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Cytogenetic dosimetry is useful for evaluating the absorbed dose of ionizing radiation based 
on analysis of radiation-induced chromosomal aberrations. We created two types of in vi-
tro dose-response calibration curves for dicentric chromosomes (DC) and translocations 
(TR) induced by X-ray irradiation, using an electron linear accelerator, which is the most 
frequently used medical device in radiotherapy. We irradiated samples from four healthy 
Korean individuals and compared the resultant curves between individuals. Aberration 
yields were studied in a total of 31,800 and 31,725 metaphases for DC and TR, respec-
tively, obtained from 11 X-ray irradiation dose-points (0, 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 
4, and 5 Gy). The dose-response relationship followed a linear-quadratic equation, Y=C 
+αD+βD2, with the coefficients C=0.0011 for DC and 0.0015 for TR, α=0.0119 for DC 
and 0.0048 for TR, and β=0.0617 for DC and 0.0237 for TR. Correlation coefficients be-
tween irradiation doses and chromosomal aberrations were 0.971 for DC and 0.6 for TR, 
indicating a very strong and a moderate correlation, respectively. This is the first study im-
plementing cytogenetic dosimetry following exposure to ionizing X-radiation. 
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Cytogenetic dosimetry is an important technology for estimating 

the ionizing radiation dose absorbed by an individual and is based 

on chromosomal damage following chronic or acute exposure 

[1-3]. In Korea, cytogenetic dosimetry has been used by a few 

national centers, such as the Korea Institute of Radiological & 

Medical Sciences (KIRAMS) and the Radiation Health Institute 
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(RHI), to provide a dose assessment for individuals employed in 

the nuclear power industry and to prepare for potential expo-

sure via radiation emergency [4, 5]. However, very few clinical 

laboratories have been equipped to provide biodosimetry ser-

vices.

Of the several available cytogenetic dosimetry techniques, a 

dicentric chromosome (DC) assay and FISH translocation (TR) 

assay have recently been approved as new health technologies 

by the committee for New Health Technology Assessment (nHTA) 

pursuant to the Medical Services Act of August 2016 [6]. The 

main objective of cytogenetic dosimetry is to assess the irradi-

ated dose reflecting the damage caused by ionizing radiation 

and to recommend appropriate treatment for exposed patients 

[7, 8]. However, there are some challenges in disseminating 

these new practices in most clinical laboratories in Korea: (1) 

lack of adequate radiation generators, (2) unavailability of refer-

ence standards reflecting in vivo responses, (3) difficulties in 

achieving sample irradiation with a target dose, and (4) a com-

plicated statistical analysis for correct calibration curve-fitting 

procedure [2, 9]. 

We constructed in vitro dose-response calibration curves for 

DC and TR induced by X-ray irradiation generated with an elec-

tron linear accelerator (LINAC), which is the most frequently 

used medical device in external beam radiotherapy [9, 10]. We 

irradiated samples from four healthy Korean individuals and com-

pared the resultant curves between individuals.

After obtaining informed consent, heparinized peripheral blood 

samples were collected from two males (36 and 22 years) and 

two females (28 and 24 years) in a tertiary-care hospital in Bu-

cheon, Korea. Since chromosomal aberrations are known to be 

affected by factors such as age, sex, and smoking status [2], we 

chose study participants considering these factors. None had a 

history of smoking, and they had never been subjected to radio-

therapy or chemotherapy. The samples were aliquoted into 11 

separate tubes (one control and 10 for acute single exposure to 

doses of 0.05, 0.1, 0.25, 0.5, 0.75, 1, 2, 3, 4, and 5 Gy). X-rays 

were generated using a 6MV LINAC (Siemens, Concord, CA, 

USA) at a dose rate of 0.5 Gy/min. The samples were placed at 

the center of a 20×20 cm radiation field at a source-sample dis-

tance of 100 cm. Following irradiation, lymphocyte culture, har-

vesting, staining, and scoring processes were performed accord-

ing to the guidelines of the International Atomic Energy Agency 

(IAEA) [2]. Briefly, 1 mL blood from each dose-point was cul-

tured for 48 hrs in a culture tube containing 9 mL of medium 

(RPMI-1640). Next, 80 μL of colcemid (10 μg/mL) were added 

to 10 mL of each culture (final concentration, 0.08 μg/mL) dur-

ing the final 24 hours of the culture period. Following hypotonic 

treatment with 0.075 M KCl, the cells were fixed in a 3:1 metha-

nol-acetic acid solution. The cells were prepared on a slide, stained 

with Giemsa, and the number of DCs was scored per 1,000 meta-

phases. Once more than 100 DCs were identified in samples 

above the 2 Gy dose-point, analysis was stopped, and the pro-

portion per scored cells was calculated.

For the TR assay, samples were processed as described above, 

and metaphases were prepared on a slide using the same pro-

tocol described for the DC assay. Two slides were prepared for 

each sample, and the TR assay was carried out with a mixture 

of commercially available fluorophore-labeled probes (chromo-

some 1, red; chromosome 2, green; chromosome 4, yellow; 

Metasystems, Altlussheim, Germany). The number of TRs was 

scored per 1,000 metaphases. The detailed scoring rules for 

exchange-type aberration were as follows: (1) only stable cells 

were counted, (2) TR between three chromosomes was scored 

as two TR equivalents, (3) inversion or insertion was scored as 

one TR equivalent, and (4) deletions were not included in the 

analyses.

Metaphases were captured using the Metafer Image Analysis 

System (Metasystems). Two investigators independently inter-

preted the DC and TR results. Discordant interpretations were 

reanalyzed in several ways, including comparison of images and 

a final review by a third experienced investigator in the cytoge-

netic laboratory.

Statistical analysis of the data used to generate the dose-re-

sponse curves was conducted using R version 2.10.1 (R Foun-

dation for Statistical Computing, Vienna, Austria) and the analy-

sis scripts as mentioned in the IAEA guidelines [2]. To deter-

mine whether the DC or TR frequency followed a Poisson distri-

bution as expected for X-ray irradiation, the dispersion index (α2/

y) and the normalized unit of this index (u) were obtained for 

each dose. Pearson’s correlation was calculated between the 

delivered dose and chromosomal aberration frequency. P <0.05 

was considered statistically significant.

Following in vitro irradiation, a total of 31,800 and 31,725 

metaphases were analyzed for DC and TR, respectively. The av-

erage mitotic index was 24%, based on the equation described 

in the IAEA guidelines [2]. The DC and TR frequencies obtained 

following exposure to 11 different radiation doses are shown in 

Tables 1 and 2, respectively. The number of DC or TR increased 

with increasing radiation dose. The distribution of DC followed a 

Poisson distribution at all doses, whereas TR showed overdis-

persion at the 5 Gy dose point (Table 2). The DC or TR yield was 

fitted using a linear-quadratic model represented by the follow-
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ing equation: Y=C+αD+βD2, where Y is the DC or TR frequency 

yield, D is the absorbed dose in Gy, β is the corresponding qua-

dratic coefficient, α is the linear coefficient, and C is the back-

ground frequency. Dose-response curves for DC and TR induc-

tion were derived as follows: Y=(0.0011±0.0004)+(0.0119± 

0.0032)D+(0.0617±0.0019)D2 for DC, and Y=(0.0015±0.0004) 

+(0.0048±0.0024)D+(0.0237±0.0014)D2 for TR (Fig. 1). The 

correlation coefficient (r) was 0.971 for DC and 0.6 for TR, indi-

cating very strong and moderate correlations, respectively, be-

tween the fitted data points [11]. The goodness of fit test for DC 

induction (chi-squared [χ2]=12.76, degrees of freedom=8, P < 

0.05) and TR induction (χ2=4.76, degrees of freedom=8, P <0.05) 

indicated that the data fit well with the linear-quadratic model. 

Unlike physical measurements routinely conducted for indi-

viduals with occupational exposure, most people who are ex-

posed during radiation emergencies do not carry personal do-

simeters [7]. Therefore, biological dosimetry using chromosome 

damage is important not only to determine whether individuals 

Table 1. Distribution and frequencies of DCs in human peripheral blood lymphocytes following X-ray irradiation 

Dose (Gy)
Cells  

scored
DC cell distribution 

Total DC* DC/cell α2/y† u‡

0 1 2 3 4 5

0 4,000 3,994 6 0 0 0 0 6 0.0015 1.00 -0.06

0.05 4,000 3,995 5 0 0 0 0 5 0.0013 1.00 -0.05

0.1 4,000 3,990 10 0 0 0 0 10 0.0025 1.00 -0.11

0.25 4,000 3,966 34 0 0 0 0 34 0.0085 0.99 -0.37

0.5 4,000 3,921 77 2 0 0 0 81 0.0203 1.03 1.32

0.75 4,000 3,845 153 2 0 0 0 157 0.0393 0.99 -0.61

1.0 4,000 3,669 323 8 0 0 0 339 0.0848 0.96 -1.67

2.0 1,800 1,350 397 50 3 0 0 506 0.2811 0.95 -1.42

3.0 1,000 536 344 104 15 1 0 601 0.6010 0.92 -1.89

4.0 600 215 228 104 49 3 1 600 1.0000 0.93 -1.19

5.0 400 73 140 113 47 19 8 623 1.5575 0.88 -1.66

*A tricentric chromosome was scored as two dicentric equivalents. Quadricentric chromosomes were not observed in this study; †α2/y indicates dispersion 
index (α, variance; y, mean); ‡A u-value between -1.96 and +1.96 indicates a Poisson distribution.
Abbreviation: DC, dicentric chromosome.

Table 2. Distribution and frequencies of chromosome TRs in human peripheral blood lymphocytes following X-ray irradiation 

Dose (Gy)
Cells  

scored
TR cell distribution

Total TRs* TR/cell α2/y† u‡

0 1 2 3 4 5

0 4,000 3,995 5   0 0 0 0 5 0.0013 1.00 -0.05

0.05 4,000 3,991 9   0 0 0 0 9 0.0023 1.02 0.45

0.1 4,000 3,990 10   0 0 0 0 10 0.0025 1.00 -0.11

0.25 4,000 3,985 15   0 0 0 0 15 0.0038 1.00 -0.16

0.5 4,000 3,964 36   0 0 0 0 36 0.0090 0.99 -0.40

0.75 4,000 3,934 66   0 0 0 0 66 0.0165 0.98 -0.73

1.0 4,000 3,865 133   2  0 0 0 137 0.0343 1.00 -0.22

2.0 1,975 1,773 193   9 0 0 0 211 0.1068 0.98 -0.66

3.0 1,135 906 208 20 1 0 0 251 0.2211 0.96 -0.88

4.0 416 270 126 19 1 0 0 167 0.4014 0.86 -1.96

5.0 199 99 78 21 1 0 0 123 0.6181 0.78 -2.24

*Translocation between three chromosomes was scored as two translocation equivalents; †α2/y indicates dispersion index (α, variance; y, mean); ‡A u-value 
between -1.96 and +1.96 indicates a Poisson distribution.
Abbreviation: TR, translocation.
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have been over-exposed to radiation but also to consider indi-

vidual differences in susceptibility [2]. 

We present two types of dose-response curves compatible 

with two methods: a DC assay for assessing the acute phase 

within two months of exposure [7] and chromosome painting 

TR analysis using three probes (one each for chromosome pairs 

1, 2, and 4), which can estimate a radiation exposure dose re-

ceived several years earlier [12]. A previous Japanese study 

demonstrated considerable variation between individuals in the 

frequency of chromosomal aberrations formed, especially at low 

doses of ≤1 Gy [13]. We included a total of seven points below 

1 Gy in our study (0, 0.05, 0.1, 0.25, 0.5, 0.75, and 1); how-

ever, no significant inter-individual differences were observed in 

DC and TR frequency at these doses (See Supplemental Data 

Tables S1 and S2). In contrast, significant differences in DC fre-

quency were observed at doses of 3 and 4 Gy (See Supplemen-

tal Data Table S1). These variances are likely due to confound-

ing individual factors such as age, smoking, and polymorphisms 

in DNA repair genes [8]. Thus, it is important to analyze a suffi-

cient number of cells to reduce the influence of these factors; a 

number between 3,000 and 5,000 per point is suggested by the 

IAEA guidelines [2]. A limitation of this study is that it has not 

been performed on subjects of various ages. 

Laboratories should have their own dose-response curves to 

avoid inter-laboratory variations [2, 8] as several factors are known 

to impact the resulting dose-response curves, including the in-

Fig. 1. Dose-response calibration curves and metaphase images of chromosomal aberrations induced in human lymphocytes by X-ray ex-
posure. (A and B) Dose response curves with the 95% confidence interval delimited by dotted lines. The black dots (●) denotes data points 
with standard errors of the mean. (A) Dicentric yields, Y=(0.0011±0.0004)+(0.0119±0.0032)D+(0.0617±0.0019)D2, where Y is the di-
centric yield, and D is the absorbed dose in Gy. (B) Translocation of chromosomes 1, 2, and 4, Y=(0.0015±0.0004)+(0.0048±0.0024)D 
+(0.0237±0.0014)D2, where Y is the translocation yield and D is the absorbed dose in Gy. (C) Dicentric chromosomes and their respective 
fragments are marked with an arrows and arrowheads, respectively. (D) Metaphases with painted chromosomes—1 (red), 2 (green), and 4 
(yellow)—and an apparent two-way translocation involving chromosomes 2 and 4 (arrows).
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trinsic environmental conditions in each laboratory, choice of re-

agents, technical procedures and equipment, scoring criteria, 

and the subjective nature of microscopic identification of chro-

mosome aberrations [9, 14].

In order to approximate in vitro-generated calibration curves 

as close as possible to in vivo responses, it is important to gen-

erate the curves using a wide range of potentially absorbed doses 

that represent the majority of accidental human exposure to 

ionizing radiation (0.1 to 5 Gy) [2, 9]. Since most radiological in-

cidents involve overexposure to gamma-radiation or X-rays [2, 4, 

15], curves for these two radiation sources should be preferen-

tially established. In Korea, most dosimetry laboratories use 60Co 

as a radiation source for dosimetry calibration curves [5]. We 

used X-rays generated by electron LINACs, and this curve could 

aid in assessing workers’ radiation doses, radiation emergencies, 

and in vitro dose reconstruction for medical accidents caused by 

X-rays. This is the first study implementing cytogenetic dosime-

try following exposure to ionizing X-radiation. 
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