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Recent studies have revealed the importance of feedbacks between contem-
porary rapid evolution (i.e. evolution that occurs through changes in allele
frequencies) and ecological dynamics. Despite its inherent interdisciplinary
nature, however, studies on eco-evolutionary feedbacks have been mostly
ecological and tended to focus on adaptation at the phenotypic level without
considering the genetic architecture of evolutionary processes. In empirical
studies, researchers have often compared ecological dynamics when the
focal species under selection has a single genotype with dynamics when it
has multiple genotypes. In theoretical studies, common approaches are
models of quantitative traits where mean trait values change adaptively
along the fitness gradient and Mendelian traits with two alleles at a single
locus. On the other hand, it is well known that genetic architecture can
affect short-term evolutionary dynamics in population genetics. Indeed,
recent theoretical studies have demonstrated that genetic architecture (e.g.
the number of loci, linkage disequilibrium and ploidy) matters in eco-evol-
utionary dynamics (e.g. evolutionary rescue where rapid evolution prevents
extinction and population cycles driven by (co)evolution). I propose that
theoretical approaches will promote the synthesis of functional genomics
and eco-evolutionary dynamics through models that combine population
genetics and ecology as well as nonlinear time-series analyses using
emerging big data.

This article is part of the theme issue ‘Genetic basis of adaptation and
speciation: from loci to causative mutations’.
1. Introduction
The traditional assumption in ecology and evolutionary biology has been that
evolutionary processes are much slower than contemporary ecological pro-
cesses [1,2]. Recent studies, on the other hand, have demonstrated that rapid
adaptive evolution (i.e. allele frequency changes in populations over just a
few generations) is common and can be rapid enough to affect ongoing ecologi-
cal processes including population, community and even ecosystem dynamics
[3–9]. Selection pressure is often fluctuating [10] and temporally fluctuating
selection can make evolution rapid over short time scales and can cancel out
the evolutionary responses across longer time scales [5,8]. Because ecological
processes alter fitness landscapes and drive adaptive evolution [11], there
should be an interplay between ecological and evolutionary processes. The
resultant feedback between ecological processes and rapid adaptive evolution
is called eco-evolutionary dynamics [12]. Eco-evolutionary dynamics is one of
the most active research areas in ecology and evolutionary biology [13–20]
not only for the synthesis of these two basic sciences, but also for conservation
and management of wild organisms rapidly evolving in response to drastic
environmental changes [21–23].

http://crossmark.crossref.org/dialog/?doi=10.1098/rstb.2020.0504&domain=pdf&date_stamp=2022-05-30
http://dx.doi.org/10.1098/rstb/377/1855
http://dx.doi.org/10.1098/rstb/377/1855
mailto:m.yamamichi@uq.edu.au
http://orcid.org/
http://orcid.org/0000-0003-2136-3399
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


genetic
basis

phenotypic
adaptation

ecological
dynamics

Figure 1. The conceptual framework of eco-evolutionary feedbacks (after
[26]). Previous studies in eco-evolutionary dynamics tended to focus on
feedbacks between ecological processes and phenotypic adaptation (indicated
by the solid line). Including genetic basis of phenotypic adaptation (as
indicated by the dashed line) may improve our understanding of eco-
evolutionary dynamics. Note that the figure seems to be suggesting that
the three components are separate, but they are confounded with
one another.
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Although studies of eco-evolutionary dynamics combine
insights from ecology and evolutionary biology and are
inherently interdisciplinary, it seems that research on eco-
evolutionary feedbacks has been mostly conducted from the
perspective of ecology. For example, the finding of evolution-
ary cycles where prey defence evolution changes the phase
lag between predator and prey densities from a quarter-
period to a half-period [24,25] was surprising for ecologists,
but dynamics of prey defence traits there might not be so
novel for evolutionary biologists. According to the Web of
Science, about 58% of papers in a search of ‘eco-evo*
dynamics’ were categorized as ‘Ecology’ whereas 30% were
‘Evolutionary Biology’ and 11% of papers were ‘Genetics
Heredity’ (searched on 2 March 2022). Researchers have
tended to focus on feedbacks between ecological dynamics
and adaptation at the phenotypic level (the solid line
surrounding these categories in figure 1) instead of including
the genetic architecture (see Glossary) of evolutionary pro-
cesses (the dashed line in figure 1) (see the following
section). Treating genetic details as a black box (the ‘phenoty-
pic gambit’ in evolutionary ecology [27]) is a powerful,
simplifying and convincing approach for understanding
complex long-term evolutionary dynamics. However, short-
term evolutionary dynamics may be more constrained by
the genetic architecture of phenotypic adaptation, especially
because many such short-term adaptative changes are
driven by a limited amount of standing genetic variation
instead of a tremendous amount of de novo mutations [28].
Thus, understanding genetic architecture will be important
for deepening our understanding of eco-evolutionary
dynamics.

A similar argument about the potential importance of
mechanisms of adaptation has been made for the difference
between rapid evolution and phenotypic plasticity. Both
rapid evolution and phenotypic plasticity are trait changes
that often increase an individual’s fitness and are rapid
enough to affect ecological dynamics [5,29,30]. It may be
difficult for us to differentiate them when we observe
adaptive trait changes in the wild (but see [31]), although
plasticity is not necessarily adaptive. Some studies suggested
that genetic evolution, phenotypic plasticity and even behav-
ioural changes based on learning processes can be described
by a quantitative trait model (see the following section)
simply through changing the speed of trait adaptation (e.g.
[32–34]). However, theoretical studies have proposed that
phenotypic plasticity may be better at stabilizing population
cycles due to faster responses to environmental changes
[35–37] and may not cause antiphase predator–prey cycles
unlike rapid evolution because plastic changes are not
directly affected by the local fitness gradient [37,38].
Indeed, experimental studies on the rapid evolution of prey
defence traits in zooplankton–phytoplankton microcosm
systems showed antiphase cycles [24,39], whereas those on
inducible defence did not find antiphase cycles [40].

While some studies have pointed out the potential
importance of genomic studies in eco-evolutionary dynamics
[41–44], the dynamic consequences of genetic architectures
on eco-evolutionary dynamics have to date not been well
recognized. Here I review theoretical results on the effects
of genetic architecture on evolutionary and eco-evolutionary
dynamics and propose a future direction where genetic and
genomic studies deepen our understanding of eco-evolution-
ary dynamics by combining dynamic models and nonlinear
time-series analyses.
2. Common approaches in eco-evolutionary
dynamics

For understanding the effects of rapid evolution on ecological
dynamics, empirical researchers often compared ecological
dynamics when the focal species under selection has only
a single allele at the focal locus versus dynamics with
multiple alleles and so can evolve (or, in the case of asexually
reproducing species, dynamics with a single clonal geno-
type versus dynamics with multiple clonal genotypes;
e.g. [24,45–47]). Even with a single genotype of asexual
organisms, de novo mutations may produce genetic variation
and eventually cause rapid evolution [39,48]. However, as
long as experimental periods are short, mutation rates are
small and generation time is not relatively short, it will
be possible to observe ecological dynamics without rapid
evolution [49].

It should be noted that there are three types of empirical
studies: (1) studies examining the effects of ongoing rapid
evolution on ecological dynamics (e.g. [24,39]), (2) studies
examining the effects of evolved traits (usually after short
evolution experiments) on ecological dynamics (e.g. [50–
52]) and (3) studies examining the effects of genetic variation
(without evolutionary changes) on ecological dynamics in
short-term experiments (e.g. [45]). Case (1) may be further
divided into (1a) continuous eco-evolutionary dynamics
where genetic variation is maintained by selection (e.g. [24])
and (1b) transient eco-evolutionary dynamics where selection
eventually removes genetic variation (e.g. [53]). Although
genetic variation is a prerequisite of rapid evolution in most
situations, rapid evolution does not always occur during
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Figure 2. Antiphase predator–prey cycles in (a) a quantitative trait model [56] and (b) a clonal model [25]. Black solid lines and grey dotted lines represent
predator and prey densities, respectively. Grey solid lines are (a) prey trait and (b) prey genotype frequency, respectively, and higher values indicate less defended
states.
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the experiments in cases (2) and (3). Studies in ‘community
genetics’ tend to use plant traits, and thus to consider cases
(2) and (3) [54], while theoretical studies often consider case
(1). Genetic architectures may become important in empirical
studies of the case (1) type.

In theoretical studies, common approaches assume
continuous quantitative traits controlled by many loci with
small effects:

d�z
dt

¼ f(�z,N)

and
dN
dt

¼ g(�z,N),

9>>=
>>;

ð2:1Þ

where �z is a mean value of a quantitative trait, N is a
population density, and f and g represent their dynamics
[12,18,20]. Mean trait dynamics is often represented by

d�z
dt

¼ n
@ �W
@�z

, ð2:2Þ

where ν is additive genetic variance and �W is population
mean fitness (i.e. the per capita growth rate: dN/Ndt)
[32,55]. Here the mean trait changes along the local fitness
gradient to increase the fitness (e.g. [33,34,38,56–59]).

Some studies employed models of discrete Mendelian
traits with two alleles in a single locus (e.g. [60]) or a clonal
model,

dN1

dt
¼ f1(N1,N2)

and
dN2

dt
¼ f2(N1,N2),

9>>=
>>;

ð2:3Þ

where Ni represents the density of a clone (genotype) i in
an asexual organism such as bacteria and algae (e.g.
[25,35,36,39,48]). This can be re-written as

dp
dt

¼ p(1� p)
1
N1

dN1

dt
� 1
N2

dN2

dt

� �

and
dNT

dt
¼ f1(N1,N2)þ f2(N1,N2),

9>>>=
>>>;

ð2:4Þ

where NT =N1 +N2 and p =N1/NT. Note that equation (2.4)
corresponds to equation (2.1): p(1− p) is the additive genetic
variance and the difference between the per capita growth
rates represents the fitness gradient. While the additive genetic
variance ν is often assumed to be a fixed parameter in equation
(2.2), the variance p(1− p) changes depending on the clonal
frequency p in equation (2.4). Despite the difference, the two
approaches can produce very similar dynamics [57,61]. For
example, predator–prey antiphase cycles with quantitative
traits [56], and those with two clonal genotypes [25,48] are
basically very similar (figure 2). Theoreticians have sometimes
used an Adaptive Dynamics approach (i.e. evolutionary
invasion analysis) assuming asexual reproduction as well
(e.g. [62]), but a common assumption seems to be that genetic
architectures do not matter and can be safely ignored for
understanding eco-evolutionary dynamics [63].
3. Effects of genetic architecture on evolutionary
dynamics

In evolutionary biology, especially in population genetics, it is
well known that genetic architecture can affect evolutionary
dynamics. Genetic architectures themselves can evolve in
response to selection over long time scales (e.g. [64]), but
short-term evolution is constrained by the relationships between
genotypes and phenotypes. Previous studies demonstrated that
a single gene can have large phenotypic consequences in insects
[65,66], mollusks [67], fish [68,69], mammals [70–72] and plants
[73,74]. Although there is likely to be publication bias andmany
adaptive traits are likely quantitative with many loci that have
small effects [75,76], it is meaningful to start from models with
one locus or two loci for heuristic purposes [77]. Here I outline
three examples: the effects of ploidy and allele dominance on
the speed of allele fixation (figure 3a), the effects of ploidy and
maternal effects on the maintenance of genetic variation under
temporally fluctuating selection (figure 3b), and the required
number of loci in speciation (figure 3c,d).

Probably the simplest example is evolutionary dynamics
under directional selection (figure 3a). Haploid inheritance
is the most sensitive to selection, whereas complete
dominance in diploid inheritance can delay evolutionary
responses to selection due to a mismatch between genotypes
and phenotypes: heterozygotes include a recessive allele but
have a dominant phenotype. When dominant mutant alleles
are selected for, they can quickly increase when rare, but it is
difficult for them to remove the resident recessive alleles
unlike semidominance. With genetic drift in finite popu-
lations, frequency dynamics when alleles are rare are
important for fixation, and thus adaptive alleles are more
likely to be dominant (i.e. Haldane’s sieve: [79]).
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Figure 3. Examples of the effects of genetic architectures on evolutionary dynamics. (a) The effects of ploidy and allele dominance on evolutionary dynamics under
directional selection. Haploid (light grey), diploid with complete dominance (grey) and diploid with semidominance (black) are shown. (b) The effects of ploidy and
delayed inheritance (DI) on evolutionary dynamics under temporally fluctuating selection [78]. Haploid (light grey), diploid with complete dominance (grey) and
diploid with DI (black) are shown. (c,d) The effects of the number of loci on speciation processes. (c) Single-gene speciation from an ancestral population with an
allele A to two populations with alleles A and a where there is reproductive incompatibility between alleles A and a (shown by grey arrows). Because of the
incompatibility, it is difficult for a mutant allele a to increase in an ancestral population with a resident allele A. (d ) Speciation from an ancestral population
with alleles A and B to two populations with alleles A, B, a and b where there is Dobzhansky–Muller incompatibility between alleles a and b due to epistasis.
Mutant alleles a and b can increase in an ancestral population without incompatibility unlike the model of single-gene speciation.
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With temporally fluctuating selection [10], haploid inheri-
tance is so sensitive to selection pressure that it cannot
maintain genetic variation: an allele with the highest geo-
metric mean fitness dominates and other alleles will be lost
from a population (figure 3b) [80]. On the other hand, the
maintenance of genetic variation is possible in diploid inheri-
tance with complete dominance because alleles can be stored
in heterozygotes when they are not favoured [81,82]. This is
what we call the storage effect [83]. These days, researchers
tend to think that overlapping generations play a primary
role for buffered population growth of the storage effect
[83,84], but genetic architecture can also work for buffering.
As like complete dominance, a maternal genetic effect
where maternal genotypes determine offspring phenotypes
(delayed inheritance (DI)) further blurs the relationship
between genotypes and phenotypes and makes the mainten-
ance of genetic variation easier [78]. Note that there are a few
other mechanisms that have been demonstrated to maintain
genetic diversity (e.g. reversal of dominance) and they are
summarized in Bertram and Masel [85].

When an ancestral population splits into two populations,
researchers have suggested speciation is unlikely when repro-
ductive incompatibility is caused only by a single locus with
two alleles. This is because there is reproductive incompat-
ibility between alleles in this single-gene speciation scenario
and hence it is difficult for a mutant allele to increase
when rare (figure 3c) [86,87]. When there are two loci with
epistasis, on the other hand, speciation can occur without
difficulty: this is called Dobzhansky–Muller reproductive
incompatibility (figure 3d ) [88–90]. In this case, reproductive
incompatibility occurs between mutant alleles at the two loci
due to epistasis. Thus, the number of loci affecting reproduc-
tive incompatibility determines the outcome of the speciation
processes.
4. Effects of genetic architecture on
eco-evolutionary dynamics

As shown in the previous section, genetic architectures can
affect evolutionary dynamics and thus eco-evolutionary
dynamics as well. Here I introduce recent theoretical studies
that showed the potential effects of the genetic architecture
on eco-evolutionary dynamics. In future empirical studies, it
may become possible to compare eco-evolutionary dynamics
with different genetic architecture (e.g. dynamics with haploid
inheritance versus dynamics with diploid inheritance) directly
based on the following theoretical predictions as like studies on
rapid evolution and phenotypic plasticity. There are many
possible combinations of ecological dynamics (e.g. population
extinction and population cycles) and genetic details (e.g. the
number of loci and recombination), and there are a few studies
that have explored some of them (table 1).

Evolutionary rescue is probably the most interdisciplin-
ary topic in eco-evolutionary dynamics, with work from
ecologists, evolutionary biologists, population geneticists
and medical researchers [104–106]. Evolutionary rescue is a
phenomenon where rapid adaptive evolution prevents popu-
lation extinction in the face of an environmental change [107].
It is not only important for conservation and wildlife man-
agement, but also for medicine where researchers seek to
prevent evolutionary rescue of bacteria from suppression by



Table 1. Theoretical studies that combine ecological dynamics and genetic structure. Note that sexual reproduction, recombination and ploidy are fundamentally
tightly related.

ecological dynamics

population extinction
(evolutionary rescue)

predator–prey cycles (including apparent
and exploitative competition)

genetic

structure

number of loci Orr & Unckless [91], Gomulkiewicz et al.

[92], Kardos & Luikart [93]

Yamamichi & Ellner [94]

recombination/epistasis Schiffers et al. [95], Uecker & Hermisson [96] Patel & Bürger [97]

clonal versus sexual

reproduction/ploidy

Orive et al. [98], Uecker [99], Peniston et al.

[100]

Schreiber et al. [60], Doebeli & Koella [101],

Doebeli [102], Bolnick et al. [103]
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antibiotics [104]. Gomulkiewicz & Holt [107] originally exam-
ined a quantitative-genetic model (as like equation (2.2)) and
a one-locus model (as like equation (2.3)) and obtained quali-
tatively similar results. Orr & Unckless [91] showed that it is
difficult for a single locus to adapt to rapid environmental
change compared with the case for multiple loci where any
one of them can rescue the population. On the other hand,
Gomulkiewicz et al. [92] showed that increasing the number
of loci can decrease the speed of adaptation and prevent
the resultant rescue from extinction because selection per
locus is weakened. More recently, Kardos & Luikart [93]
demonstrated that population extinction is less likely in
models with polygenic architectures compared with models
with large-effect loci due to higher short-term evolutionary
potential. Uecker & Hermisson [96] analysed a model
where evolutionary rescue depends on mutations at two
loci and found complex effects of recombination on extinction
because recombination generates and breaks up favourable
gene combinations. These studies suggest that models at
the extremes of either a single locus or infinitely many loci
behave similarly, whereas models with intermediate numbers
of loci may show complex dynamics.

Predator–prey population dynamics has been a central
topic in eco-evolutionary dynamics since the seminal exper-
imental papers on antiphase and cryptic cycles driven by
rapid evolution [24,48]. Because those studies considered
defence evolution of asexually reproducing algae, genetic
details have not been considered intensively [48,57]. Yamami-
chi & Ellner [94] modelled antagonistic coevolution between
the Mendelian trait of a prey and the quantitative trait of its
predator inspired by a snake-snail predator–prey system
[67]. They found that rapid predator evolution can result in
predator extinction (figure 4a,b) unlike coevolution between
Mendelian traits or between quantitative traits. This is
because evolution of the prey’s discrete trait can throw off
tracking by the predator’s continuous trait as the amplitudes
of coevolutionary cycles amplify, especially with complete
allele dominance (figure 4c,d ). On the other hand, Schreiber
et al. [60] examined the effects of ploidy (haploid versus
diploid) on species coexistence and showed that diploid
inheritance can stabilize community dynamics with exploita-
tive and apparent competition due to the inefficacy of
selection. More recently, Patel & Bürger [97] explored how
recombination in predator species affects apparent compe-
tition of two prey species and found a novel feedback
between predator density, total prey density and linkage dis-
equilibrium in the predator induced by epistatic fitness effects
of linked loci.

While previous studies of eco-evolutionary dynamics
have tended to focus on evolutionary rescue and predator–
prey interactions, it will be interesting to examine other
ecological dynamics such as competitive and mutualistic
interactions [109] as well as host–parasite dynamics [110].
In addition, speciation processes can be studied from the
perspective of eco-evolutionary dynamics. For example,
rapid evolution in reproductive character displacement
(reinforcement) can prevent population extinction by weak-
ening reproductive interference and positive frequency-
dependence in community dynamics due to incomplete
reproductive isolation [111,112]. It may be interesting to
study how the genetic basis of speciation (speciation genes:
figure 3c,d ) affects eco-evolutionary dynamics.
5. Conclusion and future directions
Previous studies have shown that genetic details can affect
evolutionary and eco-evolutionary dynamics (figures 3
and 4). However, few theoretical studies have examined the
effects of genetic architectures on eco-evolutionary dynamics
(table 1). Therefore, more studies are needed of eco-evolution-
ary dynamics that integrate genetics, evolutionary biology
and ecology (figure 1). Recent studies have emphasized
the importance of the analogy between community ecology
and population genetics [113,114], but the integrated eco-
evolutionary framework (figure 1) will be another important
step for population biology synthesizing population genetics
and population ecology.

There are many ways to add genetic details to simple
eco-evolutionary models such as equations (2.1)–(2.4), includ-
ing epigenetics, pleiotropy and allele dominance in addition
to the number of loci, varying phenotypic effects of loci,
recombination, epistasis, ploidy and sexual versus asexual
reproduction (table 1). Indeed some researchers made the
quantitative trait model (equation (2.2)) more realistic by
considering trait variance dynamics [115], bimodal trait distri-
butions [116] and evolutionary diversification [117]. However,
complex models are not always better than simple ones. All
models are wrong, and hence it is important to ask when we
need to care about genetic bases of ecologically important
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traits. Indeed, the quantitative trait and clonal models show
similar eco-evolutionary dynamics (figure 2), and models
with 20, 100 or 1000 loci may show very similar dynamics
[92]. In this case, simply estimating additive genetic variance
of fitness-associated traits may be better than considering gen-
etic basis. Accumulating more theoretical studies should reveal
conditions where the details can be safely ignored.

Because of rapid developments of molecular biological
techniques, it is now possible to investigate genetic basis of eco-
logically important traits in non-model organisms [118,119].
This ecological and evolutionary functional genomics will not
only promote our understanding of past evolutionary pro-
cesses, but also contribute to studies on eco-evolutionary
dynamics [41–44]. Some organisms are often used for genomic
studies as well as studies on eco-evolutionary dynamics. Thus,
it will be possible to connect genome structure and eco-
evolutionary dynamics by using, for example, baker’s yeast
(Saccharomyces: [53]), green algae (Chlamydomonas: [120]), water-
flea (Daphnia: [121]), threespine sticklebacks (Gasterosteus: [46]),
thale cress (Arabidopsis: [122]) and poplars (Populus: [54]).
Even with the genomic resources, however, genomics of eco-
evolutionary dynamics is still in its infancy due to its inherent
difficulty. How can we understand the relationship between fit-
ness and traits in addition to the relationship between traits and
genomes? When selective landscapes vary through time, when
should the architecture be studied? If the architecture varies
over time, what can be learned? Indeed, previous studies
found that various genetic bases can exist behind the same evol-
utionary responses [119,120,123]. This may be a part of
the reason why there are not so many empirical studies on
genomics of eco-evolutionary dynamics despite the previous
perspective papers [41–44].
Lastly, I propose three possible research directions that
would combine genomic data and eco-evolutionary dynamics
with a guide of theoretical modelling: backward inferences
based on genomic data, nonlinear time-series data analyses
and genome-wide association studies. First, if we know how
eco-evolutionary dynamics affect genomic patterns (e.g. how
evolutionary rescue affects selective sweep and genetic hitch-
hiking of linked neutral alleles: [124]) by using population
genetic models, then it may even be possible for us to detect
past eco-evolutionary dynamics from population genomic
data. This may be an interesting approach for transient
dynamics such as evolutionary rescue [124] as well as continu-
ous dynamics such as coevolutionary cycles [125]. Second,
when time series of genomic data are available (e.g.
[126,127]), nonlinear time-series data analyses such as empiri-
cal dynamic modelling (EDM) [128] and transfer entropy [129]
may make it possible to infer causal relationships between
time-series data of allele frequencies in single-nucleotide poly-
morphisms (SNPs), expression patterns, fitness and population
densities. Currently, it is very difficult to obtain such a huge
amount of time-series data, but it may become possible to col-
lect data of wild organism more easily in the near future
through automated monitoring with advanced techniques
such as environmental DNA [130], machine learning for
camera trap data [131], mobile DNA sequencers and
unmanned aerial vehicles [132]. Then, we may be able to use
EDM to re-construct attractors from time-series data based
on Takens’ theorem and to infer causal relationships between
genomic data and ecological processes [128,133,134]. Based
on the time-series analyses, we may be able to draw integrated
networks of eco-evolutionary dynamics including gene inter-
actions, trait interactions and species interactions [76,135].
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Note that eco-evolutionary dynamics can be cryptic (i.e. eco-
evolutionary dynamics may appear like purely ecological
expectations) [48,136], and in this case, it may be difficult to
infer causality solely from time-series analyses. In addition,
because fitness is an emergent property of many traits, even
when there are alleles of moderate effect on individual fit-
ness-associated traits, their individual effect on resultant eco-
evolutionary processes is likely to be quite small because of
a polygenic basis [137]. This considerable hurdle in many
empirical systems may be addressed by time-series analyses,
if researchers can obtain big data from genome, epigenome, fit-
ness, trait dynamics and ecological dynamics. Finally, even
when the data are not especially rich, it will be interesting to
examine associations between genetic markers (e.g. SNPs
and structural variants) and key ecological parameters (e.g.
population densities of the focal species or community compo-
sitions on the focal host species). This may be done by
conducting genome-wide association studies that examine
associations between genetic and epigenetic patterns with eco-
logical dynamics (instead of phenotypic traits) [138] as well as
differentiation outlier methods that screen for alleles that show
large genetic differentiation between populations that exhibit
different ecological patterns [139]. In this context, theoretical
models will be useful for understanding the entangled inter-
actions between genes, traits and species even in this era of
big data.
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Epistasis:
 the phenomenon where the effects of
one gene on a phenotype is affected
by the expression of other gene(s).
Genetic
architecture:
the genetic basis underlying a phenoty-
pic trait.
Haldane’s sieve:
 the bias against the fixation of recessive
beneficial mutations.
Linkage
disequilibrium:
the nonrandom assortment of alleles at
different loci (i.e. the deviation from
independent association).
Pleiotropy:
 the phenomenon where one gene
affects two (or more) phenotypic traits.
Ploidy:
 the number of complete sets of chromo-
somes in the nucleus of a cell.
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