. in vitro gene regulatory networks predict in vivo 
function of liver. BMC Syst Biol. 2010; 4:153.


