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Abstract: Deficiency of estradiol during the menopausal period is an important risk factor for
neurodegenerative diseases, including various optic neuropathies. The aim of this study was to
evaluate the impact of surgical menopause on the function and survival ratio of RGCs in the rat
model of ONC (optic nerve crush). We used eight-week-old female Long Evans rats, divided into
two main groups depending on the time between ovariectomy procedure (OVA) and euthanasia (two
weeks vs. seven weeks), and subgroups—OVA, OVA + ONC, or ONC. Retinal function was assessed
with electroretinography (ERG). RGC loss ratio was evaluated using immunolabelling and counting
of RGCs. Seven weeks after OVA, the menopause morphologically affected interneurons but not
RGC; however, when the ONC procedure was applied, RGCs appeared to be more susceptible to
damage in case of deprivation of estrogens. In our analysis, PhNR (photopic negative responses) were
severely diminished in the OVA + ONC group. A deprivation of estrogens in menopause results in
accelerated retinal neurodegeneration that firstly involves retinal interneurons. The lack of estrogens
increases the susceptibility of RGCs to insults.

Keywords: estrogens; menopause; retinal ganglion cells; apoptosis; optic neuropathy

1. Introduction

Estrogens, in addition to their essential role in reproduction, possess various metabolic
activities and are involved in a variety of aspects of human health [1]. They maintain
different homeostatic and developmental processes, e.g., bone growth and turnover [2,3],
glucose and lipid metabolism, brain development and cognitive functions [4]. Moreover,
estrogens have stimulating and anti-inflammatory effects on the immune system, resulting
in the alleviation of some autoimmune disorder risks and symptoms [5,6]. Most estrogens
are produced in the ovaries; however, peripheral synthesis exists in adipose and nervous
tissues and bones. Estrogens act by activating several signaling pathways via binding
with two nuclear receptors—ERα (estrogen receptor α) and ERβ (estrogen receptor β)—
as well as a membrane receptor, GPER (G protein-coupled estradiol receptor), and the
subsequent phosphorylation and dimerization of this complex [7]. Modified complexes
can bind to estrogen-responsive elements (EREs) in the promoter region of target genes
and regulate their transcription [8]. ERs are expressed in various tissues, including the
retina (especially in retinal ganglion cells, RGCs). RGCs are essential for the transmission
of visual information processed by the photoreceptors of the retina to the brain, and RGC
axons form the optic nerve [9].

Researchers have paid particular attention to age-related ocular neurodegenerative
diseases because of the overlap of endocrine and neuronal dysfunction observed dur-
ing aging. Hormonal decline (especially a lack of estrogens during the perimenopausal
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period) is an important risk factor for neurodegenerative diseases, such as glaucoma, is-
chemic optic neuropathy and retinopathy, age-related macular degeneration, and diabetic
retinopathy [1,10,11].

Hormonal-dependent degeneration leads to the irreversible death of retinal neurons
(mainly RGCs) with no possibility of regeneration. This phenomenon is especially impor-
tant currently, given the increasing proportion of postmenopausal women in the worldwide
population.

Estrogen supplementation in postmenopausal women significantly reduced the risk of
POAG (primary open-angle glaucoma) development [12]. Moreover, the topical delivery of
17β-estradiol prevented RGC death in a glaucoma model in rats [13]. Additionally, estradiol
supplementation enhanced blood flow in the retina, protected RGCs, and prevented the
swelling of glial cells after ovariectomy in rats [14].

The prevalence of optic neuropathies and vascular retinal disorders increases with
age (i.e., retinal vein occlusion, retinal artery occlusion, anterior ischemic optic neuropa-
thy, diabetic retinopathy, glaucoma, anterior ischemic optic neuropathy). However, to
date, there are no efficient neuroprotective treatments targeting neurodegeneration in the
retina and optic nerve [15–23]. Since there is no efficient causative therapy for neurode-
generation, the current treatment is focused on eliminating risk factors of RGC death, but
not on RGC degeneration itself [16,21,24–27]. Recent studies show involvement of Erβ
receptors in the endogenous neuroprotection of axotomized RGCs via activation of the
ERK-c-Fos pathway, in glaucomatous neurodegeneration via Akt/CREB/thioredoxin-1,
MAPK/NF-kappaB, and inhibition of IL-18 [13,28,29]. In ischemic optic neuropathy, estro-
gens prevent RGCs degeneration, if applied before the trauma, with no effects of treatment
post-trauma [30,31]. Estrogens can prevent the effects of oxidative insult in retinal neurons
by activation of PI3K/Akt signaling and exert mitochondrial protection associated with the
attenuation of the proapoptotic Bax gene [32,33]. There is evidence that topical delivery
of 17β-estradiol can prevent RGCs death in a glaucoma model in rats as well as in acute
axotomy model [13,29,34]. There are multiple studies showing that estrogen deficiency,
associated with aging, accelerates optic nerve dysfunction [35,36].

However, estradiol has been observed as being able to protect RGCs from damage
due to its antioxidant and antiapoptotic activity, and the prevention of RGC apoptosis
with estrogen supplementation or estrogen receptor modulation would significantly delay
vision loss in affected patients and improve their overall quality of life in the future [14].

2. Materials and Methods
2.1. Animals, Anesthesia, and Euthanasia

All experimental procedures involving animals were approved by the Local Commit-
tee for Animal Research with adherence to the European Communities Council Directive
(86/609/EEC) and comparable to the guidelines published by the Institute for Labora-
tory Animal Research. Animals were provided by the Center for Experimental Medicine,
Medical University of Silesia, in Katowice, Poland. All surgical procedures were per-
formed under general anesthesia with an intraperitoneal injection of a mixture of ketamine
(50 mg/kg, VetaKetam, Vetagro, Lublin, Poland) and xylazine (5 mg/kg, Xylapan, Veto-
quinol Biowet, Pulawy, Poland). Animals were euthanized by an intraperitoneal overdose
of ketamine and xylazine solution and subsequent decapitation.

2.2. Study Design and Study Groups

In this study, we used twenty-seven eight-week-old female Long Evans rats divided
into two main groups depending on the time between the ovariectomy procedure and
euthanasia. The first group consisted of 12 animals—10 were ovariectomized and 2 re-
mained as a healthy untouched control. The animals were euthanized two weeks after
ovariectomy and subsequently underwent transcardiac perfusion with 500 mL of PBS and
500 mL of ice-cold 4% PFA solution. Both eyes were collected for further retinal isolation
and immunostaining. The second group consisted of 15 animals divided into 3 equal
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subgroups: animals that underwent an ovariectomy procedure only (OVA, n = 5 animals),
ovariectomy and subsequent unilateral optic nerve crush in the right eye six weeks after
ovariectomy (OVA + ONC, n = 5 animals), and animals that underwent optic nerve crush
in the right eye without previous ovariectomy (ONC, n = 5 animals). Untreated eyes from
ONC group were considered healthy. The animals were euthanized seven weeks after
the ovariectomy (one week after the ONC procedure). All eyes were collected, and the
retinas were isolated. In each of the three subgroups, one pair of retinas was homogenized
and fractionated for further Western blot analyses, and the remaining four retinas were
processed as whole mounts for immunostaining and stereology.

2.3. Ovariectomy Procedure

After general anesthesia, the backs of the rats were shaved, and the skin was cleaned
with 70% ethanol solution (Amara, Krakow, Poland). Ovariectomy was preceded by a 2-cm
long midline dorsal skin incision inferior to the rib cage. After exposing the peritoneal
cavity, the adipose tissue was pulled away until the right uterine tube with the ovary
was identified. The right ovary and surrounding fat were then gently retracted. After the
ligation of the distal uterine horn with absorbable 4/0 Vicryl Ethicon (Johnson & Johnson,
New Brunswick, NJ, USA), the right ovary was removed. Subsequently, the uterine horn
was placed back into the peritoneal cavity, and the peritoneum and muscle layers were
sutured with 4/0 Prolene Ethicon (Johnson & Johnson, New Brunswick, NJ, USA). The
skin was sutured with 3/0 Vicryl Ethicon (Johnson & Johnson, New Brunswick, NJ, USA),
and 10% povidone-iodine solution (Teva Pharmaceuticals, Warsaw, Poland) was applied
to the surgical area. The left ovary was removed in the same manner described above.
To avoid dehydration, all rats were subcutaneously injected with 2 mL of 0.9% sodium
chloride (Polpharma, Duchnice, Poland) solution. As a painkiller, 400 mg of paracetamol
(suspension 125 mg/5 mL; Polfa, Warszawa, Poland) was dissolved in 100 mL drinking
water (average drug dosage, 200 mg/kg of body weight daily).

2.4. Optic Nerve Crush Procedure

The procedure was performed under general anesthesia. The rats were placed under
the surgical microscope, and one drop of 0.5% proxymetacaine hydrochloride (Alcaine,
Alcon, Fort Worth, TX, USA) was applied to the right eye for topical anesthesia. A curved
pincet was gently slid between the upper and lower eyelids, and the eyeball was protruded
slightly out of the orbit. Using the other hand, the conjunctiva was dissected with microscis-
sors along the superior-temporal limbus until a 1–2 mm access to the subconjunctival space
was created. The subconjunctival tunnel was enlarged with the blunt side of the scissors,
and the tissues were then separated with the pincet to clearly visualize the retrobulbar
space. Self-closing forceps were slid along the eyeball past the superior muscle and between
large ciliary vessels, pushing away adipose tissue to expose the optic nerve. Self-closing
forceps were placed around the optic nerve 0.5 mm behind the globe, and the grip was
loosened and held steady for 10 s to crush the nerve. After the procedure, the tools were
gently removed, and 2% chloramphenicol ointment (Detromycin 2%, Chema-Elktromet,
Rzeszow, Poland) was topically applied to the eye surface and covered with a sterile pad.
Animals were placed in clean cages and checked daily for any signs of infection.

2.5. Electroretinography

After overnight dark adaptation, the rats were generally anesthetized. One drop of
0.5% proxymetacaine hydrochloride (Alcaine, Alcon, Fort Worth, TX, USA) was applied to
both eyes for topical anesthesia, and the pupils were dilated with 1% tropicamide (Polfa,
Warszawa, Poland). The rats were placed on a heated platform during each recording
session. ERG was recorded using a Celeris system (Diagnosys LLC, Cambridge, UK). The
measurement conditions were 0.01 cds/m2, 0.1 cds/m2, 1.0 cds/m2, 3.0 flash, 10 flash, and
10 Hz flicker. Retinal function was evaluated using flash ERG with photopic negative re-
sponse (PhNR) analysis as a function of RGCs in each animal before ovariectomy, six weeks
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after (before ONC) and before euthanasia (seven days after ONC). After the procedure, the
animals were returned to their cages on a regular day-night cycle.

2.6. Immunohistochemistry

The retinas were stained using anti-β3-tubulin (Tuj1) (1:300), anti-NeuN (1:100), anti-
Erα (1:500), anti-Erβ (1:500), and anti-Iba-1 (1:500) antibodies. Tissue sections were blocked
for 30 min in 10% NGS/TBS solution with 0.1% Triton X-100. Appropriate dilutions of
primary antibodies were applied to the specimens overnight at +4 ◦C. Species-matched
secondary antibodies (1:500 AlexaFluor, Life Technologies, Carlsbad, CA, USA) were
applied for 3 h at room temperature. Nuclei were counterstained with 4’,6-diamidino-2-
phenylindole (DAPI, Sigma, Aldrich, St. Louis, MO, USA) and visualized under a Zeiss
Axio Scope fluorescence microscope. A1 (Zeiss, Oberkochen, Germany).

Human retina samples from patients with POAG (n = 3) and healthy controls (n = 2)
were obtained from the Human Eye Biobank for Research, St. Michael’s Hospital, University
of Toronto, Canada under permission obtained from the Institutional Ethical Committee
of Medical University of Silesia in Katowice, Poland. The eyeball cross-sections were
deparaffinized, rehydrated and stained using anti-β3-tubulin (1:300), anti-Erα (1:500), and
anti-Erβ (1:500).

2.7. Cell Count

B3-Tubulin- and NeuN-positive cells were counted manually from corresponding
superior-inferior quadrants of retinas using the ImageJ software (http://imagej.nih.gov/ij/,
accessed on 15 September 2021). Ten photographs (five from the peripheral region and five
from the central region of the retina) from each sample were taken under a 20× objective
lens. The cells were counted within the ganglion cell layer of each retina, and the mean
values with standard deviations were calculated.

2.8. Western Blot

To obtain nuclear and cytoplasmic extracts from retinas, we performed fractionation
with a Nuclear Extract Kit (Active Motif, Carlsbad, CA, USA) according to the manufac-
turer’s instructions. The protein concentration was determined with Bradford Reagent
(BioRad, Hercules, CA, USA) using the Quick Start Bovine Serum Albumin Standard Set
(BioRad, Hercules, CA, USA) to obtain a standard curve. A total of 15 µg of protein concen-
trate was separated by 12% SDS-PAGE at 120 V and transferred onto PVDF membranes
(Pall Life Sciences, New York, NY, USA) at 250 mA for 90 min. After transfer, the PVDF
membranes were blocked with 3% BSA/TBS buffer for 1.5 h and incubated overnight at
+4 ◦C with estrogen receptor β (ERβ, dilution 1:500, Cloud-Clone Corp., Houston, TX, USA)
primary antibody. As a secondary antibody, we used goat anti-rabbit IgG StarBright Blue
700 (BioRad, 1:3000, Hercules, CA, USA) and incubated the membranes for 1 h in the dark
at room temperature. We used Anti-tubulin hFAB Rhodamine Antibody (BioRad, 1:3000,
Hercules, CA, USA) to normalize protein loading. The membrane signals were detected by
multiplexed fluorescence (ChemiDoc MP, BioRad, Hercules, CA, USA). Protein bands were
quantified using the Image Lab software.

2.9. Statistics

For statistical analysis, we used Prism 9.3.1 (GraphPad Software, Inc., La Jolla, CA,
USA). Descriptive statistics are shown as the mean ± standard deviation (SD). For the
pairwise comparisons, we used Welch’s t test, which considers unequal SDs. p values < 0.05
were considered significant.

http://imagej.nih.gov/ij/
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3. Results
3.1. Two Weeks of Surgical Menopause Induced by Ovariectomy Led to the Loss of Retinal
Interneurons but Not RGCs in the Rat Model

After two weeks, the retinal cell count in the ganglion cell layer showed signifi-
cant alterations. Tuj1-positive cells (presumably RGCs) showed no significant changes
(197.1 ± 41.5 vs. 212 ± 37.9 for healthy and OVA, respectively, p > 0.05, Welch’s t test). The
ganglion cell layer (GCL) NeuN-positive cell counts were 372.9 ± 58.3 and 316.9 ± 55.5
for the healthy and OVA groups, respectively (p < 0.01, Welch’s t test). NeuN-positive
cells represent RGCs and displaced interneurons (presumably amacrine cells). The lack of
significant differences in RGC counts for the Tuj1 marker suggests that NeuN alterations
originate from interneuron loss after the OVA procedure (Figure 1).
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Figure 1. The impact of two weeks of surgical menopause on RGC and interneuron counts within
the ganglion cell layer of the retina. (A) Statistical analysis of GCL cell count. ns: not significant,
**: p < 0.01, Welch’s t test. (B) Immunofluorescence staining of the whole mounted retinas for Tuj1
(red) and NeuN (green). Scale bar: 50 µm.

3.2. Two Weeks of Surgical Menopause Evoked Cellular Translocation of ERβ and Increased Retinal
Neuroinflammation

Estrogen deprivation hypersensitizes the retina to the detrimentally reduced estrogen
levels by changes in estrogen receptor expression. In our experiment, the only alteration
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of ERα was visible as an aggregation of ERα in RGC nuclei (Figure 2A); however, ERβ
showed more pronounced changes, with clear translocation of the ERβ protein from nuclei
to cell surfaces (Figure 2A). The WB analysis showed increased nuclear ERβ production
(p < 0.03, Welch’s t test) with a constant content of the cytoplasmic fraction (p > 0.05, Welch’s
t test), which in combination with immunostaining may suggest that the translocated signal
observed in the RGC originates from the cell membranes rather than the submembrane
cytoplasm (Figure 2A,B). Because estrogen signaling is known to inhibit inflammation,
estrogen deprivation was associated with proinflammatory cytokine release; in our study,
we observed the increased infiltration of stimulated microglial cells within the retina
(Figure 2C).
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Figure 2. Immunofluorescence staining of whole mounted retinas. (A) The difference between the
cellular localization of ERα and ERβ (green) colocalized with Tuj1 (red) in the healthy and OVA
groups. Scale bar: 20 µm. (B) WB analysis of ERβ nuclear and cytoplasmic fraction in OVA and
control (healthy) group, ns: not significant, *: p < 0.03, Welch’s t test. (C) Microglial cell infiltration
positive for Iba-1 (red) double-stained with NeuN (green). Scale bar: 50 µm.
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3.3. Six Weeks of Surgical Menopause Affected Retinal Interneuron Counts and Exacerbated RGC
Neurodegeneration in Acute Optic Neuropathy

Extending the duration of estrogen deprivation evoked a similar pattern of retinal
cell death to the two-week follow-up (Figure 3). The GCL NeuN-positive cell counts were
403.9 ± 48.5 and 378.2 ± 61 for healthy and OVA animals, respectively (p < 0.03, Welch’s t
test), and the Tuj1-positive cell counts were 286.2 ± 31.7 and 286.9 ± 50.7 for healthy and
OVA animals, respectively (p > 0.05, Welch’s t test).
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Figure 3. Immunofluorescence staining of whole mounted retinas. (A) NeuN- and Tuj1-positive cells
in the GCL of whole mounted retinas. Scale bar: 50 µm. (B) Statistical analysis of GCL cell count, ns:
not significant, *: p < 0.03; ****: p < 0.0001; Welch’s t test. (C) Iba-1 (green) cell infiltration merged
with Tuj1 (red). Scale bar: 50 µm.

Although surgical menopause did not affect the RGC count before any insult occurred,
the importance of the neuroprotective features of estrogen signaling was clearly visible
after the optic nerve crush trauma. In these settings, we observed a detrimental acceleration
of RGC and interneuron degeneration, especially in the OVA + ONC group. After the acute
trauma, NeuN-positive cell counts were 344.7 ± 27.7 and 286.2 ± 40 for the ONC and OVA
+ ONC groups, respectively (p < 0.0001, Welch’s t test). Furthermore, the Tuj1-positive
cell counts were 221.4 ± 27.7 and 200.3 ± 37.5 for the ONC and OVA + ONC groups,
respectively (p < 0.03, Welch’s t test). Estrogen deprivation, together with neuropathic
trauma (ONC) induced visible RGC axonopathy that could be observed as a dotted axonal
structure in Tuj1 staining (Figure 3). Estrogen deprivation increased macrophage infiltration
after optic nerve crush (Figure 3).
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3.4. The Electrical Function of Different Populations of Retinal Neurons Was Compromised by
Both Ovariectomy and Optic Nerve Crush

In the six-week menopause group, the PhNR responses, which indicate the activity
of retinal ganglion cells, were −16.8 ± 2.1 and −13.3 ± 1.1 µV for the healthy and OVA
groups, respectively, (p < 0.03, Welch’s t test) and −10.4 ± 0.8 and −5.5 ± 0.5 µV for the
ONC and OVA + ONC groups, respectively (p < 0.001, Welch’s t test) (Figure 4A). The
PhNR recordings proved that although morphologically unaffected, surgical menopause
deeply impaired the function and endogenous neuroprotective capacities of RGCs.
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Figure 4. Functional measurements in animal groups using ERG. (A) Photopic negative responses
(PhNR) in experimental groups, including statistical analysis of PhNR amplitudes, *: p < 0.03,
***: p < 0.001; Welch’s t test. (B) Oscillatory potentials (OP) in experimental groups including descrip-
tive statistics for OP1, OP2 and OP3. RE: right eye, LE: left eye.



Cells 2022, 11, 3062 9 of 14

An early oscillatory potential (OP1-3) analysis allowed us to draw conclusions about
the functional condition of retinal interneurons (mostly amacrine cells—OP1-2) and the
general vascular status of the retina (retinal glia, retinal vessels, and blood flow—OP3). The
latencies of OPs showed no significant differences between groups. The amplitudes of OP1
were 11.42 ± 2/10.61 ± 1.93 (right eye/left eye), 4.5 ± 0.49/4.8 ± 0.5, 6.9 ± 0.6/10.6 ± 1.1,
and 6.7 ± 0.6/7.3 ± 0.58 µV for the healthy, OVA, ONC and OVA + ONC groups, respec-
tively. The amplitudes of OP2 were 40.68 ± 3.1/42.02 ± 4.04; 31.21 ± 3.15/33.66 ± 3.18;
30.6 ± 2.91/42.6 ± 4.12; and 29.8 ± 2.1/35.1 ± 3.18 µV for the healthy, OVA, ONC and
OVA + ONC groups, respectively. The amplitudes of OP3 were 11.22 ± 1.1/13.46 ± 1.13;
36.31± 2.93/40.6± 4.08; 19.8± 2.1/21.22± 2.21; 16.3± 1.97/31.4± 3.27 µV for the healthy,
OVA, ONC and OVA + ONC groups, respectively (Figure 4B).

3.5. Human Glaucomatous Retinas Revealed Alterations in Estrogen Receptor Expression and
Cellular Localization

In the healthy male optic nerve and retina, the major ER receptor was ERβ, similar to
the optic nerves and retinas of female rats (Figures 2A and 5). ERβ expression was visible in
the cell bodies of optic nerve astrocytes and in retinal ganglion cells and ganglion cell layer
interneurons in the retina. The localization of ERβ in healthy RGCs was clearly nuclear. In
contrast, ERβ translocated into the membrane compartment in the glaucomatous group
(Figure 5).
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Figure 5. Immunofluorescence staining of longitudinal sections of healthy human optic nerve and
healthy and glaucomatous retinal cross sections. In the optic nerve sections, ERα and ERβ are labeled
in green, colocalizing with GFAP in red. In the retinal cross sections, ERα and ERβ are labeled in
green, colocalizing with Tuj1 in red. Scale bar: 20 µm. Arrow: indicates nuclear expression of ERβ
within RGCs, asterisk: nuclear expression of ERβ within GCL interneurons, GCL: ganglion cell layer.

4. Discussion

Similar to brain neurons, retinal neurons are affected by aging and become more
susceptible to inflammation, impaired recovery, and neurodegenerative diseases, such as
glaucoma [10]. The goal of our study was to evaluate the impact of surgical menopause on
visual functions in a rat model of acute optic neuropathy. In our study, we attempted to
characterize morphological changes in the retina of ovariectomized rats by assessing the
RGC and interneuron counts. Additionally, we conducted a complex electrophysiological
evaluation of RGC and retinal interneuron function. To this end, we introduced two surgical
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models, ovariectomy and optic nerve crush. This experimental model of optic nerve crush
allows us to precisely study RGC death and can be standardized in animals [37–41].

In our experiments, we used a well-established rat model of surgical menopause
induced by the bilateral removal of ovaries, which leads to a rapid decline in circulating
estrogens [42]. First, we showed that two weeks of surgical menopause caused significant a
loss of retinal interneurons (presumably amacrine cells) but not RGCs. In another approach,
we showed that six weeks of menopause impaired the function of both interneurons
and RGCs; however, it did not affect the RGC count. When an additional trauma (optic
nerve crush) was introduced, surgical menopause sensitized RGCs to damage, resulting
in accelerated apoptosis and diminishing PhNR responses. This degeneration of retinal
neurons developed because of a decrease in estradiol, which is neuroprotective.

Nakazawa et al. observed that the density of surviving RGCs after optic nerve injury
in ovariectomized rats was significantly lower than that in rats without ovariectomy in the
same model of nerve damage. Moreover, treatment with estradiol reduced the loss of RGCs
by inhibiting apoptosis. This finding indicates that ovariectomy alone does not affect the
survival of RGCs in rats if the estradiol levels are equated [29]. Allen et al. investigated
the impact of eight weeks of surgical menopause on the possible exacerbation of visual
dysfunction in a rat model of RGC injury induced by optic nerve crush. They revealed
that ovariectomy worsened visual acuity (a decrease in spatial frequency and contrast
sensitivity). It also induced a thinning of the retinal nerve fiber layer in all ovariectomized
rats. The authors observed that surgical menopause can affect the function of RGCs
after injury [43]. Similarly, Feola et al. revealed that surgical menopause worsened visual
function in rats with increased ocular hypertension. They also observed a thinning of retinal
fiber layer and a loss of total retinal thickness in rats with unilateral ocular hypertension [44].
In another study, the same authors showed that surgical menopause in rats affected some
physiological factors (outflow facility and ocular compliance) associated with glaucoma
pathogenesis. They suggested that such estrogen deprivation can contribute to a higher
risk of glaucoma in postmenopausal women [45]. In the current study, we identified both
estradiol receptors, ERα and ERβ, in RGCs. In healthy retina and optic nerve fibers, nuclear
ERβ was the main type of estrogen receptor. However, after ovariectomy, we observed a
translocation of ERβ from the nuclear to the membrane compartment. This translocation
could be linked to the hypersensitivity of cells to critically reduced estrogen levels and
has also been described by other authors [46]. Changes in ERα expression in our study
consisted only of receptor aggregation in RGC nuclei. Some authors state that ERβ has a
dominant role in neurodegenerative diseases and can be a potential target for the treatment
of retinal injury [35]. Cascio et al. observed that ERα is mainly present in amacrine cells and
RGCs, whereas ERβ is predominant in the inner synaptic layer of the retina [47]. Hence, the
neuroprotective activity of 17-β estradiol was shown to be mediated by ERβ, but not ERα, in
a model of oxidative stress induced in the retinal pigment epithelium. This neuroprotection
occurred via the preservation of mitochondrial function, reduction of reactive oxygen
species synthesis, and induction of antioxidant genes [48]. Several different isoforms of
ERβ with possible roles in different cellular processes have been described [49,50]. In our
study, the isoform detected in WBs of retinal homogenates appeared at approximately
35 kDa, which has been reported previously; however, this isoform has a role in the
regulation of other estrogen receptors rather than in ligand binding [51,52].

In addition to its obvious participation in the apoptosis of retinal neurons, we also
observed that estrogen deficiency increased the infiltration of stimulated microglial cells
(macrophages) within the retina. This phenomenon may be associated with a lack of
anti-inflammatory activity of estrogens [53,54]. Microglial cells are the first line of defense
against damage in the brain and retina and play a key role in the progression of neuroin-
flammation and neurodegeneration in glaucoma [55,56]. Many studies have suggested
that estradiol can diminish proinflammatory cytokine synthesis and protect RGCs against
neuroinflammatory damage and that its loss may trigger microglial activation. This pro-
cess is the first step of neural injury observed in glaucoma and can directly induce RGC
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loss [57,58]. In humans, the application of estrogen receptor modulators, i.e., raloxifene,
alleviates neuroinflammation after traumatic brain injury [59].

The neuroprotective role of estrogens has been investigated in various neurodegenera-
tive diseases, such as glaucoma. Hulsman et al. observed that early menopause (natural
menopause or menopause after irradiation therapy or bilateral ovariectomy) in women
is associated with a higher risk of open-angle glaucoma [60]. In addition, the risk for the
onset of glaucoma was found to be significantly increased in women undergoing bilateral
ovariectomy before the age of 43, and even hormonal replacement therapy with estradiol
did not reduce this risk [61]. Li et al. showed that decreased levels of estradiol and increased
levels of IL-8 in postmenopausal women were associated with a higher risk of primary
angle closure glaucoma and faster progression of the disease [62].

In our study, electroretinography provides a new understanding of the impact of estro-
gen deficiency on retinal function. Ovariectomy itself notably decreased the whole photopic
ERG amplitudes, suggesting impairment in intraretinal signal conduction. In the complex
ERG analysis, we found that the most affected group of retinal neurons in the case of selec-
tive OVA were interneurons, for which we observed both morphological and functional
decline. In the case of RGC, the functional decline preceded the morphological loss, which
became visibly exacerbated after optic neuropathy trauma. This finding may suggest that
retinal interneurons may be the population of retinal neurons that are especially sensitive
to estrogen loss, which, to our knowledge, has not been reported before. In the oscillatory
potential analysis, we found evidence of photoreceptor and interneuron declines after the
ovariectomy procedure, as observed in OP1-2 amplitude decreases [63,64]. However, the
increase in OP3 amplitudes after ovariectomy may suggest both the stimulation of retinal
glia and an impact on the retinal blood flow related to the differences in the rheological
features of blood and vascular resistances in postmenopausal animals [11,65–67].

Many authors have reported that estrogen treatment may prevent RGC degeneration
and promote survival, enhance blood flow in the retina, preserve visual acuity, and decrease
the risk of developing glaucoma [12–14]. Moreover, estrogen treatment has been mentioned
as a future possible therapeutic strategy for the treatment of this neurodegenerative dis-
ease [68].

In our study, we evaluated the influence of surgical menopause on the visual function
of RGCs after optic nerve crush injury. The results show that estrogen loss caused by
ovariectomy induced RGC degeneration and a loss of interneurons as well as neuroinflam-
matory reactions in the retina. These data are consistent with scientific evidence showing
that estrogen deprivation increases the risk of retina and optic nerve degeneration.

Changes in estradiol levels during women’s lives can affect the function of RGCs and
worsen visual function and optic nerve viability. Diminished exposure to the hormone
can correlate with an increased risk of retinal neurodegeneration and glaucoma develop-
ment. While a progressive loss of RGCs, optic nerve injury and the exacerbation of retinal
conductivity are the main causes of glaucoma, the precise mechanism of RGCs death in
this disease remains unclear; thus, investigating all possible pathways involved in disease
pathogenesis is important.
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