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T
he global obesity epidemic has stimulated in-
tense interest in the study of homeostatic mech-
anisms governing the balance between energy
intake and energy expenditure over time, and

recent progress in gene targeting and related technologies
has pushed mouse models to the forefront of this effort.
Although current methods for the measurement of energy
expenditure (EE) in mice are sensitive, reproducible, and
widely available, their potential to inform the study of
obesity remains limited by controversy regarding how best
to control for the powerful, independent impact on EE of
variation in body size per se (1,2). In this article, we briefly
review the recent work that has fueled this controversy
and propose an approach to its resolution. We also high-
light aspects of EE measurement relevant to obesity
pathogenesis that merit additional study. Although we
focus on studies in mice, the principles presented can be
applied to most other animal models.

Dramatic increases in the prevalence of obesity and its
burden of health and economic consequences heighten the
need for new insights into mechanisms that govern energy
balance. At a superficial level, the problem of obesity
resolves to simple math: energy balance, defined as the
difference between rates of EE and energy intake (EI),
sums over time to determine body energy content stored
as fat mass (FM). Hence, obesity can be seen as the
consequence of a sustained increase of energy intake
relative to energy expenditure. This simplistic thermody-
namic explanation, however, belies a far more complex
pathophysiology that is crucial for understanding why
weight loss is so difficult to achieve and sustain in obese
individuals. At the core of this complexity is a biological
process termed energy homeostasis, through which en-
ergy intake and expenditure are matched over long time
intervals to promote the stability of FM. This process is
influenced by interactions between genes and environ-
ment that affect innumerable physiological and biochemi-
cal processes that dictate energy flow and partitioning,
and recent progress in understanding these processes is
beginning to shed light on the pathogenesis of both
common (3,4) and rare forms of obesity (5). Although

research has for many years focused on EI as the predom-
inant determinant of obesity risk, emphasis is increasingly
being placed on the EE side of the energy balance
equation.

To judge the impact of a change of EE on obesity
phenotypes, a usual starting point is to compare EE
between lean and obese groups. Unlike food intake stud-
ies, however, EE measures are typically made over only
relatively short time intervals (ranging from a few hours to
2 or 3 days) and hence offer only a snapshot of any
differences in EE that might be present. Making matters
worse, body size itself is a crucial but complex determi-
nant of EE. Larger animals typically have higher absolute
rates of EE owing to an increase in the total amount of
metabolically active mass, whereas smaller animals typi-
cally have higher per-kg rates of EE (6), in part because
their larger body surface area (BSA) relative to volume
increases heat loss and thus requires greater heat produc-
tion to maintain body temperature homeostasis. Conse-
quently, EE data must be adjusted for the influence of
body size variation per se to assess whether a change of
EE contributed to weight changes in a given experimental
model. A traditional (and recurring) remedy for this prob-
lem is to divide individual measures of EE by either total
body mass (TBM) or lean body mass (LBM) (or fat free
mass [FFM]) to yield measures of EE that can be com-
pared between groups. Although these strategies might
intuitively be expected to remove the influence of body
size disparity on EE, conclusions can differ substantially
depending on whether TBM or LBM is the selected denom-
inator (7). Moreover, both choices can produce a con-
founded variable, undermining confidence in either
approach. In this Perspectives in Diabetes article, we 1)
review the growing controversy over how best to normal-
ize EE for body size variation in mice, 2) offer a potential
resolution to this surprisingly challenging issue, and 3)
highlight the implications of this and other aspects of EE
biology for basic obesity and diabetes research.
Origins of a controversy. A recent Perspectives in
Diabetes article by Butler and Kozak (1) cogently framed
the issue of inappropriate EE normalization in murine
models of genetic obesity and illustrated how EE pheno-
typing can yield flawed conclusions regarding obesity
pathogenesis when the confounding influence of body size
variation is not effectively controlled. Numerous published
examples were cited in which improper normalization of
EE for variation in body size undermined the insights
gained from genetic or pharmacological interventions that
affect EE. The principal concern identified by these au-
thors is that a commonly used method of normalizing
EE—division of EE by TBM—can yield seriously con-
founded results (1), leading them to adopt Himms-Hagen’s
opinion (8) that since FM is a trivial contributor to
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whole-body EE, normalization should be performed by
dividing EE by LBM. Indeed, FM is comprised primarily of
metabolically inert triglyceride, and further, increased
weight in many obese animal models primarily reflects an
expansion of FM accompanied by a much smaller change
of LBM. Using TBM, rather than LBM, as the denominator
in ratio-based methods of EE normalization can conse-
quently produce the errant conclusion that obese animals
have a lower EE than do lean controls because EE is
divided by a denominator that is increased disproportion-
ately relative to their small increase of LBM. It follows that
this confounding effect can be averted when EE is divided
by either LBM or FFM (LBM contains some essential lipid
whereas FFM equals TBM minus all extractable lipid; the
two values are nearly identical). Despite this logic, recent
work suggests that normalization achieved by dividing EE
by FFM (or LBM) is also confounded in mice (2) by factors
both physiological and mathematical in nature.
Variation in FM influences EE. The concept that FM has
an inconsequential metabolic energy cost is supported by
evidence that adipose tissue has a low mass-specific rate
of energy utilization (9). Yet, accumulating data in both
mice and humans challenge the conclusion that FM is of
little consequence to whole animal EE, and suggest in-
stead that the impact of FM on whole-body EE extends
beyond the intrinsic energy costs of adipose tissue (10–
14). A recent review (15) concluded that even if the effect
of each gram of FM on EE is modest relative to that
exerted by each gram of LBM (15–20%), it is nonetheless
important to take FM into account in comparisons involv-
ing lean and obese animals. These concerns led us (2) to
analyze data from a large sample of mice (n � 137) bred
onto the C57BL/6J background strain on which both EE
(indirect calorimetry) and body composition (high preci-
sion quantitative magnetic resonance) were measured at
the University of Washington’s Mouse Metabolic Pheno-
typing Center (MMPC). Our analysis revealed an unexpect-
edly large effect of FM as a determinant of murine EE, with
the influence of each gram of FM equaling �50% of the
per-gram influence of LBM (2). This observation suggests
that employing an EE normalization strategy in mice that
excludes FM can yield confounded outcomes when com-
paring lean with obese mice.

An obvious question is: how can FM be a major deter-
minant of EE if adipose tissue itself has a low EE?
Although definitive answers to this question are still
awaited, we (2) and others (13,15) hypothesize that EE is
coupled to FM indirectly via the energy homeostasis
system alluded to earlier. According to this concept,
negative feedback signaling generated in proportion to FM
(via hormones such as leptin and insulin) acts in the
central nervous system to induce compensatory adjust-
ments of autonomic and behavioral outputs that affect
energy balance so as to promote stability in the amount of
body energy stored in the form of fat (16). Thus, if FM is
perturbed from its biologically defended level, a corre-
sponding change of negative feedback signaling evokes
adaptive changes of both EI and EE that restore FM to its
preintervention value. Exceptions to this prediction in-
clude situations in which the FM change occurs in re-
sponse to either a resetting of the defended adiposity level
or involves major defects affecting the homeostatic control
system as discussed below.

This negative feedback model for the control of FM was
first introduced nearly 60 years ago (17) and is valuable for
understanding how the control of food intake is linked to

changes of body weight and how defects in this control
system can cause obesity. Contemporary models recog-
nize that the control system for food intake is complex and
that many factors additional to those involved in negative
feedback control participate, including diet composition
(3,4), environmental influences and learned responses
(18), and perhaps even responses triggered by increased
body adiposity itself. Based on strong evidence that EE is
a modulated effector of the energy homeostasis system
(19–23), changes in FM can be expected to trigger com-
pensatory adjustments of EE.

However, uncertainty persists as to how and when EE
responds to perturbations of energy storage. Some (19–
22,24,25)—but not all (26,27)—studies report that com-
pensatory changes of EE accompany experimental,
voluntary, or naturalistic changes of adiposity, and it has
been proposed that changes in plasma leptin levels are a
key underlying mechanism linking changes in FM to
adaptive changes of EE. Consistent with this hypothesis,
we found that unlike the situation in normal mice, FM in
leptin-deficient ob/ob mice is not a reliable determinant of
EE (further work is needed to definitively address this
issue), and that during exogenous leptin replacement in
ob/ob mice, the plasma leptin level emerges as a key
determinant of EE (2). Thus, FM may influence EE at least
in part via changes of circulating leptin levels. These
observations offer a biological argument in support of the
recommendation that FM be included when adjusting for
body size variation in comparisons involving lean and
obese mice.
Ratio-based EE normalization: mathematical con-
cerns. The goal of normalizing EE is to eliminate the
influence of body size variation per se on EE, such that the
normalized EE variable does not systematically vary with
body size. Only then can EE be compared across groups to
determine the effect of an experimental intervention (e.g.,
targeted gene knockout or drug treatment). A key to
assessing the success of a normalization strategy, there-
fore, is to formally determine if the normalized EE con-
struct is uncorrelated with variation in body mass and its
compartments. This fundamental standard is often not met
when EE is divided by TBM or LBM (2,28).

A mathematical digression illustrates why normalization
of EE through division by LBM is problematic. For this
ratio to be uncorrelated with LBM, EE must scale linearly
with LBM such that EE � b LBM where b is a constant;
only then does the relationship EE/LBM � b hold across
the observed range of LBM. If the linear relationship
between EE and LBM involves a nonzero y-intercept term
a, such that EE � a � b LBM, then EE/LBM � a/LBM � b,
a function that does not have constant value across the
observed range of LBM. This concept is illustrated in Fig.
1A and B. Indeed, the relationship between EE and LBM is
typically characterized by a positive y-intercept (2), re-
flecting heterogeneity in the contribution made to EE by
individual LBM components (29). Consequently, if normal-
ization involves division of EE by LBM, animals with larger
LBM values have a preordained mathematical tendency
toward lower normalized EE values (Fig. 1B). This con-
sideration again leads us to caution against dividing EE by
LBM as a routine strategy for EE normalization.

We emphasize that this recommendation is not intended
as a blanket repudiation of data generated using LBM
ratio–based EE normalization; indeed, regression- and
LBM ratio–based approaches can yield qualitatively simi-
lar outcomes, especially when body composition is similar
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between groups and/or the independent variable of inter-
est has a large effect on EE. However, when substantial
differences in body composition exist between groups, or
when the genetic or other effect on EE is subtle, results
obtained using LBM ratio–based EE normalization can be
misleading (Fig. 1C and D).
Normalization of EE by allometric scaling. One ap-
proach to EE normalization is to employ allometric scaling
in which EE is divided by body mass raised to an exponent
(30,31). Specifically, the logarithm (log) of EE is regressed
on log(TBM), resulting in an expression of the form:

predicted arithmetic mean of log(EE) � log(a) � b log-
(TBM). Exponentiation yields a power equation of the
form: predicted geometric mean of EE � a TBMb where a
is the scaling coefficient, and b is the scaling exponent.
Normalizing EE by forming the ratio EE to TBMb yields the
constant a such that the value of the ratio does not
systematically vary with variations in TBM.

This approach originated in the work of Rubner (30) in
the late 1800s, yet remains the subject of vigorous contem-
porary interest (32,33). Rubner argued that resting EE per
unit of BSA is essentially constant irrespective of TBM and
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FIG. 1. Illustration of the confounding effect of traditional ratio-based EE normalization contrasted with multiple regression analysis to control
for LBM disparity. A and B: Nonzero y-intercept values confound normalization using EE/LBM. Linear regression prediction lines for mean EE
values as a function of LBM can potentially have a positive (p), zero (z), or negative (n) y-intercept depending on the data (A). Fits of average
daily or resting EE typically entail a positive y-intercept, whereas measures of peak or maximal EE typically entail a negative y-intercept. If the
y-intercept is positive, ratios formed by dividing EE by LBM are confounded since they produce normalized EE values that decrease as LBM
increases, whereas if the parent relationship has a negative y-intercept, LBM ratio-normalized EE increase as LBM increases (B). Zero-value
y-intercepts arguably justify the use of ratio normalization but such relationships are uncommon, and even small departures from zero can
significantly confound group comparisons (28). C and D: Comparison of ratio- vs. regression-based analysis of average daily EE controlling for
LBM disparity in lean male WT C57BL/6J (circles with dots; aged 8–12 weeks; n � 32) and genetically obese ob/ob mutant mice (filled circles; aged
10–13 weeks; n � 28). EE (indirect calorimetry) was regressed on LBM (quantitative magnetic resonance) using the combined data from both
genotypes (C; labeled “combined”). Although the resultant, small positive y-intercept suggests that traditional ratio normalization might be
appropriate for analysis of group differences, this analysis indicates no significant EE phenotype difference between groups, whereas analysis by
multiple regression discloses a significant reduction of EE in the ob/ob mice after controlling for differences in body composition (D). The offset
of the two regression lines (i.e., the difference between their y-intercepts) in C corresponds to the adjusted group difference in EE. For additional
analysis details see supplementary materials.
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supported this concept by measuring the BSA of shaved
dog carcasses (30). This and the derivation of the BSA-
body mass relationship based on Euclidean geometry
placed the value of the scaling exponent at 2/3 such that
resting EE scaled as TBM2/3. The relationship became
known as the surface law, and the concept that metabo-
lism per unit surface area is a constant achieved the status
of medical dogma following publication in 1916 of the
DuBois BSA formula (34). The surface law implemented in
terms of the DuBois BSA profoundly shaped how EE and
other aspects of metabolism (e.g., estimates of drug me-
tabolism) were normalized in human studies despite the
publication in 1949 of an incisive paper by Tanner (35)
(who later introduced the Tanner growth stages paradigm)
entitled, “Fallacy of Per-Weight and Per-Surface Area
Standards, and Their Relation to Spurious Correlation.”
Clearly, few investigators took notice of this aspect of
Tanner’s work.

Rubner’s surface law was also challenged in the 1930s
and 1940s by Kleiber (31,36) based on an interspecies
regression analysis that encompassed mammals ranging in
TBM from 21 g to 600 kg. Kleiber advocated a value for the
scaling exponent of 3/4 (31,36) such that resting EE scaled
as TBM3/4. Body mass raised to the 3/4 power became
known as metabolic body size, and normalizing resting EE
to metabolic body size using the fixed 3/4 exponent
became a method of choice. Based on a large body of
subsequent empirical work, however, it has become clear
that there is no universally applicable, within- or between-
species value of the scaling exponent for resting EE (e.g.,
[37] and supplementary materials, available in an online
appendix at http://diabetes.diabetesjournals.org/cgi/
content/full/db10-0909/DC1), which both muddies the
“meaning” of the allometric construct and has the conse-
quence that if an investigator chooses to employ allomet-
ric normalization, the exponent must be identified based
on his or her own data. This requirement places limits on
the ability to compare EE results obtained across different
studies. Taken together, these considerations suggest that
allometric scaling is not optimal when used for comparing
EE in mice, especially when groups being compared differ
substantially in adiposity.
EE normalization using multiple regression to adjust
for body size variation. An alternative strategy for EE
normalization that has been widely adopted in human
obesity and diabetes research employs multiple regression
(11,12,24,26,27,38–42). This approach estimates the
unique impact on EE of an independent variable (e.g.,
ethnicity, sex, age, drug, genetic mutation, change in diet)
by statistically controlling for the association between
body mass or composition and EE. Although multiple
regression has also been employed in some animal studies
(10,15,25,43–47), no large-scale comparison of this ap-
proach to simpler ratio-based normalization methods had
been reported in mice until recently (2).

The severe obesity phenotype of leptin-deficient ob/ob
mice has long been attributed to the combined effects of
increased EI and decreased EE. Although these mice
exhibit robust hyperphagia, the nature of their EE pheno-
type remains somewhat controversial. On the one hand,
leptin clearly stimulates autonomic mechanisms governing
EE, and brown adipose tissue (a highly specialized type of
fat tissue that dissipates heat through uncoupled mito-
chondrial oxidation of fatty acids) is atrophic in ob/ob
mice, implying an inherent thermogenic defect. Although
ob/ob mice exhibit clearly reduced EE compared with

wild-type (WT) controls when normalized to total body
weight, this analysis is confounded by pronounced in-
creases of body weight and FM in mice lacking leptin. To
address this concern, Breslow et al. (7) compared LBM
ratio-normalized EE in ob/ob mice with age-matched WT
controls and concluded that EE is paradoxically increased
in leptin-deficient mice. Butler and Kozak (1) also used
LBM ratio normalization to study ob/ob mice and similarly
concluded that these animals have higher EE compared
with WT controls.

The example of ob/ob mice highlights how different
conclusions can be drawn about EE phenotypes when
ratio-based normalization is employed, even when LBM is
used as the denominator. We submit that an important
potential source of confounding using this approach is the
aforementioned problem linked to the positive y-intercept
(Fig. 1A and B), which is especially concerning when
comparing groups of mice that differ markedly in body
composition. The use of multiple regression analysis to
control for differences in body composition while compar-
ing EE between ob/ob and WT mice effectively addresses
this confounding effect. As shown in Fig. 1C and D (and in
the supplementary materials), we found in using this
approach that ob/ob mice exhibit a significant reduction of
EE relative to WT controls, whereas the comparison based
on EE/LBM did not. Although additional studies are war-
ranted using larger sample sizes to more fully assess the
effects of leptin deficiency on EE, this analysis offers prima
facie evidence not only that EE is reduced in ob/ob mice,
but supports our previous conclusion (2) that multiple
regression analysis is superior to other methods for the
analysis of EE data in mice, especially when substantial
differences of body composition exist in the groups being
compared.

An additional strength of multiple regression is that it
does not rely upon a priori assumptions regarding the
extent to which LBM or FM (or any other variable included
in the model) determines EE in the animals being studied
(2), i.e., it “lets the data decide.” Model selection, however,
remains a crucial part of the analysis, including decisions
as to whether both FM and LBM should universally be
included in regression models (supplementary materials).
Moreover, given appropriately rigorous measurements of
EE and body composition, the sample sizes needed to
support regression-based normalization are consistent
with those routinely employed in mouse metabolic pheno-
typing studies.
Remaining questions
Limitations of indirect calorimetry. As implied by its
name, indirect calorimetry (the most common method
employed to measure EE in both animal models and
humans) does not measure EE directly. Rather, this
method mathematically converts the measured rates of
oxygen consumption (VO2) and/or carbon dioxide produc-
tion (VCO2) into EE data based on equations derived
decades ago from studies in which indirect calorimetry
was performed concurrently with direct calorimetry, the
gold standard method for quantifying EE in animals (48).
Direct calorimetry measures heat loss to assess heat
production, which will equal EE unless net external work
is being performed (heat loss equates with heat production
under defined, steady-state conditions [rev. in {48}]).

Although direct calorimetry has been largely supplanted
by user-friendly commercial systems that measure EE via
indirect calorimetry, it is informative to consider the
assumptions that underlie the use of the latter approach to
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generate EE data. Indirect calorimetry estimates EE based
on mathematical relationships that specify the amounts of
energy and carbon dioxide that are produced given the
amounts of carbohydrate, fat, and protein that are con-
sumed. Indirect calorimetry also provides information on
the mix of metabolic fuels being combusted in the form of
the respiratory quotient, which is computed from the ratio
of VCO2 to VO2 (49,50).

A limitation to the use of indirect calorimetry is that
relationships between measures of gas exchange and both
EE and substrate oxidation can vary across different
animal models and experimental conditions (51–54). Thus,
genetic or pharmacological alterations that markedly alter
metabolic processes may in turn alter the stoichiometry
that couples respirometric data to EE and consequently
violate the assumptions (49,54–56) underlying indirect
calorimetry. Others have formally questioned the accuracy
of indirect calorimetry in some settings (51–53). Notably,
the disparity between directly measured EE and EE pre-
dicted from respiratory gas exchange was as high as 38%
and averaged 21% in careful studies involving kangaroo
rats; similar discrepancies were documented for dove and
quail (51). Indirect calorimetry therefore entails greater
uncertainty in animals with metabolic phenotypes that
differ from more standard laboratory animals.

The equations used routinely (56) for converting respi-
rometric data to EE were derived from studies conducted
largely on healthy animals between 1900 and 1940 (51) and
assume that net substrate interconversion (e.g., de novo
lipogenesis from glucose, ketogenesis from fatty acids,
gluconeogenesis from protein) is negligible. Yet this is
clearly not the case in mouse models commonly employed
today, including genetic models of diabetes (e.g., db/db or
NOD mice) and obesity (ob/ob and Ay mice). Since virtu-
ally any gene in the mouse genome can now be deleted or
overexpressed and the consequences subsequently as-
sessed in vivo, we live in an era of unprecedented oppor-
tunity to perturb metabolism in living animals. We suggest
that validation of indirect calorimetry against direct calo-
rimetry is once again warranted to instill confidence that
experimental interventions producing novel and interest-
ing EE phenotypes do not in and of themselves confound
the measurement of EE. The need for validation is under-
scored by the fact that obesity often develops as a conse-
quence of subtle but sustained states of positive energy
balance (48).
Gut flora and obesity pathogenesis. Of growing interest
to the obesity field is the concept that changes of gut flora
induced by dietary or other factors can influence energy
homeostasis in ways that predispose to or protect against
obesity (57,58). Gut bacteria constitute a metabolically
significant component of the total living mass contained
within human and animal bodies (57–60), exhibit mam-
mal-like mass-specific metabolic rates (61,62), and, unlike
mammalian cells, are fueled almost solely by anaerobic
metabolism (63). Since the number of gut bacteria is
�10-fold larger than the number of eukaryotic cells in the
body (64), differences in gut bacterial ecology could mod-
ify the whole-animal yield of heat production per unit of
oxygen consumed, and yet heat produced by gut bacteria
is not quantified by indirect calorimetry (which is “blind”
to energy-consuming anaerobic processes) (62). So far as
we are aware, the impact of gut flora on total body EE has
yet to be quantified in any species. If perturbations of gut
flora are indeed linked to changes of body fat accumula-
tion, energy balance studies that employ direct, rather

than indirect, calorimetry will be important to assess the
impact of gut flora on whole-body energy metabolism.
Changes of EE as an adaptive response. Since EE is
typically measured as a snapshot in time, dynamic changes
of EE that influence body fat accumulation are often
missed. In some experimental models (e.g., in response to
a change in diet or drug administration), for example,
changes of EE may occur rapidly and hence be missed by
measures made only after a new steady-state of body
weight has been established. Relevant in this context is the
question of whether the experimental intervention evokes
a “regulated” change in adiposity or instead imposes a
“forced” change that will be resisted by homeostatic
responses. Indeed, published evidence (21–23,65) suggests
that some interventions that alter body weight do so by
changing the defended level of body weight, while many
others do not. This is a relevant distinction since the
extent to which adaptive changes of EE as well as EI occur
in various models depends on whether the new body
weight is being actively defended or resisted by the
homeostatic control system.

In both human and animal studies, weight loss achieved
through caloric restriction (which does not reset the
defended level of body weight) is associated with a
reduction of EE that exceeds the reduction predicted by
loss of body or lean mass alone (19,20,23,25,66), a re-
sponse that promotes the recovery of lost weight and
persists even when weight loss is maintained for long time
durations (19,66). Yet a study from the National Weight
Control Registry indicates that among subjects who suc-
cessfully maintain substantial lifestyle-induced weight loss
for long time intervals, resting EE was normal after
adjustment for LBM, FM, and age (26). This observation
raises the interesting and testable hypothesis that success-
ful weight loss maintainers are individuals who undergo
little or no regulatory compensation at the level of EE and
are thus better able to maintain their body weight at a
reduced level. (Although individual differences in EE are
documented during overfeeding [67], little is known about
individual differences in EE during underfeeding). Alterna-
tively, weight loss maintainers may have previously “forced”
their body weight to be above their biologically defended
level and thus do not mount an adaptive decrease of EE
following the return of weight to its original value.

Of special relevance to obesity pathogenesis is a conun-
drum surrounding the effects of high-fat feeding on energy
balance and body fat stores. Although many factors influ-
ence weight gain in this setting, available data suggest that
upon switching from standard chow to a high-fat diet,
energy intake in healthy mice or rats increases maximally
for the first few days and then gradually declines toward
baseline values within 1–2 weeks (for a recent example
see [4]). Despite this normalization of energy intake during
high-fat feeding, body weight often continues to increase
(relative to controls fed standard chow) for several weeks
thereafter. Accordingly, one infers that EE must decline
(relative to chow-fed controls) during this period, yet
many studies show that EE increases during high-fat
feeding (68), ostensibly as an adaptive response that limits
weight gain. Detailed, continuous energy balance studies
in animals following the switch to a high-fat diet are
therefore warranted to definitively determine both the
effect on EE and the extent to which this effect protects
against or contributes to weight gain.
Should food intake, like EE, also be normalized? If EE
must be normalized to adjust for variation in body mass,
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should the same approach pertain to the other side of the
energy balance equation? Normalization of food intake
data by simple division (by TBM or LBM) is likely to be
confounded for the same reason that pertains to EE.
Moreover, the fact that intake data can be obtained
longitudinally from the beginning of an experiment (when
body weights are matched across groups) to its conclusion
diminishes the need to normalize such data. If, for exam-
ple, cumulative intake of one group is greater than an-
other, and if the groups are matched with respect to body
weight at study onset, the proper interpretation of this
outcome is usually clear without data normalization.

The issue assumes greater complexity when group
differences in TBM, body composition, or food intake exist
prior to the experimental intervention, especially if they
arise from differences of age, sex, or linear growth. In such
cases, meaningful comparisons of intake will be con-
founded unless these variables can be appropriately con-
trolled. Although multiple regression may permit insight
into whether an experimental intervention affects intake
after adjusting for differences in other variables, this
approach has yet to be validated in a large group of mice
(or any other species, so far as we are aware). Until such
an analysis is undertaken, caution is warranted in efforts
to compare intake between groups that differ substantially
in age, body composition, or linear growth.
Concluding comments. Butler and Kozak (1) are to be
commended for raising concerns regarding ratio-based
methods for normalizing EE to account for body mass
variation. Our analysis emphasizes that any ratio-based
method for normalizing EE to body mass compartments
(whether TBM or LBM is used) can lead to confounded
outcomes, leading us to recommend the use of multiple
regression to control for variation in body mass and
composition in murine studies where EE is an important
outcome variable.

Users of indirect calorimetry should also be aware of
assumptions that underlie this method and that have yet to
be tested in contemporary rodent models of obesity and
diabetes and of the limitations inherent in this approach
(e.g., failure to detect EE arising from metabolic activity of
gut bacteria). Studies that compare direct with indirect
calorimetry are warranted to aid in the interpretation of
phenotypic data from a growing number of animal models
with significant metabolic impairment arising from genetic
or other interventions.
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