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Abstract
One of the objectives of oncology phase I dose- escalation studies has been to 
determine the maximum tolerated dose (MTD). Although MTD is no longer set 
as the dose for further development in contemporary oncology drug develop-
ment, MTD determination is still important for informing the therapeutic index. 
Bayesian adaptive model- based designs are becoming mainstream in oncology 
first- in- human trials. Herein, we illustrate via simulations the use of systemic 
exposure in Bayesian adaptive dose– toxicity models to estimate MTD. We ex-
tend traditional dose– toxicity models to incorporate pharmacokinetic exposure, 
which provides information on exposure– toxicity relationships. We pursue dose 
escalation until the maximum tolerated exposure (corresponding to the MTD) 
is reached. By leveraging pharmacokinetics, dose escalation considers exposure 
and interindividual variability on a continuous rather than discrete domain, of-
fering additional information for dose- escalation decisions. To demonstrate this, 
we generated 1000 simulations (starting dose of 1/25th the reference dose and 
six dose levels) for several different scenarios. Both rule- based and model- based 
designs were compared using metrics of potential safety, accuracy, and reliability. 
The mean results over simulations and different toxicity scenarios showed that 
model- based designs were better than rule- based methods and that exposure– 
toxicity model- based methods have the potential to valuably complement dose– 
toxicity model- based methods. Exposure– toxicity model- based methods had 
decreased underdose risk accompanied by a relatively smaller increase in over-
dose risk, resulting in improved net reliability. MTD estimation accuracy was 
compromised when exposure variability was large, emphasizing the importance 
of appropriate control of pharmacokinetic variability in phase I dose- escalation 
studies.
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INTRODUCTION

One of the objectives of oncology phase I first- in- human 
(FIH) dose- escalation studies has been to determine 
the maximum tolerated dose (MTD) of a new drug. The 
characteristics of such studies have been described in 
literature.1 Taken together with safety and tolerability, 
pharmacokinetics (PK), and pharmacodynamics (PD) for 
characterization of the bioactive dose/exposure range, the 
recommended dose range is defined for subsequent ex-
pansions.2 Although it is important to note that the MTD 
is not of primary relevance for dose- selection decisions in 
the development of contemporary anticancer therapies,3 
its determination nevertheless informs the broader char-
acterization of therapeutic index/window and evaluation 
of the consequence of supratherapeutic exposure settings 
associated with intrinsic or extrinsic factor effects. Safety 
and tolerability are usually highly correlated with dose or 
systemic exposures, forming the basis for dose– toxicity 
modeling for defining the MTD. In the in silico investiga-
tion described in the present study, we evaluate the per-
formance characteristics of a design method based on a 
modeling framework that leverages the available informa-
tion on PK exposure for a more informed dose escalation.

The MTD is typically defined as the highest dose with 
an acceptable toxicity. For cytotoxic drugs, there is a posi-
tive association between the toxicity and therapeutic effect 
of the drug: although higher doses are potentially more 

effective, they are also more toxic to the patient. Because 
the relationship between the dose and its toxicity is gen-
erally assumed to be monotonic, the dose is escalated in 
phase I clinical trials until the MTD is reached. Hence an 
acceptable level of toxicity must be specified. With the 
advent of new agents with different modes of action in 
oncology, the first objective of a dose- escalation study re-
mains defining the toxicity profile of the drug including 
either the definition of an MTD (e.g., for cytotoxic agents) 
or a dose range that can be considered safe and pharma-
cologically active based on PK/PD considerations (e.g., for 
molecularly targeted agents). A broader objective is the 
definition of recommended dose(s) for expansion.4

Usually a dose- limiting toxicity (DLT) is defined as any 
adverse event (AE) that is of potential clinical significance 
such that further dosing of the patient or dose escalation 
would expose patients to unacceptable risk. A monotonic 
nature of the dose– toxicity relationship is typically as-
sumed such that, as the dose increases, the probability of 
a DLT (toxicity level) also increases. Although the event of 
a DLT is unfavorable and should be avoided, it is accept-
able that a small proportion of patients experience them 
at the MTD. In other words, the goal is to find the dose 
that corresponds to a level of toxicity (target toxicity level 
[TTL]) that is deemed acceptable. Usual target levels for 
MTD are 0.3 or 0.25.5 Dose escalation occurs until a reli-
able estimate of the MTD is obtained. Although the MTD 
itself is not to be equated with a dose level that is suitable 

Study Highlights
WHAT IS THE CURRENT KNOWLEDGE ON THE TOPIC?
There are several experimental designs for phase I clinical trials in oncology. Bayesian 
methods offer more flexibility in the dose– toxicity model used in model- based de-
signs such as continual reassessment method and Bayesian logistic regression model. 
Our method explores the performance of an exposure– toxicity model for dose escala-
tion by relying on the relationship between the dose and the exposure metric.
WHAT QUESTION DID THIS STUDY ADDRESS?
We address one method for incorporating exposure metrics into experiment de-
signs for dose escalation in phase I oncology clinical trials and compare perfor-
mance to existing designs. We also evaluate the impact of pharmacokinetic (PK) 
variability on performance characteristics.
WHAT DOES THIS STUDY ADD TO OUR KNOWLEDGE?
We demonstrate that exposure can contribute to the efficiency of dose escalation 
and the accuracy of maximum tolerated dose (MTD) estimation and show that 
higher interpatient variability in systemic exposure can compromise MTD esti-
mation accuracy.
HOW MIGHT THIS CHANGE DRUG DISCOVERY, DEVELOPMENT, 
AND/OR THERAPEUTICS?
Our results encourage evaluation of exposure– toxicity models to supplement 
dose– toxicity models in Bayesian dose- escalation designs in oncology and rein-
force the importance of appropriate control of PK variability.
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for further expansion or evaluation in phase II studies, it 
represents the upper end of short- term tolerability, provid-
ing an upper boundary for further evaluations of PK, PD, 
safety, and long- term (multicycle) tolerability for selecting 
the recommended dose range for expansion and evalua-
tion of the therapeutic index.

Dose- escalation designs for phase I clinical trials in 
oncology begin by assigning the first patient (or cohort of 
patients) to a starting dose and then continuing by sub-
sequently assigning patients to adaptively chosen doses 
until some stopping rule is fulfilled or the MTD is deter-
mined. Doses are typically selected from a set of prespec-
ified dose levels.

The historically most widely used dose- escalation de-
sign is the 3 + 3 design.6,7 Dose escalation is based on a set 
of rules that determine when to escalate to the next dose, 
in some cases when to de- escalate, when to stop dose es-
calation, and how to determine the MTD. Such rule- based 
designs were favored for their simplicity and ease of use. 
However, the 3 + 3 design is known to be slow in dose es-
calation and less accurate compared with other methods 
because of its memoryless property by which it only con-
sidered the data from the last observed cohort.8– 10

A more efficient and more accurate rule- based design 
is the Bayesian optimal interval (BOIN) method.11 BOIN is 
considered a “model- assisted” rule- based design because 
it assumes an underlying dose– toxicity relationship where 
the MTD is defined in terms of the TTL, and dose esca-
lation/de- escalation is determined by a set of rules that 
depend on certain prespecified thresholds for the sample 
proportion observed. Unlike the 3 + 3 design, BOIN offers 
more flexibility in sample size of cohorts.12

Other more efficient and accurate alternatives to the 
3 + 3 design include model- based designs that have be-
come increasingly applied in contemporary oncology drug 
development programs.10 They define a parametric model 
for the dose– toxicity relationship to use all available toxic-
ity information. In the Bayesian framework, the posterior 
probabilities of DLT at each dose are sequentially updated 
and summarized using all available data, which results in 
faster dose escalation and more accurate MTD estimates 
than the memoryless 3 + 3 design.5,13,14 The MTD is often 
chosen as the dose with the posterior mean/median toxicity 
probability closest to the TTL or as the dose maximizing the 
probability of being in a target interval around the TTL. In 
addition, the model- based designs offer the potential to in-
clude additional data (e.g., PD data) besides DLT only.

The continual reassessment method (CRM)15 is the 
first and most widely used model- based design. The origi-
nal proposed method used a one- parameter power model 
and summarized the posterior probabilities of toxicity at 
dose d using the posterior mean. The dose with a posterior 
mean toxicity probability closest to the TTL is selected as 

the next dose to gather data on. This procedure contin-
ues until the stopping rule is fulfilled. The original CRM 
has been criticized for its lack of safety and small- sample 
properties.16,17 Neuenschwander et al.16 claim that these 
shortcomings are due to a lack of expressiveness in the 
chosen model and an inadequate summarization of the 
posterior toxicity probabilities. They justify the use of a 
two- parameter logistic regression model and a posterior 
summary based on a loss function over the entire posterior 
distribution. The resulting method is called the Bayesian 
logistic regression model (BLRM).

The aforementioned designs in their most commonly 
used formulations do not account for interindividual vari-
ability in PK (i.e., systemic exposures) that should in prin-
ciple explain in part the variability in the drug's safety and 
tolerability. For example, it is well recognized that failure 
to appropriately control important sources of PK variability 
(e.g., pharmacogenetic variation or clinically relevant drug– 
drug interactions with coadministered drugs that alter 
systemic exposures of the investigational drug) in dose- 
escalation trials can bias determination of the MTD.18,19 
In this article, we extend the dose– toxicity model to incor-
porate PK exposure, which provides information on the 
benefit– risk relationship of the drug, and we pursue dose 
escalation until the maximum tolerated exposure (MTE; 
corresponding to the MTD) is reached. By leveraging PK 
into the model, dose escalation occurs based on predictor 
data collected on a continuous rather than discrete domain, 
which allows for more informed dose escalation. It should 
be noted that methods for incorporating PK data into dose- 
escalation decisions have been suggested previously,20– 22 
although opportunities remain to enable pragmatic inte-
gration of these frameworks in drug development settings.

In this article, we pragmatically describe how PK ex-
posure can be incorporated with a BLRM- based, dose- 
escalation design. We compare different design methods 
and present our design comparisons based on metrics dis-
cussed in this manuscript. Furthermore, we perform sce-
nario analyses of the impact of population variability in 
systemic exposures in the dose– exposure relationship on 
performance characteristics of dose- escalation designs in-
corporating exposure inputs. We trust that the results of our 
in silico evaluations will be useful for the oncology clinical 
research community to inform application of the exposure– 
toxicity model- based approach discussed herein or its vari-
ations as a complementary method alongside dose– toxicity 
models that are used in dose- escalation designs.

Synthetic (virtual) data generation for the analyses pre-
sented here was model free23,24 and independent of each 
of the designs like 3 + 3, BOIN, CRM, BLRM, and other 
methods. This ensures that we have a fair comparison be-
tween model- based and rule- based designs because there 
is no model assumed in the data- generating process. We 
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show that our dose– exposure– toxicity model- based meth-
ods result in more efficient dose escalation compared with 
their dose– toxicity model- based method counterparts 
while maintaining performance in other areas. All designs 
are compared using measures of safety (overdose rate), ac-
curacy (percent correct selection [PCS]), reliability (over-
dose risk, underdose risk), therapeutic efficacy (DLT) rate, 
and underdose rate.

METHODS

In this section, we introduce some notations and review 
two rule- based and two variants of a model- based design 
for dose escalation that we consider in our in silico experi-
ments. Then, we describe a new dose- escalation design 
that incorporates PK exposure. Afterward, we discuss the 
setup of the in silico experiment and approach to the as-
sessment of performance characteristics.

Let Ωd =
{
d1,… dK

}
 denote the set of available doses, 

d1 < d2 < ⋅ ⋅ ⋅ < dK , where the starting dose d1 has been 
determined from preclinical/translational investigations. 
This has traditionally been using animal species25,26 and 
is increasingly leveraging quantitative pharmacologic in-
tegration and mechanism- based human translation, espe-
cially for novel mechanisms (e.g., immunotherapy) where 
considerations of the minimum anticipated biological ef-
fect level may be crucial.25,27,28 The MTD is often defined 
as the dose di ∈ Ωd with a toxicity level closest to the TTL, 
denoted by �. Let Y  denote the occurrence of a DLT, so 
that Y = 1 when a DLT has occurred and Y = 0 when a 
DLT does not occur. The toxicity level, or probability of  
a DLT, P(Y = 1d), where d is a given dose, is estimated by 
a Bayesian model in model- based dose- escalation designs.

Dose- escalation designs

Review of rule- based designs: 3 + 3 and BOIN

3 + 3 design
The 3 + 3 design7 is carried out by assigning a cohort of 
three patients to a dose and following a set of rules to de-
termine whether to escalate to the next dose level for the 
next cohort. After assigning the first cohort to the first 
dose level d1, the dose assignments for the next cohorts 
are determined by the number of DLTs in the preceding 
cohort. The MTD is declared after observing two or more 
DLTs at a given dose level as the highest tested dose where 
the observed DLT incidence is no greater than one in six 
evaluable patients. There are several variations of the 3 + 3 
design implementation. We use the implementation de-
scribed in Hansen et al.6

BOIN design
Given a prespecified TTL �, BOIN11 chooses correspond-
ing escalation/de- escalation boundaries for observed DLT 
incidence at a given dose (�e and �d, respectively), which 
are used to determine whether to escalate/de- escalate 
after observing a patient/cohort. These boundaries are 
functions of �1, the highest DLT rate that is deemed to be 
underdosing, and �2, the lowest DLT rate that is consid-
ered overdosing. After the trial has completed, DLT rates 
for each of the doses are estimated using isotonic esti-
mates, and the dose that has the isotonic estimate clos-
est to θ is the selected MTD. For our simulation study, we 
use the local BOIN design with “standard” boundaries for 
�1 = 0.6� and �2 = 1.4�, as given in Liu and Yuan.11

Model- based designs: BLRM variants

All model- based dose- escalation designs rely on a model 
to capture the dose– toxicity relationship, such as the two- 
parameter logistic regression model used by the BLRM 
design.16

where d is a dose in the set of prespecified doses Ωd, 
��(d) = P

(
DLT|d, �0, �1

)
 is the probability of a DLT, and �0 

and �1 are parameters. A reference dose d∗ is allowing for 
interpretation of �0 as the odds of a DLT at d∗. We use nor-
mal priors for log(�0) and log(�1) with mean zero, standard 
deviation one, and no correlation.

BLRM using posterior mean
A posterior distribution for each potential dose can be 
derived, and dose escalation in a Bayesian model- based 
design will depend on the measure that is used to summa-
rize this distribution. Our experiments include a variant 
of BLRM that uses the posterior mean as a summary. The 
next dose level is chosen as that for which the posterior 
mean estimate is closest to and lower than this posterior 
mean estimate for the MTD. This BLRM variant is similar 
to CRM15 except it uses the two- parameter logistic regres-
sion model instead of the power model with one param-
eter. We call this variant BLRM1 in our experiment results 
where MTD was chosen as the dose with the posterior 
mean closest to TTL.

BLRM using a loss
Rather than taking a point summary of each dose's pos-
terior distribution, the original BLRM16 summarizes the 
whole distribution using a loss function that is defined 
over a partition of the distribution, such as:

(1)logit
{
��(d)

}
= log

(
�0
)
+ �1 × log

(
d

d∗

)
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where 1- 0- 2- 3 is the loss function we used and {0.2, 0.35, 
0.6} are the toxicity cutoff points for the partition. The loss 
function can be adjusted, and in fact we chose this more 
conservative loss function, compared with the original loss 
1- 0- 1- 2, for increased penalization for posterior probabili-
ties that exceeded the target interval. Then dose escalation 
proceeds by recommending the dose that minimizes the 
Bayes risk: l1P

(
��(x)∈ (0, 0.2]

)
+ l2P

(
��(x)∈ (0.2, 0.35]

)
+

l3P
(
��(x)∈ (0.35, 0.6]

)
+ l4P

(
��(x)∈ (0.6, 1]

)
. In our exper-

iment results, we call this variant BLRM2. Similar to 
BLRM1, the MTD is chosen as the dose with posterior 
mean closest to θ at the end of the trial.

Incorporating exposure into  
model- based designs

To incorporate PK exposure, we instead consider the 
exposure– toxicity relationship using the same two- 
parameter model in Equation (1):

where x is the PK exposure, and x∗ is a reference value for 
exposure. See Figure 1 for an illustration of the exposure– 
toxicity model.

Area under the curve (AUC) is an exposure met-
ric that measures the total systemic exposure of the 
investigational agent and is widely used in exposure– 
response analyses for oncology drugs. Accordingly, we 
considered it to serve as a useful PK exposure metric 
for our model. AUC and dose are related by the follow-
ing function:

where CLi is an individual patients' clearance.
By considering exposure as a function of dose and 

modeling the probability of toxicity as a function of expo-
sure, we arrive at the dose– exposure– toxicity framework 
proposed.22

If clearance CLi follows a log- normal distribution, we 
can formulate the dose– exposure– toxicity model as a 
Bayesian hierarchical model:

 

 
 

 

with fixed paramters of population clearance CLpop = 5 , 
between- subject variability BSV ∈ {30% , 60% , 100%}, 

and with �2 =
(
BSV

100

)2
. In Equation (3) we take x to be the 

observed values of AUCi.
Dose escalation proceeds as follows:

1. The first patient (or cohort) is assigned to the first 
dose level.

2. Toxicity outcomes and PK information are collected.
3. The exposure– toxicity model is updated and used to 

recommend the next dose.
4. The next patient (or cohort) is assigned to the recom-

mended dose.
5. Repeat Steps 2– 4 until the stopping rule is fulfilled.
6. Estimate the MTD using the posterior mean toxicity 

probabilities of the doses.

In our simulations, we use a set of discrete doses. 
Given a target exposure, we can calculate the closest 
corresponding dose using the dose– exposure relation-
ship in Equation  (4). See Figure  2 for a diagram of the 

(2)L(�, d)=

⎧
⎪⎪⎨⎪⎪⎩

l1=1, if �θ(x)∈ (0, 0.2]

l2=0, if �θ(x)∈ (0.2, 0.35]

l3=2, if �θ(x)∈ (0.35, 0.6]

l4=3, if �θ(x)∈ (0.6, 1]

(3)logit
{
��(x)

}
= log

(
�0
)
+�1× log

(
x

x∗

)

(4)AUCi=
d

CLi

(5)CLi=CLpop×e
η

(6)AUCi=
d

CLi

(7)y∼Bernoulli(p)

(8)p=P
(
DLTAUCi

)
= f

(
AUCi

)

(9)�∼N
(
0,�2

)

F I G U R E  1  Exposure– toxicity model. DLT, dose- limiting 
toxicity; TTL, target toxicity level; MTE, maximum tolerated 
exposure (corresponding to maximum tolerated dose via the  
dose– exposure relationship); AUC, area under the curve.
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dose- escalation procedure using a dose– exposure– toxicity 
framework.

Experiment setup

We compare the 3 + 3, BOIN, BLRM1, BLRM2, and the 
dose– exposure– toxicity versions of BLRM1 and BLRM2 
(which we will refer to as BLRME1 and BLRME2, re-
spectively) on several performance metrics by conducting 
Monte Carlo simulations.

Following the simulation setup in Zhou et al.,24 we 
use the model- free method described by Clertant and 
O′Quigley23 to generate data from realistic exposure– 
toxicity relationships that are monotonic and bounded 
between 0 and 1. In the model- free method, we generate 
the relationship between exposure and toxicity using the 
pseudo- uniform algorithm23 rather than assuming a para-
metric logistic regression model. In these simulations, the 
probability of DLT is determined by exposure (AUC) rather 
than dose. Therefore, results for all model- based designs 
are affected by the AUC generated in the simulated data.

This ensures that no model- based design is given an 
advantage in the simulation study. We compare two rule- 
based designs, 3 + 3 and BOIN, and two model- based de-
signs, BLRM1 and BLRM2. We consider whether dose 
escalation in these two model- based designs informed by 
the emerging exposure– toxicity relationship, which we 
will call BLRME1 and BLRME2, improves any of the per-
formance metrics that we consider.

Clertant and O′Quigley23 propose a pseudo- uniform al-
gorithm for generating a dose– toxicity relationship for a set 
of dose levels, a chosen MTD, and its corresponding TTL. 
We define the set of doses Ωd = {10, 20, 35, 50, 70, and 90}, 
where the starting dose d1 = 10 is 1/25th the reference dose 
d*  =  250. To generate an exposure– toxicity curve, we cal-
culate the dose levels' corresponding AUCs. In our experi-
ments, we use CLpop = 5, BSV = 30%, and TTL � = 0.25. We 
run 1000 simulations for each design method. We consider 
the case where the true MTD is the fourth or fifth dose.

The 3 + 3 design implementation is described in 
Hansen et al.6 BOIN is implemented using the R pack-
age boin, which uses the standard choices of escalation 
and de- escalation boundaries for a TTL of � = 0.25, that 
is, λe  =  0.197 and λd  =  0.298. The model- based designs 
BLRM1, BLRM2, BLRME1, and BLRME2 are imple-
mented with the bcrm package.29 The bcrm package 
 allows us to apply the often used safety modification of 
no dose skipping and halt the design after 25 patients 
with a cohort of size 1. The same priors are used for 
BLRM1, BLRM2, BLRME1, and BLRME2. For BLRM2 
and BLRME2, instead of using the original loss function 
1- 0- 1- 2 specified by Neuenschwander et al.,16 we use a 
more conservative loss function 1- 0- 2- 3, which prioritizes 
safety over accuracy. All designs halt after observing 25 
patients with cohorts of size 1, except for the 3 + 3 design, 
which uses cohorts of size 3 and stops according to the 
rules specified previously.

The designs are compared on metrics that evaluate 
safety, accuracy, and reliability24 metrics, and these met-
rics are described in the next section.

Performance metrics

Safety metrics

Although a key objective of oncology FIH studies has tra-
ditionally been to determine the MTD, given the narrow 
therapeutic range of many oncology therapies, the se-
lected dose- escalation design should ensure patient safety 
as a priority. To evaluate the safety of a design, we look at 
the DLT rate over the whole trial (all dose levels), that is, 
the percentage of patients who experienced a DLT, aver-
aged over all simulated trials.

Accuracy metrics

A design's ability to identify the MTD or at least estimate 
it with high accuracy is the main goal of these designs. 
For accuracy, we look at the PCS, that is, the percent of 
simulated trials in which the design selects the true MTD.

Reliability metrics

Although the average overdose rate of some designs may 
be comparable, that metric does not account for the vari-
ability in the overdose rates of the designs. It is possible 
that some of those designs may have resulted in simulated 
trials where most of the patients were overdosed, and 
these trials' overdose rates were averaged out with the rest 

F I G U R E  2  Diagram of the dose- escalation procedure using a 
dose– exposure– toxicity framework. PK, pharmacokinetic.
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of the trials, whereas other designs had more consistent 
overdose rates. Zhou et al.24 introduced metrics for reli-
ability in terms of risking large percentages of patients 
being overdosed or underdosed in their simulated trials: 
the overdose risk, that is, the percent of simulated trials 
with more than 60% of patients treated above the MTD; 
and the underdose risk, that is, the percent of simulated 
trials with more than 80% of patients treated below the 
MTD.

RESULTS

Incorporating exposure into model- based 
designs

Tables  1 and 2 show the results of two rule- based de-
signs, 3 + 3 and BOIN, and the following four model- 
based designs: BLRM1, BLRME1 incorporating exposure 
(BLRME1), BLRM2, and BLRM2 with exposure (BLRME2) 
when the true MTD is the fourth or fifth dose, respectively. 
Although BLRM1 and BLRM2 do not take exposure into 
account in the model analysis, their results are nonetheless 
affected because the observed DLTs were simulated from 

exposure in the data generation. The metrics for compar-
ing the models are calculated using 1000 simulations for 
each design method.

Our simulation results show that all model- based dose- 
escalation methods are more accurate than the rule- based 
dose- escalation methods, although the rule- based BOIN is 
not far behind. This is consistent with the history of com-
parisons between rule- based and model- based designs. 
We also see that incorporating exposure can sometimes 
improve the accuracy, such as in BLRME1 and BLRME2 
when the MTD is the fourth dose (Table 1) and BLRME1 
when the MTD is the fifth dose (Table 2).

The overdose and underdose risks characterize the 
reliability of the design methods by looking at what pro-
portion of simulations overdosed or underdosed the ma-
jority of patients. Although the overdose risk is sometimes 
larger when incorporating exposure into the model, such 
as for BLRME2, the underdose risk is decreased markedly 
when exposure is used.

Overall, we can conclude that by incorporating ex-
posure, we see enhancement in reliability. In addition, 
our results, consistent with previously reported findings, 
demonstrate that model- based dose- escalation designs are 
more accurate than rule- based designs.

T A B L E  1  Designs compared on performance metrics when MTD is fourth dose, TTL is 0.25, and BSV = 30%

3 + 3 BOIN BLRM1 BLRME1 BLRM2 BLRME2

PCS (%) 0.20 0.31 0.31 0.34 0.35 0.36

Overdose risk (%) 0.00 0.09 0.07 0.11 0.06 0.08

Underdose risk (%) 0.46 0.31 0.25 0.15 0.28 0.21

DLT rate (average %) 0.21 0.24 0.24 0.27 0.23 0.25

Note: PCS: the percentage of simulations in which the dose- escalation design correctly selected the true MTD as their estimated MTD. Overdose risk: the 
percentage of simulations in which more than 60% of patients were treated above the MTD. Underdose risk: the percentage of simulations in which more than 
80% of patients were treated below the MTD. DLT rate: the average percentage of patients who experienced a DLT (averaged over the simulations).
Abbreviations: 3 + 3, 3 + 3 design; BLRM1, Bayesian logistic regression model using posterior mean; BLRM2, Bayesian logistic regression model using loss 
function; BLRME1, Bayesian logistic regression model with exposure using posterior mean; BLRME2, Bayesian logistic regression model with exposure using 
loss function; BOIN, Bayesian optimal interval design; BSV, between- subject variability; DLT, dose- limiting toxicity; MTD, maximum tolerated dose; PCS, 
percent correct selection; TTL, target toxicity level.

T A B L E  2  Designs compared on performance metrics when MTD is fifth dose, TTL is 0.25, and BSV = 30%

3 + 3 BOIN BLRM1 BLRME1 BLRM2 BLRME2

PCS (%) 0.15 0.25 0.18 0.23 0.26 0.26

Overdose risk (%) 0.00 0.06 0.10 0.16 0.07 0.07

Underdose risk (%) 0.63 0.40 0.39 0.22 0.40 0.28

DLT rate (average %) 0.18 0.22 0.22 0.25 0.21 0.23

Note: PCS: the percentage of simulations in which the dose escalation design correctly selected the true MTD as their estimated MTD. Overdose risk: the 
percentage of simulations in which more than 60% of patients were treated above the MTD. Underdose risk: the percentage of simulations in which more than 
80% of patients were treated below the MTD. DLT rate: the average percentage of patients who experienced a DLT (averaged over the simulations).
Abbreviations: 3 + 3, 3 + 3 design; BLRM1, Bayesian logistic regression model using posterior mean; BLRM2, Bayesian logistic regression model using loss 
function; BLRME1, Bayesian logistic regression model with exposure using posterior mean; BLRME2, Bayesian logistic regression model with exposure using 
loss function; BOIN, Bayesian optimal interval design; BSV, between- subject variability; DLT, dose- limiting toxicity; MTD, maximum tolerated dose; PCS, 
percent correct selection; TTL, target toxicity level.
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Impact of PK variability on performance 
characteristics of model- based  
dose- escalation designs

Scenario analyses were conducted by changing the value 
of BSV in our simulations from 30% to 60% or 100%. See 
Tables 3 and S1 for results for BLRM2 and BLRME2. We 
see that as BSV increases, accuracy (PCS) decreases across 
both designs. However, fewer of the simulated BLRM de-
signs reached the MTD compared with BLRME2, which 
remains consistent across the different BSV values. This 
second metric for accuracy suggests that incorporating ex-
posure into the dose- escalation algorithm leads to a higher 
chance at collecting data at the MTD. Such an outcome is 
still favorable because a post hoc analysis of the data may 
be able to determine the correct MTD. Although BLRM2 
uses a loss function as a more holistic posterior summary, 
it is common to declare the MTD at the end of dose escala-
tion by using the MTD posterior mean estimate, such as 
BLRM1. Overdose risk, underdose risk, and DLT rate all 
suffer when BSV is large for both BLRM2 and BLRME2.

DISCUSSION

Determination of the MTD in oncology phase I trials relies 
on estimating the underlying dose– toxicity relationship 
with adequate confidence. Bayesian dose- escalation stud-
ies leverage the totality of data across patients at all stud-
ied dose levels in escalation and are increasingly favored 
in oncology drug development over 3 + 3 designs.10,16

In our simulations, we witnessed the general improve-
ment in accuracy that model- based designs offer over 
rule- based designs, consistent with previous reports in the 
literature, particularly in comparison to the 3 + 3 design.14 
For example, the PCS of model- based methods shows a 

difference of more than 10% compared with the 3 + 3 de-
sign, and although overdose risk is negligible for the 3 + 3 
design due to its extremely conservative dose escalation, 
its underdose risk is sometimes almost double or even 
triple that of the model- based designs. Meanwhile, the 
DLT rate does not have such drastic differences in com-
parison. These improvements are observed despite not in-
corporating any prior information into the choice of prior 
parameters. If a study allows for prior information to be 
incorporated into the choice of prior, then much larger 
improvements would likely be observed. We chose to pres-
ent BLRM2 and BLRME2 using the more conservative loss 
because the results that we observed with the original loss 
function had slightly higher DLT rates. The choice of a 
rather conservative loss function in our simulations led to 
the BLRM models escalating a bit slower. However, by in-
corporating exposure, BRLME2 maintained conservative 
properties while reaching the MTD in an efficient manner.

We showed that incorporating exposure into a model- 
based design leads to a significant decrease in underdose 
risk, especially compared with the 3 + 3 design, while 
maintaining accuracy, which is measured in terms of PCS. 
Although the primary objective of phase I trials is safety 
characterization in relation to dose coupled with the char-
acterization of PK and PD properties, patients entering 
FIH oncology phase I trials on investigational new drugs 
are typically candidates for clinical trials following disease 
progression on prior therapies. As such, although efficacy 
is not a primary objective, these trials are not without 
potential for benefit. In fact, a meta- analysis of phase I 
oncology trials on molecularly targeted agents suggested 
that the probability of both overall response and overall 
survival increased with increasing dose.30 Similar findings 
have been observed in another evaluation where an over-
all response rate of 5% was described across 7330 patients 
enrolled across 175 contemporary phase I trials, albeit 

T A B L E  3  Impact of pharmacokinetic variability on performance metrics of dose- escalation designs for an illustrative scenario of fourth 
dose as MTD: BSV = {30%, 60%, 100%}

BLRM2  
30%

BLRME2  
30%

BLRM2  
60%

BLRME2  
60%

BLRM2  
100%

BLRME2 
100%

PCS (%) 0.35 0.36 0.28 0.30 0.16 0.19

Reached MTD (%) 0.88 0.94 0.84 0.95 0.71 0.93

Overdose risk (%) 0.06 0.08 0.04 0.06 0.03 0.04

Underdose risk (%) 0.28 0.21 0.39 0.22 0.57 0.28

DLT rate (average %) 0.23 0.25 0.24 0.27 0.24 0.28

Note: PCS: the percentage of simulations in which the dose- escalation design correctly selected the true MTD as their estimated MTD. Reached MTD: 
percentage of simulations in which the MTD was reached. Overdose risk: the percentage of simulations in which more than 60% of patients were treated above 
the MTD. Underdose risk: the percentage of simulations in which more than 80% of patients were treated below the MTD. DLT rate: the average percentage of 
patients who experienced a DLT (averaged over the simulations).
Abbreviations: BLRM2, Bayesian logistic regression model using loss function; BLRME2, Bayesian logistic regression model with exposure using loss function; 
BOIN, Bayesian optimal interval design; BSV, between- subject variability; DLT, dose- limiting toxicity; MTD, maximum tolerated dose; PCS, percent correct 
selection; TTL, target toxicity level.
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with some variations in observed dose– response trends by 
modality/mechanism of action.31 Accordingly, reduction 
in the underdose risk may be an important consideration 
in phase I dose- escalation trials and may be particularly 
relevant for more traditional mechanisms of action such 
as small molecule receptor tyrosine kinase inhibitors, di-
rectly administered cytotoxic agents, or cytotoxic mech-
anisms delivered via modalities such as antibody– drug 
conjugates. Our simulations show substantial improve-
ment in minimizing the underdose risk when exposure is 
incorporated into a model- based design, especially com-
pared with the 3 + 3 design where the underdose risk is 
more than double and, in some instances, more than triple 
that of a BLRME approach.

Of note, for some modalities such as bispecific antibod-
ies, nonmonotonic bell- shaped dose/exposure– response 
relationships may be expected from first pharmacologic 
principles and will demand consideration as part of the 
overall dose optimization program.32 In this context, it is 
important to note that the MTD itself is not to be equated 
with a dose level that is suitable for further expansion or 
evaluation in phase II studies.3 Although determination 
of the MTD informs the upper end of the dose range as-
sociated with short- term tolerability, determination of the 
recommended dose range for further expansion requires 
the holistic integration of PK, PD, safety, and multicycle 
tolerability. This should be performed in the context of 
preclinical prior knowledge, including consideration of 
the target molecular profile for precision medicines, in-
tegrated through translational modeling and simulation 
applying a totality- of- evidence approach.33

Following the simulation study of Zhou et al.,24 our 
simulations of each dose- escalation design enlist 25 pa-
tients each, except for the 3 + 3 design, which is defined by 
its stopping rule. There are several valid stopping criteria 
for model- based (and model- assisted) designs. We avoid 
choosing a stopping criterion for our simulations because 
doing so would lead to simulation results that would de-
pend on that choice. Instead, our main purpose in this ar-
ticle is to compare the dose- escalation methods on safety, 
accuracy, and reliability. Because our PK approach re-
sulted in a greater probability of reaching the true MTD 
compared with the original BLRM dose- escalation design 
method, this suggests that fewer patients may be required 
when our method is used, regardless of what the stopping 
criterion is as long as the same stopping rule is used for 
each design method.

Although our simulations use BLRME with AUC as 
the exposure metric to help guide dose escalation, alter-
native exposure metrics may also be suitable. For exam-
ple, maximum concentration (Cmax) may be important to 
evaluate as an alternate exposure metric in these models 
if the commonly observed AEs are anticipated to be Cmax 

driven. Because AUC and Cmax are typically correlated un-
less multiple dosing frequencies administering the same 
total dose are evaluated, we expect that the simulation 
results using BLRME with Cmax would be similar to our 
results that use AUC.

Incorporating exposure into a design will necessitate 
some logistic considerations from two perspectives. One 
in terms of the bioanalysis data of the plasma concentra-
tions of the therapeutic being available during the dose- 
escalation meeting and another in terms of the availability 
of sufficient data to build a population PK model or other 
credible approach to describing the dose– exposure re-
lationship and associated variability. As mentioned pre-
viously, the collaboration between pharmacometrics, 
biostatisticians, and clinicians is crucial to increase this 
efficiency that may offer valuable insights in the study in 
the longer term to determine the appropriate MTD. In the 
first few cohorts, there will not be a population PK model 
available to estimate values such as exposure and clear-
ance, which are needed for the BLRME1 and BLRME2 
design methods. However, we may obtain estimates via 
noncompartmental analysis to provide a starting point for 
the study. Prior to the availability of clinical PK data, an 
animal PK model can be extended to humans and used to 
provide a starting point for dose escalation, as described 
in early work by Graham and Workman,34 with many 
contemporary methods of human PK predictions being 
widely used currently.35 As sufficient data are obtained, 
the exposure metrics from population PK models can be 
used to guide the selection of doses to reach the MTD. 
In addition, waiting for the PK data from the last patient 
in the cohort would delay the safety review to inform 
dose- escalation decisions. One solution might be to work 
on lagging PK data available from prior cohorts. In this 
approach, the previous PK data are used to estimate the 
latest patient's exposure value and update the exposure– 
toxicity model for assigning the next patient's dose. Lastly, 
we envision a hybrid assessment whereby BLRM is used 
to determine dose assignments for the first few dose levels 
until a PK model is available, and at that point BLRME 
can take over the rest of the dose assignments until the 
dose– toxicity relationship is adequately characterized 
based on the totality of dose- related safety and PK data. 
This approach would be especially useful when the first 
few doses have a large number of PK data points that are 
below the lower limit of quantitation. Further exploration 
using a real- time case example should help shed some 
light into the pros and cons of such a proposed approach.

Ultimately, the design would need to be applied 
in clinical studies to evaluate the extent of benefit 
gained in practice from the incorporation of exposure 
in model- based dose escalation for dosing decisions. 
Our proposed exposure– toxicity modeling approach 
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offers the potential to provide valuable insights on the 
relationship between the drug's systemic exposure and 
the toxic response and serves as a complement to the 
dose– toxicity model in model- based dose- escalation 
methods. Another important finding in our scenario 
analyses is the adverse impact of increasing PK vari-
ability on performance characteristics across designs, 
notably the accuracy of MTD estimation. This obser-
vation reinforces the importance of appropriate con-
trol of PK variability in oncology phase I trials both 
for intrinsic (e.g., renal/hepatic function) and extrinsic 
factors (e.g., formulation, dosing conditions in relation 
to food intake or drug– drug interactions) based on ab-
sorption, distribution, metabolism, and excretion; for-
mulation scientific considerations; and data available 
from nonclinical studies ahead of initiation of clinical 
development.

In summary, the in silico analyses presented herein 
provide an assessment of the incorporation of variabil-
ity in systemic exposure in the interpretation of dose– 
toxicity relationships evaluated in oncology phase I 
dose- escalation studies. Our findings highlight the im-
portance of cross- functional collaboration across the 
quantitative disciplines of clinical pharmacology/phar-
macometrics and biostatistics to maximize the value 
of information gained from PK/PD and safety assess-
ments in the early clinical development of oncology 
therapeutics.
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