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2I.R.I.B.H.M., Université libre de Bruxelles, Brussels, Belgium, 3Department of Cardiology, Erasme
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Background: Chemerin is an extracellular protein with chemotactic activities

and its expression is increased in various diseases such as metabolic syndrome

and inflammatory conditions. Its role in lung pathology has not yet been

extensively studied but both known pro- and anti-inflammatory properties

have been observed. The aim of our study was to evaluate the involvement of

the chemerin/ChemR23 system in the physiopathology of COVID-19 with a

particular focus on its prognostic value.

Methods: Blood samples from confirmed COVID-19 patients were collected at

day 1, 5 and 14 from admission to Erasme Hospital (Brussels – Belgium).

Chemerin concentrations and inflammatory biomarkers were analyzed in the

plasma. Blood cells subtypes and their expression of ChemR23 were

determined by flow cytometry. The expression of chemerin and ChemR23

was evaluated on lung tissue from autopsied COVID-19 patients by

immunohistochemistry (IHC).

Results: 21 healthy controls (HC) and 88 COVID-19 patients, including 40 in

intensive care unit (ICU) were included. Plasma chemerin concentration were
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significantly higher in ICU patients than in HC at all time-points analyzed

(p<0.0001). Moreover, they were higher in deceased patients compared to

survivors (p<0.05). Logistic univariate regression and multivariate analysis

demonstrated that chemerin level at day 14 of admission was an independent

risk factor for death. Accordingly, chemerin levels correlated with inflammatory

biomarkers such as C-reactive protein and tumor necrosis factor a. Finally,
IHC analysis revealed a strong expression of ChemR23 on smooth muscle cells

and chemerin on myofibroblasts in advanced acute respiratory distress

syndrome (ARDS).

Discussion: Increased plasma chemerin levels are a marker of severity and may

predict death of COVID-19 patients. However, multicentric studies are needed,

before chemerin can be considered as a biomarker of severity and death used

in daily clinical practice. Further studies are also necessary to identify the

precise mechanisms of the chemerin/ChemR23 system in ARDS secondary

to viral pneumonia.
KEYWORDS
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Introduction

Chemerin is an extracellular protein first described in the

early 2000’s (1). It is secreted as an inactive precursor

(prochemerin), by many cell types including adipocytes,

hepatocytes, fibroblasts and epithelial cells (2–4). The active

form of chemerin is generated by the removal of six or seven

amino-acids from its carboxy-terminus by serine proteases, such

as cathepsin G and elastase that are produced by neutrophils (5).

Chemerin binds to three receptors: chemokine like receptor 1

(CMKLR1 also named ChemR23), G protein-coupled receptor 1

(GPR1) and chemokine (C-Cmotif) receptor-like 2 (CCRL2) (6).

ChemR23 mediates the main effects of chemerin, while the

binding of chemerin to GPR1 and CCRL2 results respectively

in weak signaling or no detectable cell activation (6). ChemR23 is

expressed in different cell types such as macrophages, immature

myeloid dendritic cells (mDC), immature plasmacytoid dendritic

cells (pDC), natural killer (NK) cells, endothelial cells (EC),

pericytes, adipocytes and smooth muscle cells (2, 7–9).

Circulating chemerin levels are increased in various

pathologies notably in metabolic syndrome, inflammatory

conditions such as rheumatoid arthritis, inflammatory bowel

diseases and cancers (10–13). The chemerin/ChemR23 system

has both pro- and anti-inflammatory properties depending

probably on the tissue where it is activated and the stimulus.

Chemerin was first described as a major chemoattractant agent,

particularly for pDCs, involved in antiviral responses through

the secretion of type I interferons (IFN I) (1, 4). In a murine

model of viral pneumonia, we observed that ChemR23 knock-
02
out (KO) mice exhibited a lower recruitment of pDCs and a

delayed viral clearance but also an excess mortality and increased

neutrophil infiltration (14), suggesting an anti-inflammatory

role for chemerin. This was further confirmed in a mouse

model of acute lung injury induced by the intratracheal

administration of bacterial lipopolysaccharide (LPS). In this

model, we showed that treatment with recombinant chemerin

led to a lower recruitment of neutrophils in lungs, decreased the

severity of histological lesions and the release of pro-

inflammatory cytokines (4). On the other hand, the pro-

inflammatory role of this system was also highlighted in a

mouse model of lung inflammation secondary to cigarette

exposition. In this case, ChemR23 KO mice presented lower

innate and adaptive immune responses compared to wild-type

mice (15). Altogether, these experiments revealed an important

role for the chemerin/ChemR23 system in lung inflammation,

which is not yet completely elucidated.

The COVID-19 pandemic is caused by a coronavirus named

SARS-CoV-2 (16). Coronaviruses are well-known to be responsible

for acute respiratory distress syndrome (ARDS) and SARS-CoV-2

induces a high hospitalization (20%) and mortality rate (1%) in

non-vaccinated individuals (17). Symptomatology is, however,

extremely variable from the absence of symptoms to the

development of an ARDS with multiorgan failure (18, 19).

Lesions in these patients do not seem to be related to viral load,

but to a hyperinflammatory state characterized by an excessive

secretion of pro-inflammatory cytokines such as interleukin 6 (IL-6)

associated with a decrease of antiviral cytokines like IFN I (20).

Risk factors for the development of a severe COVID-19 outcome
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have been identified such as age, the presence of a metabolic

syndrome, chronic lung, liver or kidney diseases and

immunosuppression (21).

Given that chemerin is elevated in most of the pathologies

associated with a higher risk of developing severe COVID-19

and seems to be associated with lung inflammation, in the

present study, we evaluated the chemerin/ChemR23 system in

COVID-19 patients and correlated it with disease severity.
Materials and methods

Study design

This prospective observational study was conducted on adult

patients (from 18 to 70 years) with a confirmed COVID-19

infection (positive polymerase chain reaction (PCR) test

performed on a nasopharyngeal swab), admitted to Erasme

Hospital (Tertiary care center, Brussels, Belgium). These

patients were further classified into three groups: non-

hospitalized (NH), hospitalized in a conventional care unit (H)

and hospitalized in intensive care unit (ICU). The study was

approved by the local Ethical Committee (P2020/238 for blood

biobanking, P2020/232 for bronchoalveolar lavage biobanking

and immunohistochemistry analysis).

Collection of blood and bronchoalveolar
lavage samples and clinical data

Blood samples from confirmed COVID-19 patients were

collected from April to December 2020 and stored at the

Biobank BB190012 from the Laboratory of Vaccinology and

Immunology at the Université libre de Bruxelles (ULB), Brussels,

Belgium. Three different time points were analyzed: day 1 (D1),

day 5 (D5) and day 14 (D14) from admission. As controls, blood

samples from health care workers participating to a

seroprevalence study (22) in another hospital located in the

Brussels Capital Region were used (asymptomatic with negative

PCR and serological tests (IgG and IgA)). Within two hours after

collection, plasma from EDTA tube was extracted and stored at

-20°C and whole blood from another tube was mixed with

Cytodelics Stabiliser (Cytodelics AB, Stockholm, Sweden) and

stored at -80°C, as previously described (23). Covid and control

samples were prepared and stored identically.

Clinical data were obtained from patient’s medical records

with a focus on the following characteristics: age, gender, body

mass index (BMI), smoking, comorbidities associated with a

higher risk to develop a severe COVID-19 (hypertension,

diabetes, chronic obstructive pulmonary disease (COPD),

chronic kidney disease and immunosuppression), peripheral

oxygen saturation (SpO2) at admission, the need of

ventilation, the development of an ARDS, the duration of

hospitalization and outcome. Of note, ARDS was defined

according to Berlin criteria as the development of breathing
Frontiers in Immunology 03
difficulties with hypoxemia (arterial partial pressure of oxygen to

fraction of inspired oxygen (PaO2/FIO2) <300 mmHg)

associated with bilateral opacities on chest imaging in the

absence of cardiac failure (24). The results of routine blood

analysis were collected from the medical files including C-

reactive protein (CRP), white blood cell count (WBC),

polymorphonuclear cells (PMN), lymphocytes, platelets,

ferritin, lactate dehydrogenase (LDH), creatinine kinase (CK),

alanine transaminase (ALT), aspartate transaminase (AST),

gamma-glutamyl transferase (GGT), creatinine, total

cholesterol and triglycerides.

Another cohort of patients was used for bronchoalveolar

lavages (BAL) collection. In this cohort, BALs were performed to

confirm a SARS-CoV-2 infection or exclude opportunistic

superinfections (immunocompromised patients). BAL were

collected from April 2020 to November 2020. They were

performed, using a disposable video-bronchoscope (Ambu®

aScopeTM, Ballerup, Denmark) as described by Taton et al.

(25). Samples were centrifuged (1400 rpm – 10 minutes), then

supernatants were stored at -80°C and cell pellets stabilized with

Cytodelics stabilizer and then stored at -80°C (Biobank ULB-

COVID-19, BB200022). Only confirmed COVID-19 patients

from this cohort were selected for further analysis. Control

BAL samples were collected from patients with a pulmonary

nodule or from non-infected lung transplant patients

(performed as part of their routine follow up). Neutrophils,

lymphocytes and macrophages counts on BAL were obtained

from the medical files.

Analysis of peripheral blood and BAL samples
Plasma and BAL chemerin levels were assessed by enzyme-

linked immunosorbent assay (ELISA) (R&D systems,

Minneapolis, MN). Samples were analyzed in duplicates

according to the manufacturer’s instructions. Plasma levels of

the Krebs Von den Lungen protein (KL-6) were detected using a

sandwich ELISA assay on Lumipulse G600II and G1200

(Fujirebio, Japan). The concentrations of IFN-a, IFN-g, IL-1b,
IL-6, IL-7, IL-8, IL-10, IL-17a, monocyte chemoattractant

protein-1 (MCP-1, CCL2), monokine induced by interferon-g
(MIG, CXCL9), macrophage inflammatory protein-1b (MIP-1b,
CCL4) and tumor necrosis factor a (TNFa) were measured in

plasma by multiparameter-based immunoassays (Milliplex

Human Cytokine/chemokine/Growth factor panel A magnetic

bead panel kit-Merck, Belgium) according to the manufacturer’s

instructions. Results were analyzed with a Bio-Plex 200®

Multiplex reader, Bio-Plex ManagerTM Manager 4.1 Software

(BIO-RAD laboratories, Nazareth Eke, Belgium).

Whole blood cells conserved into the Cytodelics Stabilizer

were prepared for flow cytometry analysis according to the

manufacturer’s instructions. After complete lysis of red blood

cells, the immune cells were stained with antibodies from

Thermofisher (Waltham, MA, USA): CD45 (EF450), CD3

(EF506), CD123 (SB600), CD11c (SB645), HLA-DR (SB702),
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CD16 (SB780), CD14 (FITC), CD141 (PE-Cy7), CD56 (APC-

EF780) and ChemR23 (APC). Flow cytometry analysis were

performed on an LSR Fortessa instrument (BD Biosciences,

Franklin Lakes, NJ, USA) and analyzed using FlowJo software

(BD Biosciences, Franklin Lakes, NJ, USA) to identify different

immune cell populations and their expression of ChemR23. The

gating strategy was previously described by Albayrak et al. (23).

Lung tissue sample collection and
immunohistochemistry

Formalin-fixed paraffin-embedded (FFPE) lung tissues from

PCR positive COVID-19 patients stored in the Biobank ULB-

COVID-19 (Department of Pathology, Erasme Hospital,

BB200022) were used for immunohistochemical (IHC) staining.

Autopsies were performed after 72 hours to prevent infection of the

medical staff (26). For this analysis, areas presenting typical lesions

of diffuse alveolar damage (DAD) early or late and samples with

pneumonia or bronchopneumonia were selected. Control tissues

were obtained from autopsied patients deceased for more than 48

hours without major lung lesion and patients deceased of an ARDS

from another origin.

IHC staining was performed using an automated

immunostainer (Dako Omnis, Agilent Technologies, Santa

Clara, CA, USA). Thus, 4μm slides were incubated respectively

with anti-ChemR23 (Santa Cruz Biotechnology, sc-398769,

dilution 1:300) and anti-chemerin (Santa Cruz Biotechnology,

sc-373797, dilution 1:100) antibodies and counterstained with

hematoxylin. Then slides were scanned with a 40x magnification

(Nanozoomer, Hamamatsu, Hamamatsu-City, Japan) before

assessment by two pathologists.
Statistical analysis

All data were tested for normality using the Shapiro-Wilk test

and according to the distribution, parametric or non-parametric

tests were applied. Differences between the groups were assessed

by one-way ANOVA or Kruskal-Wallis test. Tukey or Dunn’s

tests were used as post-hoc tests. When only two groups were

compared, student t or Mann-Whitney tests were used. Data are

reported as mean ± standard deviation (SD) or median with a

confidence interval of 95% (CI 95%). Categorical variables are

listed as numbers with percentage. Chi-square test was performed

to compare more than two groups and Fisher’s exact test was used

for comparison between 2 groups. For correlation analysis, non-

parametric Spearman correlation was performed, and data are

reported as Spearman r and p-value. To determine the association

of different variables to fatal outcome, a univariate logistic

regression test was performed and then a multivariable

regression model was chosen from a stepwise selection based on

the Akaike Information Criterion (AIC). The analyses were

performed on Prism 6 or SAS 9.4 software packages and all

significance levels were fixed at 0.05.
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Results

Baseline characteristics of patients

In this study 88 patients with a positive nasopharyngeal

throat swab for COVID-19 were included: 11 non-hospitalized

(NH), 37 hospitalized in a conventional care unit (H) and 40

hospitalized in intensive care unit (ICU). Blood samples were

collected at the admission D1, D5 and D14. Symptoms started

on average 9 days before admission to the emergency

department. Consequently, samples obtained at D1, D5 and

D14 correspond to day 9, 14 and day 23 after initial symptoms.

21 healthy subjects (HC) (asymptomatic with negative PCR and

serological tests (IgG and IgA)) were used as controls.

Baseline characteristics of controls and patients are reported

in Table 1 and multiple comparisons between subgroups are

reported in Supplemental Table 1. Sixty-seven patients were men

and 42 were women. Patients were older in H and ICU groups

(57.6 ± 14.8 and 60.5 ± 10.9, respectively, mean ± SD) as

compared to HC and NH groups (38.6 ± 7.9 and 42.2 ± 10.9

respectively; mean ± SD, p<0.0001). No significant differences

were found for BMI among COVID-19 patients (average BMI

for NH, H and ICU groups: 28.6 kg/m² (27.2-30.45), median

(95% CI)) as well as for tobacco use (18.1% of the patients).

Routine biological analyses of the COVID-19 patients are

reported in Table 2 and multiple comparisons between

subgroups are reported in Supplemental Table 2. At admission

and without oxygen support, the median peripheral oxygen

saturation (SpO2) decreased with severity of disease and

therefore was the lowest in the ICU group (p<0.0001)

(Table 2). Inflammation-related parameters such as CRP

(p<0.0001), ferritin (p<0.01), LDH (p<0.0001) and D-dimer

(p<0.001) were higher and significantly different in plasma

from ICU patients compared to NH and H patients. Liver

tests were slightly disturbed in ICU patients with a small

elevation of the transaminases. On the other hand, no

alteration of the renal function or the lipids tests was observed.

ICU patients had higher and significantly different levels of

circulating WBC (p<0.0001) with a predominance of PMN

(p<0.0001) and lower levels of lymphocytes (p<0.001).

A deeper analysis of different leukocyte populations using flow

cytometry analysis at D1 indicated that ICU patients had higher

levels of classical (CD14+CD16-) (p<0.01) and non-classical (CD14-

CD16+) monocytes (p<0.0001) (Supplemental Figures 1A, E) as

compared to HC. On the contrary, H and ICU patients had lower

levels of pDCs (CD103+) (p<0.0001) and both subtypes of NK cells

(NK CD56bright and NK CD56dim) (p<0.0001) than HC (Figures

1A–C). ICU patients had also lower levels of mDCs type 2

(CD11c+CD141-) as compared to HC (Supplemental Figure 1I).

A small decrease in the number of intermediate monocytes

(CD14+CD16+) was observed in the H group compared to HC

(p<0.05), while no significant differences were observed for mDCs

type 1 (CD11c+CD141+, Supplemental Figure 1C, G).
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These immune cell populations were also evaluated from BALs

from 9 controls and 19 COVID-19 patients. The main clinical

characteristics and biological parameters from these subjects are

detailed in Supplemental Table 3. We observed a higher proportion

of PMN (31.0 (22.8-49.4) versus 5.7 (2.6-10.2) %, median (95% CI),

p<0.0001) and a lower proportion of macrophages (32.0 (14.0-62.0)

versus 80.0 (68.0-86.0) %, median (95% CI), p<0.001) in BAL from
Frontiers in Immunology 05
COVID-19 patients compared toHC (Supplemental Figures 2A, B).

No significant difference on percentages of the different subtypes of

DCs and NK cells was observed, except for mDC type 2 that were

lower in COVID-19 patients (p<0.05) (Supplemental Figures 2C, E,

G, I, K). Moreover, no significant difference in the expression of

ChemR23 was observed between COVID-19 and HC in the cell

types analyzed.
TABLE 1 Baseline characteristics and comorbidities.

Baseline characteristics
and comorbidities

Healthy
controls (n=21)

Non-hospitalized
COVID-19 patients (n=11)

Hospitalized non-ICU
COVID-19 patients (n=37)

ICU COVID-19
patients (n=40)

p-
value

Age (years)° 38.6 ± 7.9 42.2 ± 10.9 57.6 ± 14.8 60.5 ± 10.9 <0.001

Gender (M/F) 8/3 8/3 24/13 31/9 <0.001

BMI (kg/m²)$ – 28.4 (22.4-33.9) 27.7 (26.0-30.8) 29.5 (27.6-33.1) 0.117

Smoking n (%) – 2 (18) 4 (12) 8 (25) 0.379

Hypertension n (%) 0 (0) 2 (18) 19 (51) 24 (60) <0.001

Diabetes n (%) 0 (0) 1 (9) 10 (27) 23 (57.5) <0.0001

Immunosuppression n (%) 0 (0) 0 (0) 5 (13.5) 5 (12.5) 0.088

COPD n (%) 0 (0) 0 (0) 4 (11) 2 (5) 0.303

CKD n (%) 0 (0) 0 (0) 6 (16) 2 (5) 0.327

Dexamethasone n (%) – 0 (0) 20 (54) 35 (87.5) <0.001
frontie
°Parametric data presented as mean ± Standard deviation (SD). $Non-parametric data presented as median with confidence interval of 95%. BMI, body mass index; CKD, chronic kidney
disease; COPD, chronic obstructive pulmonary disease. Statistics analysis was performed using one-way ANOVA or Kruskal-Wallis test, according with the distribution of the data, for non-
categorical variables. Chi-square test was applied for categorical variables. Values in bold indicate statistical significance.
TABLE 2 Main biological parameters at admission.

Non-hospitalized COVID-19
patients (n=11)

Hospitalized non-ICU COVID-19
patients (n=37)

ICU COVID-19
patients (n=40)

p-
value

KL-6 D1 (U/mL)$ 301 (154-422) 377.5 (254-547) 577 (422-760) 0.004

SpO2 (%)$ 99 (97-100) 94 (92-95) 88 (80-92) <0.001

Hemoglobin (g/dL)° 13.2 ± 2.8 12.8 ± 1.9 12.6 ± 2.2 0.156

WBC (10³/mm³)$ 5.0 (3.5-9.1) 5.3 (4.8-6.8) 11.3 (8.9-13.1) <0.001

PMN (10³/mm³)$ 2.9 (1.7-5.8) 4.3 (3.1-5.1) 8.9 (7.5-11.2) <0.001

Lymphocytes (10³/mm³)$ 1.5 (1.1-2.3) 0.8 (0.7-1.0) 0.8 (0.6-0.8) <0.001

Platelets (10³/mm³)$ 194 (115-270) 190.5 (153-213) 256 (214-336) <0.001

CRP (mg/L)$ 11.5 (1.9-59) 69 (38-88) 135 (97-180) <0.001

Ferritin (μg/L)$ – 604 (386-1261) 1113 (834-1670) 0.008

LDH (U/L)$ 214 (153-335) 324.5 (278-370) 435 (366-520) <0.001

ALT (U/L)$ 23 [17-33] 27 [21-30] 46 [27-59] (39) 0.014

AST (U/L)$ 24 (17-38) 34.5 (24-41) 40 (34-55) 0.019

GGT (U/L)$ 50.50 (48-53) 50 (33-67) 70 (43-105) 0.115

Total bilirubin (mg/dL)$ 0.6 (0.2-0.9) 0.4 (0.4-0.5) 0.6 (0.4-0.7) 0.548

CK (U/L)$ 188 (53-470) 91 (59-184) 129 (79-335) 0.342

D-dimer (ng/mL)$ – 543 (440-1041) 1182 (963-2528) <0.001

Creatinine (mg/dL)$ 0.9 (0.7-1.2) 0.8 (0.8-1.0) 0.9 (0.7-1.0) 0.793

Urea (mg/dL)$ 24 (18.4-26.9) 33.4 (28.1-40.5) 41.7 (33.3-55.3 0.002

GFR (mg/dL/1,73m²)$ 93 (69-118) 93 (82-100) 84.5 (69-99) 0.574

Cholesterol total (mg/dL)° 148.5 ± 55.72 158.7 ± 39.17 149 ± 39.7 0.705

Triglycerids (mg/dL)$ 69 (10.3-162.7) 130 (117.4-166.2) 150.5 (131.7-237) 0.123
°Parametric data presented as mean ± Standard deviation (SD). $Non-parametric data presented as median with confidence interval of 95%. ALT, alanine transaminase; AST, aspartate
transaminase; CK, creatinin kinase; CRP, C-reactive protein; GFR, glomerular filtration rate (CKD-epi formula); GGT, gamma-glutamyl transferase; KL-6, Krebs Von den Lungen 6; LDH,
lactate dehydrogenase; PMN, polymorphonuclear cell; SpO2, median peripheral oxygen saturation; WBC, white blood cell. Statistics analysis was performed using one-way ANOVA or
Kruskal-Wallis test, according to the distribution of data. Values in bold indicate statistical significance.
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Chemerin expression is increased in
plasma from COVID-19 patients and is
correlated with inflammation and
disease severity

At all the time points analyzed, plasma chemerin levels were

higher and significantly different in COVID-19 patients

compared to HC (COVID-19 D1: 125.1 ng/mL (118.4-161.1);

COVID-19 D5: 130.3 ng/mL (115.7-175.4); COVID-19 D14:

149.4 ng/mL (135.5-186.4) versus HC: 75.9 ng/mL (63.7-94.3),

median of all patients (95% CI), p<0.0001). When comparing

each subgroup of COVID-19 patients with HC, plasma

chemerin levels were increased in the ICU group at all

timepoints (D1, D5 and D14), in the H group at D1 and D14

and in the NH group at D1 (Figure 2A and Supplemental

Table 4). A trend for higher chemerin’s values in ICU patients

compared to H and NH patients was also present with a

significant difference at D5 between H and ICU patients

(p<0.01) and at D14 between NH and ICU patients (p<0.05)

(Figure 2A and Supplemental Table 4). Regarding chemerin

concentrations in all COVID-19 patients, they were significantly

higher at D14 as compared to D1 (p<0.05) (Supplemental

Figure 3A). When analyzing within each subgroup of patients,

an increase in chemerin concentration was observed in H

patients between D1 and D14 and between D5 and D14

(p<0.05). A non-significant trend was observed for ICU

patients between D5 and D14 (Supplemental Figures 3B–D).
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Since higher chemerin levels are associated with metabolic

syndrome (27), we investigated the existence of such possible

associations in our population. Hypertension was found in 45/

109 patients (41.3%), predominantly in H and ICU groups

(p<0.0001) and chemerin levels were higher in patients with

hypertension (Hypertension: 164.7 ng/mL (141.3-183.5) versus

non-hypertension: 118.4 ng/mL (110.8-127.0), median (95% CI),

p<0.0001). 34/109 (31.2%) patients had diabetes, mostly

belonging to H and ICU groups but no difference in chemerin

levels was observed. Other comorbidities were uncommon: CKD

in 8/109 (7.3%), COPD in 6/109 (5.5%) and immunosuppression

in 10/109 (9.2%) and none was associated with higher chemerin

levels. Of note, immunosuppression in our cohort referred to

patients with an immunosuppressive treatment (9/109) or

having a neoplasia (1/109). In addition, none of our patients

presented a hepatic disease such as viral or auto-immune

hepatitis, nor cirrhosis.

During the study period, dexamethasone treatment in

patients requiring oxygen therapy was introduced to reduce

mortality (28). As expected, no NH patient received

dexamethasone whereas 20/37 H and 35/40 ICU patients

benefited from this treatment. However, this treatment did not

modify chemerin levels (147.7 ng/mL (125.6-167.7) versus 158.0

ng/mL (127.2-189.0) in dexamethasone treated and untreated

groups respectively, median (95% CI), p=NS).

We also evaluated the correlation between plasma chemerin

concentrations and the levels of various inflammatory markers.
A B

D E F

C

FIGURE 1

Flow cytometry analysis of the total number of plasmacytoid dendritic cells (pDC), natural killer (NK) cells CD56bright and NK cells CD56dim and
their expression of ChemR23 in COVID-19 patients and healthy controls (HC) at day 1. (A–C). Measurements by flow cytometry of total counts
of pDCs, NK cells CD56bright and CD56dim. (D–F). The expression of ChemR23 was evaluated by mean fluorescence intensity (MFI). Data are
presented as median with interquartile range and statistics analysis was performed using Kruskal-Wallis test followed by Dunn’s post-hoc test.
Non-hospitalized (NH), n=11; hospitalized non-intensive care unit (H), n=36; hospitalized in intensive care unit (ICU), n=35 and healthy controls
(HC), n=21. **: p<0.01; ***: p<0.001; ****: p<0.0001.
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Notably, plasma chemerin was strongly correlated with CRP

concentration at D14 (r=0.66, p<0.0001) and at all time points,

for each increase of 1 mg/dL of CRP, chemerin increased of

209.2 pg/mL (39.4-378.9, median (95% CI), p<0.05) (Figure 2C).

Levels of chemerin were also strongly and positively correlated

with TNFa (r=0.63, p<0.0001) and a moderate positive

correlation was found with IL-8 (r=0.41, p<0.001), MIG

(r=0.45, p<0.0001) and MIP-1b (CCL4) (r=0.42, p<0.001)

(Figure 3). Low correlation between chemerin levels and IFN-g
(r=0.32, p<0.01), IL-6 (r=0.37, p<0.01) and MCP-1 (CCL2)

(r=0.39, p<0.001) was observed. However, no correlation was

shown for IFN-a (r=0.21, p=NS), IL-1b (r=0.25, p=NS), IL-17a
(r=0.20, p=NS), IL-10 (r=-0.12, p=NS) and IL-7 (r=0.17, p=NS).
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As expected, the duration of hospitalization was lower in the

H group compared to the ICU group (6–10) days vs 21.5 (16–28)

respectively, median (95% CI), p<0.0001). An ARDS occurred in

38 out of 88 (43.2%) COVID-19 patients, all belonging to the

ICU group. Chemerin levels were higher in patients with ARDS

than without ARDS at D5 (181,8 (141.3-272.5) versus 115.7

(95.4-129.9) ng/ml, median (95% CI), p<0.001) and D14 (270.8

(162.3-332.2) versus 132.2 (119.8-149.4) ng/ml, median (95%

CI), p<0.0001).

Regarding mortality, 16 out of 88 (18%) COVID-19 patients

died, 1 from the H group (2.7%) and 15 from the ICU group

(37.5%). Chemerin levels were higher in patients who deceased

at all time points (Figure 2B). Moreover, a univariate logistic
A

B

DC

FIGURE 2

Chemerin assessment and its association with risk of death and inflammation. (A) Time course assessment of chemerin concentration in plasma
of healthy controls and subgroups of COVID-19 patients. Of note, data from HC were obtained at only one time point. Data are presented as
median with interquartile range and statistical analysis was performed using Kruskal-Wallis test followed by Dunn’s post-hoc test. (B)
Comparison of plasma chemerin levels in recovered versus deceased COVID-19 patients. Data are presented as median with interquartile range
and statistics analysis was performed using Mann-Whitney test. (C) Prediction of mortality by chemerin concentration at day 1 (black), day 5
(blue) and day 14 (red) using a ROC analysis (D) Correlation between chemerin concentrations and inflammation, estimated by C-reactive
protein (CRP) concentration at day 14. The r corresponds to the Spearman coefficient for non-parametric correlation. Non-hospitalized (NH),
n=11; hospitalized non-intensive care unit (H), n=37; hospitalized in intensive care unit (ICU), n=40; healthy controls (HC), n=21. *: p<0.05; ***:
p<0.001; ****: p<0.0001.
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regression showed that for each increase of 50 ng/mL of

chemerin at D14, the odds of dying increased by 1.78 (1.22-

2.61, p<0.01). Age was also associated with the odds of dying,

with an increase of 1.06 (1.01-1.10, p<0.05) per added year of

age. However, hypertension, diabetes, gender and obesity (BMI

≥ 30kg/m²) were not related to the risk of death (Table 3). The

final multivariable model was adjusted for age and diabetes,

based on the Akaike Information Criterion, and showed that any

increase of 50ng/mL of chemerin at D14 was associated with an

odd of dying of 2.28 (1.24-4.20, p<0.01) (Table 3).

Receiver operating characteristic (ROC) curves were also

generated to evaluate the predictive value of plasma chemerin on

mortality. This showed that day 14 chemerin’s concentration

best estimated mortality risk (AUC=0.85, p<0.01) compared to

D1 (AUC=0.68, p<0.05) and D5 concentrations (AUC=0.73,

p<0.05) (Figure 2D). Thus, a chemerin concentration above

291.4 ng/mL at D14, predicted the risk of death with a sensitivity

of 77.78%, a specificity of 88.10%, a positive predictive value of

63.64% and a negative predictive value of 95.00%.

In addition to plasma chemerin analysis, BALs from 9

controls and 19 COVID-19 patients (Supplemental Table 3)

were used for chemerin assessment. The levels of chemerin on

BAL were at least 1000x lower than observed in blood and no
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statistical difference was observed between chemerin

concentrations in the BAL of controls and COVID-19 patients

(42 (35–120) versus 44 (35–112) pg/mL respectively, median

(95% CI), p=NS).

In order to assess the relation between chemerin and

epithelial cells injury, we measured levels of the Krebs Von

den Lungen-6 (KL-6) protein, a molecule that is predominantly

expressed by damaged alveolar type II cells (29). This analysis

was performed on plasma from COVID-19 patients at D1 and

D14. KL-6 levels were significantly higher in ICU patients than

NH patients at D1 (p<0.05) but no significant difference was

shown at D14, even if a trend was emerging (Supplemental

Table 4). Within ICU patients, there was no significant

difference in KL-6 levels at D1 versus D14 (p=NS). Moreover,

no correlation between chemerin and KL-6 levels was found

(r=0.07, p=NS)
ChemR23 expression in circulating
immune cells from COVID-19 patients

Since we observed higher levels of chemerin in the blood of

COVID-19 patients we determined the expression of its main
FIGURE 3

Correlations analysis between chemerin concentration and the levels of different cytokines and chemokines measured by multiplex in plasma of
COVID-19 patients at all time-points. The r corresponds to the Spearman coefficient for non-parametric correlation. IL-8: interleukin 8; MIG:
monokine induced by interferon-g; MIP-1b: macrophage inflammatory protein-1b; TNFa: tumor necrosis factor a. N=70 for all analysis. ***:
p<0.001; ****: p<0.0001.
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receptor ChemR23 at the surface of immune cell populations of

patients and HC. Small increases in ChemR23 expression were

found on the classical and intermediate monocyte and mDC

populations when comparing some categories of COVID-19

patients and HC (Supplemental Figures 1B, D, H, J). No

significant differences were found in non-classical monocytes

and pDCs (Figure 1D and Supplemental Figure 1F).

Interestingly, ChemR23 expression on NK cells was lower and

significantly different on NH, H and ICU patients compared to

HC (Figures 1E, F). Of note, as previously reported by our group

(9, 30), no expression of ChemR23 was reported on PMNs

nor lymphocytes.
Expression of chemerin and ChemR23 in
lungs from autopsied COVID-19 patients

Finally, we determined the expression of chemerin and

ChemR23 in lung tissues from autopsied COVID-19 patients.

Given the important heterogeneity of lung lesions, we selected

areas with typical diffuse alveolar damage (DAD) or pneumonia/

bronchopneumonia. Areas with DAD were either in exudative

phase with hyaline membranes, interstitial and intra-alveolar

edema, microthrombi or in organizing phase with interstitial or

intra-alveolar proliferation of myofibroblasts and proliferation

of type II pneumocytes (26). Lysis phenomena were also

observed with essentially a desquamation of epithelial and

endothelial cells (ECs).

ChemR23 expression was found on smooth muscle cells of

vessels and bronchi (Figure 4A–C) and focally on ECs

(Figure 4D–F). There was no staining observed in the immune

cell populations visualized (Figure 4G). This staining was similar

between healthy lungs, lungs with DAD secondary to COVID-19

or other causes. Chemerin expression was detected on alveolar

epithelium of healthy lung controls and focally on EC
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(Figures 5A, B). However, no clear staining was observed on

alveolar epithelium and EC from COVID-19 patients.

Interestingly, in slides from COVID-19 and other ARDS

patients, spindle cells (fibroblasts or myofibroblasts) in the

organizing phase of DAD strongly expressed chemerin

(Figures 5C, D). Given that no fibrosis was present in control

lungs, no spindle cells were observed.
Discussion

In the present study we analyzed the chemerin/ChemR23

system in a cohort of confirmed COVID-19 patients. We

presently showed, for the first time, that chemerin

concentrations are elevated in plasma of COVID-19 patients

and are associated with the severity of the disease, inflammation

and are an independent risk factor of mortality.

Our observation of elevated levels of chemerin in COVID-19

patients are in contradiction with a recent publication, where

serum chemerin levels were lower in COVID-19 patients at day

1 of hospitalization than in healthy controls (31). However,

chemerin values in the healthy controls in this study were

superior to those described in the literature. Thus, while the

described values are usually between 60.0 and 130.0 ng/mL (10,

12, 32–34), which correspond to our results (75.9 ng/mL (63.7-

94.3)), in the study of Kukla et al., control values for chemerin

were around 373.0 ng/mL. Moreover, we determined chemerin

concentration in plasma, whereas Kukla et al. measured it on

serum. Chemerin can be degraded by many proteases that are

possibly increased in acute inflammatory state. If samples are not

handled properly, this could explain why chemerin

concentrations were lower in their COVID-19 patients

compared to their controls. Further studies evaluating the

dosage of chemerin in plasma versus serum in patients with

an acute inflammatory state are needed to address this
TABLE 3 Risk of death: Univariate logistic regression and multivariate model.

Univariate logistic regression Odds Ratio (IC95%) p-value

Chemerin D1 (50ng/mL increase) 1.23 (0.96-1.57) 0.090

Chemerin D5 (50ng/mL increase) 1.20 (0.98-1.46) 0.063

Chemerin D14 (50ng/mL increase) 1.78 (1.22-2.61) 0.003

Age 1.06 (1.01-1.10) 0.019

Diabetes 1.76 (0.59-5.27) 0.300

Hypertension 1.76 (0.57-5.36) 0.310

Gender 0.81 (0.23-2.79) 0.730

Obesity 1.73 (0.48-6.23) 0.391

Final Multivariate Model Odds Ratio (IC95%) p-value

Chemerin D14 (50ng/mL increase) 2.28 (1.24-4.20) 0.008

Age 1.08 (0.98-1.18) 0.090

Diabetes 21.74 (0.99-475.90) 0.050
fronti
Values in bold indicate statistical significance.
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FIGURE 5

Immunohistochemistry staining of chemerin on lung slides from autopsied COVID-19 patient, patient with ARDS from another origin (ARDS
other) and control. (A) Representative image of alveolar lining staining. (B) Representative image of endothelial cell (black arrow) staining. (C, D)
Representative image of chemerin staining of spindle cell (red arrows) in organizing phase of diffuse alveolar damage. Field magnification 400x.
Scale bar: 50µm.
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FIGURE 4

Immunohistochemistry staining of ChemR23 on lung slides from autopsied COVID-19 patients and controls (autopsied patient without major
pulmonary lesion (control) and patient with ARDS from another origin (ARDS other)). (A–C). Representative staining of smooth muscle cells from
arteries and bronchia. Field magnification 100x. Scale bar: 100µm. (D–F). Representative staining of endothelial cells (black arrows). Field
magnification 400x. Scale bar: 50µm. (G). Representative image from area of acute pneumonia in COVID-19 patients, without ChemR23
staining. Field magnification 400x. Scale bar: 50µm.
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hypothesis. Finally, discrepancy among data could also results

from difference in subgroup size (40 patients in our ICU group

vs 9 in Kukla et al.) and the fact that possibly more severe

patients could be included in our study taken into consideration

that we are part of a tertiary care center.

Increased concentration of chemerin were already observed

in many other inflammatory conditions and the levels observed

in the COVID-19 patients of our cohort (ranging from 125.1 to

149.4 ng/mL) are in line with those observed in rheumatoid

arthritis (154 ng/mL (35)), psoriasis (125.3-196 ng/mL) (32, 33,

36), Crohn’s disease (140 ng/mL) (12), ulcerative colitis (124 ng/

mL) (12), type 2 diabetes (144 ng/mL) (37) and acute myocardial

infarction (173.8 ng/mL) (34). As previously outlined, chemerin

levels were correlated with markers of inflammation as CRP but

also pro-inflammatory cytokines as TNF-a (27, 37, 38).

Moreover, chemerin levels tended to increase with the severity

of the disease (e.g. admission to ICU and development of an

ARDS) and were higher in deceased patients as compared to

subjects that recovered from the disease. Interestingly, in

COVID-19 patients, chemerin levels increased significantly

with time but this increase was only significant for H patients

and not in ICU patients, even is a trend is seen between D5 and

D14. Our hypothesis is that the higher mortality rate observed in

ICU group (18%) compared to H group (2.7%) led to a loss of

late samples that could have shown higher chemerin levels (ICU

D1 n=40; ICU D5 n=35; ICU D14 n=25). The decrease in the

number of samples in D14 also led to a lower statistical power.

Importantly, chemerin concentrations at day 14 was

associated with risk of mortality in both univariate logistic

regression and multivariate analysis. Moreover, we identified a

chemerin threshold of 291.4 ng/mL at day 23 after initial

symptoms that could predict mortality with a high sensitivity,

high specificity and an interesting high negative predictive value.

In our cohort, patients with hypertension had higher chemerin

levels. This is in agreement with a previously study

demonstrating that chemerin was independently associated

with hypertension (10).

The increased levels of chemerin detected in plasma of

COVID-19 patients were not observed in BAL and they were

much lower than the ones observed in blood. This could be

explained by the important dilution factor of the BAL and

possible degradation of chemerin by proteases. Also, no BAL

were obtained from healthy subjects and the number of BAL

collected was relatively small and from heterogenous patients

(some having an added bacterial infection, or variable duration

of hospitalization). All of these could interfere with our results

and further studies are therefore necessary to determine

chemerin levels in the BAL of these patients. Of note, we were

unable to find studies where chemerin levels were measured in

BAL for comparison.

We previously showed that ChemR23 KO mice exhibited a

similar immune signature as severe forms of COVID-19 with
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development of a cytokine storm and lower levels of pDCs and

lymphocytes (14). We confirmed this immune signature in our

cohort of COVID-19 patients. Particularly, regarding the total

number of immune cell populations, we found lower levels of

pDCs and NK cells from COVID-19 patients as previously

described in the literature (39, 40). Our results are also

consistent with a recent study, using partly the same cohort of

patients (23). Additionally, we reported lower expression of

ChemR23 on NK cells from COVID-19 patients. This could

be the result of an internalization of the receptor associated to

the presence of higher chemerin concentrations in COVID-19

patients. However, lower ChemR23 expression was not observed

on other immune cell types. Another hypothesis could be the

migration of NK cells with a high expression of ChemR23 to

inflamed tissues as the lung. Unfortunately, we could not

confirm this hypothesis through BAL analysis, as small cell

populations such as pDCs or NK cells may have been masked

by the dominance of neutrophils and monocytes/macrophages,

as previously described in literature (41). Finally, ChemR23

decrease on NK cells could be related to a modulating effect of

pro-inflammatory cytokines or chemokines. However, there is

no available information regarding the regulation of the

expression of ChemR23 on NK cells by other molecules

than chemerin.

Our histological analysis confirmed the expression of

ChemR23 in lung endothelial cells (EC) of both HC and

COVID-19 patients. Interestingly, endothelial activation and

dysfunction are involved in the physiopathology of severe viral

pneumonia and seems to be more prominent in cases of severe

SARS-CoV-2 infection. Indeed, it has been demonstrated that

patients who died from COVID-19 had predominant

angiocentric inflammation and more severe endothelial injury

than patients with influenza pneumonia of equal severity (42). It

has been previously described that the chemerin/ChemR23

system mediates anti-inflammatory effects on ECs via

activation of the Akt/eNOS/NO pathway (7). Additionally,

recent results from our group in the oncology field showed

that chemerin displays anti-tumoral properties that are also

mediated by ECs (43, 44). Therefore, the role of the chemerin/

ChemR23 on endothelial dysfunction observed in the COVID-

19 patients deserves further studies.

Besides ECs we observed that chemerin is expressed in

fibroblasts/myofibroblasts in lesions of late DAD and

ChemR23 is also expressed on smooth muscle cells. Recent

studies demonstrated that epithelial-to-mesenchymal and

endothelial-to-mesenchymal transition were present in patients

with severe COVID-19 (45, 46) and that these patients are more

likely to evolve to pulmonary fibrosis (47). The role of the

chemerin/ChemR23 system in the physiopathology of lung

fibrosis was not yet studied and overall, the role of this system

on fibrosis is not clear. Few studies on liver-related diseases

correlates the expression levels of chemerin or some of its
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receptors either positively or negatively with the development of

liver fibrosis (48–50). One study correlates kidney fibrosis

with increased levels of chemerin/ChemR23 in rat models

(51), while in a mouse model of wound healing administration

of the active form of chemerin promotes skin repair and

reduce scarring (52). Therefore, it would be of interest to

verify if the chemerin/ChemR23 system could be involved in

lung fibrosis following ARDS. Of note, we did not detect any

staining of ChemR23 on immune cells on our histological

analysis. This can be explained by the fact that the vast

majority of immune cells observed were PMN and although

there is a controversy in the literature regarding this issue, in

our experiments no expression of ChemR23 on PMNs was

observed (9, 30).

Our study has few limitations. It is a monocentric study with

a relatively small number of patients, particularly in the HC and

NH groups, that may decrease the robustness of our results.

Nevertheless, our patient cohort is quite representative of

hospitalized COVID-19 patients with a predominance of

elderly men with numerous comorbidit ies such as

hypertension and diabetes (16). As well, our HC group differs

significantly from COVID-19 patients, both for age and the

presence of comorbidities. However, analysis of the intrinsic

mortality of each comorbidity (age, gender, hypertension

and diabetes), only aging led to a significant increase in

mortality. Importantly, patients with chemerin levels at

D14 higher than 291.4 ng/mL had the highest percentage of

mortality (Supplemental Figure 4). This was confirmed by

univariate logistic regression and the multivariate model.

We selected patients from first and second wave of SARS-

CoV-2 infection and admission criteria to ICU and treatments

changed during this period. Although dexamethasone

treatment did not modify chemerin levels, other factors could

be involved and bias our results. Unfortunately, flow

cytometry analysis of BAL was limited due to the low number

of cells in these samples and no BAL samples were

obtained from healthy participants. Finally, regarding lung

samples used for IHC, to avoid infection of the staff, autopsies

of COVID-19 patients were performed 72 hours after the

patient’s death. To avoid biases in the analysis, we therefore

selected control tissues coming from late autopsies. However,

due to the late treatment of the samples, a desquamation of

epithelial and/or endothelial cells was observed in tissues from

COVID-19 patients and controls, probably affecting the

quality of the staining.

In conclusion, our study demonstrates that increased plasma

chemerin levels are a marker of severity and death in COVID-19

patients. However, multicentric studies and validation cohorts

are needed to affirm chemerin as a biomarker of severity and

death to be used in daily clinical practice. Further studies are also

needed to identify the precise mechanisms by which the

chemerin/ChemR23 system affects ARDS secondary to viral

pneumonia and its possible role in lung fibrosis.
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