J. Phys. Ther. Sci. 33: 329-333, 2021

e

Original Article

Effects of walking with a “draw-in maneuver” on
the knee adduction moment and hip muscle
activity

Remi Fuitta, PT, MSY, Susumu Ota, PT, PhDY*, Yukar1 Ocawa, PT?, Hirok1 Ota, PT?

) Department of Rehabilitation and Care, Seijoh University: 2-172 Fukinodai, Tokai, Aichi 476-8588, Japan
2 Department of Physical Medicine and Rehabilitation, Nagoya Tokushukai General Hospital, Japan

Abstract. [Purpose] To investigate the effect of performing a draw-in maneuver (DI) on knee adduction moment
(KAM) and hip and trunk muscle activities while walking. [Participants and Methods] We included 30 healthy
young adults (21.5 + 0.6 years, 16 males and 14 females) in this study. We measured the KAM and lever arm while
participants walked with either a normal gait or a DI gait. We also performed surface electromyography (EMG) of
the hip and trunk muscles (i.e., internal oblique abdominal muscle [IO], external oblique abdominal muscle [EO],
multifidus muscle [MF], and gluteus medius muscle [GM]). [Results] The 1st peak of the KAM was significantly
lower when walking with a DI gait compared to when walking with a normal gait. The integrated EMG activity of
the 10, EO, and GM during the 1st half of the stance phase, and of the IO and EO during the 2nd half of the stance
phase was significantly higher during the DI than during normal gait. [Conclusion] Compared with a normal gait,
a DI gait leads to a decrease in the 1st peak of the KAM as a result of the shorter lever arm, and an increase in the

muscular activity of the GM, 10O, and EO.
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INTRODUCTION

Knee osteoarthritis (OA) is a widespread degenerative joint disease that causes poor physical function in middle-aged and
older persons!=). A high knee adduction moment (KAM) while walking is related to advancing medial knee OA* . Gait
modifications that reduce the KAM may therefore contribute to prevent knee OA®®). A toe-out gait® !9, toe-in gait!!- 12), and
a gait with an increased trunk lean'3 14 effectively reduce the KAM. Patients with knee OA often tend to adopt a toe-out gait
or trunk lean gait as a compensatory gait pattern'> 19, Shull et al.®) studied the effects of a 6-week gait modification period
to reduce the KAM and knee pain, and demonstrated that the trunk lean gait modification is associated with discomfort,
difficulty maintaining posture, and decreased balance. Adherence to gait modifications with voluntary and forced trunk and
leg alignment changes, however, may be difficult over the long-term.

A gait modification that requires no voluntary alignment change is the draw-in maneuver (DI), which is reported to
improve thoracic kyphosis and reduce the KAM!7). In the DI maneuver, participants are asked to bring their belly button
up and toward the spine as they exhale, thereby contracting the abdominal muscles and increasing stability!®). Ota et al.!”
reported that the KAM in a healthy population was significantly reduced by walking with a DI maneuver (DI gait) in which
the thoracic kyphosis angle is decreased as measured in a standing position while performing the DI maneuver. The authors
considered that insufficient instruction for the DI gait, i.e., a simple verbal command to “decrease the abdominal circumfer-
ence”, was a limitation of previous studies'”). Therefore, proper instruction regarding the DI maneuver and confirmation of
the activities of the abdominal and paravertebral muscles are necessary for studying the effects of the DI gait!?).
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Several studies have examined the effect of the DI gait on core stability, focusing on physical function?’ 2D and low back
pain??, but few studies have examined the hip muscle activities during the DI gait. Weak hip muscles, especially the gluteus
medius muscle (GM), are associated with an increased KAM?®. The pelvic drop on the swing side due to weak hip abduction
muscle leads to a longer frontal plane KAM lever arm?®. Hinman et al.2¥ reported that the GMs are weak in patients with
knee OA. A gait modification that decreases the KAM and increases GM activity is expected to be useful toward preventing
knee OA%).

In the present study, we investigated the effect of performing the DI gait with appropriate instruction for reducing the
KAM and increasing hip and trunk muscle activities.

PARTICIPANTS AND METHODS

Thirty healthy young adults (16 males, 14 females) were enrolled in the present study. Participants were recruited by
distributing leaflets and posters placed on a bulletin board available to the student body of the Seijoh University Department
of Rehabilitation and Care according to the following inclusion criteria: 1) absence of current musculoskeletal pain or muscle
disorders and 2) no previous musculoskeletal surgery. Each of the participants provided informed written consent. The Ethics
Committee of Seijoh University approved the study (approval number: 15PT06). Mean age, height, weight, and body mass
index (BMI) of the participants were 21.5 + 0.6 years, 165.2 £ 10.0 cm, 56.2 £ 9.7 kg, and 20.5 + 2.3 kg/m?, respectively.

A 10-camera motion analysis system (Venus 3D; Nobby Tech, Tokyo, Japan) was used to collect the 3-dimensional (3D)
trajectory data, which were sampled at 100 Hz and digitally recorded. A force plate (AccuGait; AMTI, Watertown, MA,
USA) synchronized to the 3D motion analysis system was used to collect the ground reaction forces with a 100-Hz sampling
rate. For each participant, reflective sphere markers (7 mm in diameter) were attached to 25 anatomic locations as well as to
thigh and lower leg plates.

Tasks were performed with the participants walking barefoot at a controlled speed within + 5% of the standard speed set
for Japanese?® as measured at the 2nd sacrum marker. Participants were asked to walk a 6-m walkway 3 times and the trials
were recorded.

A 4-link gait model, including segments for the pelvis, thigh, lower leg, and foot was used. The positions of the segments
were estimated according to a global coordinate model?”, and the data from all markers obtained during static calibration
were used to customize the model for each participant. The segment-embedded reference frames for the associated body
segments were defined on the basis of the marker coordinates obtained above®®). The inertial properties for each limb segment
were based on Japanese inertial characteristics?”). The center of the knee joint was defined as the midpoint between the lateral
and medial femoral epicondyle.

Inverse dynamics were applied for calculating the external KAMs, which were normalized to body mass and leg length
according to the height of the trochanter marker during the static calibration3?). The mean of the 3 trials was used to analyze
the KAMs. All data were normalized to 100% of a gait cycle with 0% heel contact of the measured leg. We measured the 1st
and 2nd KAM peaks during the stance phase (0-30% and 30-60% of the gait cycle)?D. The length of the KAM lever arm was
defined as the perpendicular distance between the ground reaction force vector and the center of the knee joint in the frontal
plane. Lever arms were determined at the 1st and 2nd KAM peaks.

Measurements were obtained while the participants walked first with a normal gait and then with the DI gait. For the DI
gait, participants received verbal instructions to “Please draw your belly button up and in towards your spine as you exhale.
Please hold this condition without forward inclination of the trunk”, with confirmation of the posture during standing and
walking?. A general 5-mm wide polypropylene rope was placed around the body at the level of the navel to help partici-
pants maintain the contracted abdominal circumference during the DI gait. The rope was 2.1 cm shorter than the abdominal
circumference and both ends of the rope were taped together; the tape came off when the abdomen expanded, as described
in a previous study!”.

Surface EMG of the trunk and hip muscles on the measured leg side was obtained to evaluate the activities of the internal
oblique abdominal muscle (I0), external oblique abdominal muscle (EO), multifidus muscle (MF), and GM. The IO, EO, and
MF are contracted while performing the DI maneuver'?, which is thought to lead to increased trunk stability®*), and contract-
ing the GM is considered to reduce the KAM?34 3%, Surface EMG of the 10, EO, MF, and GM was obtained using disposable
silver/silver chloride surface electrodes having a recording diameter of 1 cm (Blue Sensor M-00-S, Ambu Corp, Copenhagen,
Denmark). Bipolar electrode pairs and a ground electrode were positioned longitudinally over the 10, EO, MF, and GM
at 2.5 cm intervals according to standard instructions (i.e., SENIAM recommendations [Biomedical Health and Research
Program of the European Union] and Cram’s instructions [Criswell E. Cram’s Introduction to Surface Electromyography]).
The EMG signals from each muscle were recorded using an EMG acquisition system (Mwatch; Wada Aircraft Technology
Co., Ltd., Kiyosu, Japan). EMG signals were sampled at 1,000 Hz, amplified, and band-pass filtered (10 + 300 Hz), and then
rectified. Integrated EMG (iIEMG: mVs) of the 4 muscles in the 1st and 2nd halves of the stance phase were used in the final
analysis.

The Shapiro-Wilk test was used to assess the normality of the data distribution. When the data were normally distributed,
a paired t-test was used to analyze differences in the biomechanical values between the normal and DI gait conditions. When
the data were non-normally distributed, we applied the Wilcoxon signed-rank test. A p<0.05 was considered significant. The
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effect size (Choen’s d) was evaluated for all comparisons. All statistical analyses were performed using SPSS, Version 16.0
(IBM Japan, Chuo Ward, Tokyo, Japan).

RESULTS

The 1st and 2nd KAM peaks are provided in Table 1. The 1st KAM peak was significantly lower during the DI gait com-
pared with that during the normal gait (p<0.05). The lever arm lengths at both KAM peaks are also presented in Table 1. The
lever arm length at the 1st KAM peak was significantly shorter during the DI gait than that during the normal gait (p<0.05).

The iIEMGs of the IO, EO, and GM during the 1st half of the stance phase and the iIEMGs of the IO and EO during the 2nd
half of the stance phase were significantly increased when the participants walked with the DI gait compared to the normal
gait (Table 2).

DISCUSSION

The findings of the present study demonstrated that providing adequate instructions for a DI maneuver that achieves a 2 cm
decrease in abdominal circumference while walking significantly decreased the 1st KAM peak. A previous study reported
that the KAM was significantly reduced by walking with the DI gait in which the thoracic kyphosis angle was decreased
as measured in a standing position while performing the DI maneuver as compared with that during a normal gait'?. In the
present study, KAM was decreased simply by instructing the participant to shrink the abdominal circumference and confirm-
ing the posture without measuring the thoracic kyphosis angle. Suehiro et al.3®) reported that tape measure-based feedback
provided when patients performed a DI maneuver effectively facilitated the isolation of transverse abdominal contractions
in the crook lying, sitting, and standing positions compared with no feedback. Here we placed a general polypropylene rope
around the body at the level of the navel to help maintain the contracted circumference during the DI gait. Both 10 and EO
activities were increased when participants walked with the DI gait compared with a normal gait, indicating that proper
instruction facilitated performance of the DI maneuver, which was useful for decreasing the KAM.

We evaluated the effect of a gait modification to reduce the KAM. Compared with a normal gait, the DI gait significantly
decreased the 1st KAM peak with a mean percent decrease of 5%. Several studies have evaluated the effects of various gait
modifications to reduce the KAM, such as walking 15% slower than a self-selected walking speed, which decreases the 1st
KAM peak by 8%37. Adding a 6° trunk lean while walking also reduces the 1st KAM by 9%, compared with a normal gait!?.

Table 1. Comparison of biomechanical data between normal gait and gait with draw-in maneuver

Normal gait DI gait p-value ES
1st KAM (x10°%: no unit) 55+1.2 52+14 0.003 0.28
2nd KAM (x10°2: no unit) 54+17 54+£1.5 0.839 0.01
Ist LA at peak 15 KAM (mm) 383+12.3 357+11.5 0.006 0.21
2nd LA at peak 2" KAM (mm) 39.0+10.9 39.2+104 0.959 0.02

DI: draw-in maneuver; ES: effect size; KAM: knee adduction moment; LA: lever arm.

Table 2. Comparison of the iEMG of the trunk and hip muscles during the 1st and
2nd halves of the stance phase

(Unit: mVs) Normal gait DI gait p-value ES
1st half of stance phase

10 2.77+£1.62 3.80+2.34 0.001 0.64

EO 3.10+ 1.34 3.94£1.55 <0.001 0.63

MF 4.22+1.82 4.46 £ 1.97 0.251 0.14

GM 2.73+1.29 3.03+1.57 0.037 0.23
2nd half of stance phase

10 2.49 + 1.40 3.58+2.15 <0.001 0.78

EO 243+0.99 3.27+143 <0.001 0.85

MF 322+ 145 3.57+1.48 0.054 0.24

GM 1.87 £0.91 2.14+1.34 0.098 0.30

DI: draw-in maneuver; ES: effect size; 10: internal oblique abdominal muscle; EO:
external oblique abdominal muscle; MF: multifidus muscle; GM: gluteus medius
muscle.
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A toe-out gait has variable effects on the early-stance KAM, with changes ranging from a decrease of 55.2% to an increase
of 12.9%3%. Further, a Nanba walking style decreases the 1st KAM by 11%73%. Together, these findings indicate that gait
modifications may have various advantageous effects for reducing the 1st KAM peak. The DI gait is suggested to decrease the
KAM without changing the voluntary leg alignment or trunk inclination, but this has not been verified. Further investigation
is needed to confirm whether a 5% decrease in the KAM is enough to be beneficial over the long-term.

The decrease in the KAM is assumed to be due mainly to the significantly shorter lever arm length at the 1st KAM peak
when walking with a DI gait than when walking with a normal gait (Table 1). The GM activity is significantly higher when
walking with a DI gait compared with a normal gait. The increased GM activity ameliorates the pelvic drop on the opposite
side. High activity of the hip and trunk muscles during the DI maneuver could facilitate a smooth lateral shift of the center
of mass toward the stance foot, further shortening the lever arm in the stance phase. Therefore, the high GM activity could
help to decrease the KAM. That is, during the DI gait, the GM activity is high, which is assumed to decrease the pelvic
drop on the swing leg side as well as to decrease the lever arm length due to a shift of the center of the body mass toward
the stance limb, thereby preventing increases in the KAM. Additionally, the KAM magnitude is significantly increased by
a pelvic drop alone, which is a risk factor for the progression of knee OA'¥. Hinman et al.?* demonstrated that, compared
with asymptomatic controls, people with knee OA have significant hip abduction muscle weakness. As described above, the
DI gait might prevent knee OA by increasing the activity of the hip abduction muscle in addition to decreasing the KAM.

In the present study, the participants were healthy individuals and only the immediate effect of the gait modification was
examined, which may be considered limitations. Further studies should be performed to verify the long-term effects of the DI
gait in patients with knee OA and other diseases associated with knee OA, such as diabetes mellitus and obesity*?), including
the compliance rate of applying the DI gait.

Compared with a normal gait, walking with the DI gait led to a decrease in the 1st KAM peak by shortening the lever arm
and increasing the activities of GM, 10, and EO muscles under the same controlled walking speed.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Conflict of interest
The authors declare no conflicts of interest.

REFERENCES

1)  Yoshimura N, Muraki S, Oka H, et al.: Prevalence of knee osteoarthritis, lumbar spondylosis, and osteoporosis in Japanese men and women: the research on
osteoarthritis/osteoporosis against disability study. J Bone Miner Metab, 2009, 27: 620—628. [Medline] [CrossRef]

2) Lawrence RC, Felson DT, Helmick CG, et al. National Arthritis Data Workgroup: Estimates of the prevalence of arthritis and other rheumatic conditions in the
United States. Part II. Arthritis Rheum, 2008, 58: 26-35. [Medline] [CrossRef]

3)  McAlindon TE, Cooper C, Kirwan JR, et al.: Determinants of disability in osteoarthritis of the knee. Ann Rheum Dis, 1993, 52: 258-262. [Medline] [Cross-
Ref]

4)  Miyazaki T, Wada M, Kawahara H, et al.: Dynamic load at baseline can predict radiographic disease progression in medial compartment knee osteoarthritis.
Ann Rheum Dis, 2002, 61: 617-622. [Medline] [CrossRef]

5)  Chang AH, Moisio KC, Chmiel JS, et al.: External knee adduction and flexion moments during gait and medial tibiofemoral disease progression in knee osteo-
arthritis. Osteoarthritis Cartilage, 2015, 23: 1099-1106. [Medline] [CrossRef]

6) Simic M, Hinman RS, Wrigley TV, et al.: Gait modification strategies for altering medial knee joint load: a systematic review. Arthritis Care Res (Hoboken),
2011, 63: 405-426. [Medline]

7) Hunt MA, Simic M, Hinman RS, et al.: Feasibility of a gait retraining strategy for reducing knee joint loading: increased trunk lean guided by real-time bio-
feedback. J Biomech, 2011, 44: 943-947. [Medline] [CrossRef]

8)  Shull PB, Silder A, Shultz R, et al.: Six-week gait retraining program reduces knee adduction moment, reduces pain, and improves function for individuals with
medial compartment knee osteoarthritis. J Orthop Res, 2013, 31: 1020-1025. [Medline] [CrossRef]

9)  Zhao D, Banks SA, Mitchell KH, et al.: Correlation between the knee adduction torque and medial contact force for a variety of gait patterns. J Orthop Res,
2007, 25: 789-797. [Medline] [CrossRef]

10) Jenkyn TR, Hunt MA, Jones IC, et al.: Toe-out gait in patients with knee osteoarthritis partially transforms external knee adduction moment into flexion mo-
ment during early stance phase of gait: a tri-planar kinetic mechanism. J Biomech, 2008, 41: 276-283. [Medline] [CrossRef]

11) Shull PB, Shultz R, Silder A, et al.: Toe-in gait reduces the first peak knee adduction moment in patients with medial compartment knee osteoarthritis. J Bio-
mech, 2013, 46: 122—-128. [Medline] [CrossRef]

12) van den Noort JC, Schaffers I, Snijders J, et al.: The effectiveness of voluntary modifications of gait pattern to reduce the knee adduction moment. Hum Mov
Sci, 2013, 32: 412—424. [Medline] [CrossRef]

13) Simic M, Hunt MA, Bennell KL, et al.: Trunk lean gait modification and knee joint load in people with medial knee osteoarthritis: the effect of varying trunk
lean angles. Arthritis Care Res (Hoboken), 2012, 64: 1545-1553. [Medline] [CrossRef]

14) Takacs J, Hunt MA: The effect of contralateral pelvic drop and trunk lean on frontal plane knee biomechanics during single limb standing. J Biomech, 2012,
45:2791-2796. [Medline] [CrossRef]

J. Phys. Ther. Sci. Vol. 33, No. 4, 2021 332


http://www.ncbi.nlm.nih.gov/pubmed/19568689?dopt=Abstract
http://dx.doi.org/10.1007/s00774-009-0080-8
http://www.ncbi.nlm.nih.gov/pubmed/18163497?dopt=Abstract
http://dx.doi.org/10.1002/art.23176
http://www.ncbi.nlm.nih.gov/pubmed/8484690?dopt=Abstract
http://dx.doi.org/10.1136/ard.52.4.258
http://dx.doi.org/10.1136/ard.52.4.258
http://www.ncbi.nlm.nih.gov/pubmed/12079903?dopt=Abstract
http://dx.doi.org/10.1136/ard.61.7.617
http://www.ncbi.nlm.nih.gov/pubmed/25677110?dopt=Abstract
http://dx.doi.org/10.1016/j.joca.2015.02.005
http://www.ncbi.nlm.nih.gov/pubmed/20981808?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/21144522?dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2010.11.027
http://www.ncbi.nlm.nih.gov/pubmed/23494804?dopt=Abstract
http://dx.doi.org/10.1002/jor.22340
http://www.ncbi.nlm.nih.gov/pubmed/17343285?dopt=Abstract
http://dx.doi.org/10.1002/jor.20379
http://www.ncbi.nlm.nih.gov/pubmed/18061197?dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2007.09.015
http://www.ncbi.nlm.nih.gov/pubmed/23146322?dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2012.10.019
http://www.ncbi.nlm.nih.gov/pubmed/23647833?dopt=Abstract
http://dx.doi.org/10.1016/j.humov.2012.02.009
http://www.ncbi.nlm.nih.gov/pubmed/22556125?dopt=Abstract
http://dx.doi.org/10.1002/acr.21724
http://www.ncbi.nlm.nih.gov/pubmed/22999376?dopt=Abstract
http://dx.doi.org/10.1016/j.jbiomech.2012.08.041

15)

16)

17)

18)
19)

20)

21)
22)

23)

24)

25)

26)
27)

28)

29)

30)

31)

32)

33)

34)

35)

36)

37)

38)

39)

Hurwitz DE, Ryals AB, Case JP, et al.: The knee adduction moment during gait in subjects with knee osteoarthritis is more closely correlated with static align-
ment than radiographic disease severity, toe out angle and pain. J Orthop Res, 2002, 20: 101-107. [Medline] [CrossRef]

Miindermann A, Dyrby CO, Andriacchi TP: Secondary gait changes in patients with medial compartment knee osteoarthritis: increased load at the ankle,
knee, and hip during walking. Arthritis Rheum, 2005, 52: 2835-2844. [Medline] [CrossRef]

Ota S, Kano R, Fukuta S, et al.: Does decrease of the thoracic kyphosis influence decrease knee adduction moment during gait? A preliminary study of a
healthy population. J Phys Ther Sci, 2015, 27: 3077-3079. [Medline] [CrossRef]

Stanton T, Kawchuk G: The effect of abdominal stabilization contractions on posteroanterior spinal stiffness. Spine, 2008, 33: 694-701. [Medline] [CrossRef]
Richardson CA, Snijders CJ, Hides JA, et al.: The relation between the transversus abdominis muscles, sacroiliac joint mechanics, and low back pain. Spine,
2002, 27: 399-405. [Medline] [CrossRef]

Watson T, Graning J, McPherson S, et al.: Dance, balance and core muscle performance measures are improved following a 9-week core stabilization training
program among competitive collegiate dancers. Int J Sports Phys Ther, 2017, 12: 25-41. [Medline]

Kibler WB, Press J, Sciascia A: The role of core stability in athletic function. Sports Med, 2006, 36: 189-198. [Medline] [CrossRef]

Goldby LJ, Moore AP, Doust J, et al.: A randomized controlled trial investigating the efficiency of musculoskeletal physiotherapy on chronic low back disorder.
Spine, 2006, 31: 1083-1093. [Medline] [CrossRef]

Chang A, Hayes K, Dunlop D, et al.: Hip abduction moment and protection against medial tibiofemoral osteoarthritis progression. Arthritis Rheum, 2005, 52:
3515-3519. [Medline] [CrossRef]

Hinman RS, Hunt MA, Creaby MW, et al.: Hip muscle weakness in individuals with medial knee osteoarthritis. Arthritis Care Res (Hoboken), 2010, 62:
1190-1193. [Medline] [CrossRef]

Raghava Neelapala YV, Bhagat M, Shah P: Hip muscle strengthening for knee osteoarthritis: a systematic review of literature. J Geriatr Phys Ther, 2020, 43:
89-98. [Medline] [CrossRef]

Sekiya N, Nagasaki H, Ito H, et al.: The invariant relationship between step length and step rate during free walking. J Hum Mov Stud, 1996, 30: 241-257.
Lu TW, O’Connor JJ: Bone position estimation from skin marker co-ordinates using global optimisation with joint constraints. J Biomech, 1999, 32: 129-134.
[Medline] [CrossRef]

Cappozzo A, Catani F, Croce UD, et al.: Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin
Biomech (Bristol, Avon), 1995, 10: 171-178. [Medline] [CrossRef]

Ae M, Tang H, Yokoi T: Estimation of inertia properties of the body segments in Japanese athletes. Biomechanisms, 1992, 11: 23-33.

Hof AL: Scaling gait data to body size. Gait Posture, 1996, 4: 222-223. [CrossRef]

Perry J: Gait analysis. Thorofare: Slack Incorporated, 1992.

McGalliard MK, Dedrick GS, Brismée JM, et al.: Changes in transversus abdominis thickness with use of the abdominal drawing-in maneuver during a func-
tional task. PM R, 2010, 2: 187-194, quiz 226. [Medline] [CrossRef]

Hides J, Wilson S, Stanton W, et al.: An MRI investigation into the function of the transversus abdominis muscle during “drawing-in” of the abdominal wall.
Spine, 2006, 31: E175-E178. [Medline] [CrossRef]

Magalhdes CM, Resende RA, Kirkwood RN: Increased hip internal abduction moment and reduced speed are the gait strategies used by women with knee
osteoarthritis. J Electromyogr Kinesiol, 2013, 23: 1243—-1249. [Medline] [CrossRef]

Rutherford DJ, Hubley-Kozey C, Stanish W: Hip abductor function in individuals with medial knee osteoarthritis: implications for medial compartment load-
ing during gait. Clin Biomech (Bristol, Avon), 2014, 29: 545-550. [Medline] [CrossRef]

Suchiro T, Ishida H, Kobara K, et al.: Tape measure-based real-time feedback during the abdominal draw-in maneuver facilitates isolated transverse abdominal
contraction. J Phys Ther Sci, 2018, 30: 1081-1085. [Medline] [CrossRef]

Robbins SM, Maly MR: The effect of gait speed on the knee adduction moment depends on waveform summary measures. Gait Posture, 2009, 30: 543-546.
[Medline] [CrossRef]

Simic M, Wrigley TV, Hinman RS, et al.: Altering foot progression angle in people with medial knee osteoarthritis: the effects of varying toe-in and toe-out
angles are mediated by pain and malalignment. Osteoarthritis Cartilage, 2013, 21: 1272-1280. [Medline] [CrossRef]

Ota S, Ogawa Y, Ota H, et al.: Beneficial effects of a gait used while wearing a kimono to decrease the knee adduction moment in healthy adults. PLoS One,
2017, 12: €0179260. [Medline] [CrossRef]

333


http://www.ncbi.nlm.nih.gov/pubmed/11853076?dopt=Abstract
http://dx.doi.org/10.1016/S0736-0266(01)00081-X
http://www.ncbi.nlm.nih.gov/pubmed/16145666?dopt=Abstract
http://dx.doi.org/10.1002/art.21262
http://www.ncbi.nlm.nih.gov/pubmed/26644647?dopt=Abstract
http://dx.doi.org/10.1589/jpts.27.3077
http://www.ncbi.nlm.nih.gov/pubmed/18344865?dopt=Abstract
http://dx.doi.org/10.1097/BRS.0b013e318166e034
http://www.ncbi.nlm.nih.gov/pubmed/11840107?dopt=Abstract
http://dx.doi.org/10.1097/00007632-200202150-00015
http://www.ncbi.nlm.nih.gov/pubmed/28217414?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16526831?dopt=Abstract
http://dx.doi.org/10.2165/00007256-200636030-00001
http://www.ncbi.nlm.nih.gov/pubmed/16648741?dopt=Abstract
http://dx.doi.org/10.1097/01.brs.0000216464.37504.64
http://www.ncbi.nlm.nih.gov/pubmed/16255022?dopt=Abstract
http://dx.doi.org/10.1002/art.21406
http://www.ncbi.nlm.nih.gov/pubmed/20704005?dopt=Abstract
http://dx.doi.org/10.1002/acr.20199
http://www.ncbi.nlm.nih.gov/pubmed/30407271?dopt=Abstract
http://dx.doi.org/10.1519/JPT.0000000000000214
http://www.ncbi.nlm.nih.gov/pubmed/10052917?dopt=Abstract
http://dx.doi.org/10.1016/S0021-9290(98)00158-4
http://www.ncbi.nlm.nih.gov/pubmed/11415549?dopt=Abstract
http://dx.doi.org/10.1016/0268-0033(95)91394-T
http://dx.doi.org/10.1016/0966-6362(95)01057-2
http://www.ncbi.nlm.nih.gov/pubmed/20359683?dopt=Abstract
http://dx.doi.org/10.1016/j.pmrj.2010.01.015
http://www.ncbi.nlm.nih.gov/pubmed/16540858?dopt=Abstract
http://dx.doi.org/10.1097/01.brs.0000202740.86338.df
http://www.ncbi.nlm.nih.gov/pubmed/23871653?dopt=Abstract
http://dx.doi.org/10.1016/j.jelekin.2013.05.013
http://www.ncbi.nlm.nih.gov/pubmed/24726780?dopt=Abstract
http://dx.doi.org/10.1016/j.clinbiomech.2014.03.009
http://www.ncbi.nlm.nih.gov/pubmed/30154604?dopt=Abstract
http://dx.doi.org/10.1589/jpts.30.1081
http://www.ncbi.nlm.nih.gov/pubmed/19748272?dopt=Abstract
http://dx.doi.org/10.1016/j.gaitpost.2009.08.236
http://www.ncbi.nlm.nih.gov/pubmed/23973141?dopt=Abstract
http://dx.doi.org/10.1016/j.joca.2013.06.001
http://www.ncbi.nlm.nih.gov/pubmed/28640896?dopt=Abstract
http://dx.doi.org/10.1371/journal.pone.0179260

