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Voltage–Time Transformation Model
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Neuron Based on Nucleation Theory
Suk-Min Yap, I-Ting Wang* , Ming-Hung Wu and Tuo-Hung Hou*

Department of Electrical Engineering and Institute of Electronics, National Yang Ming Chiao Tung University, Hsinchu, Taiwan

In this study, we constructed a voltage–time transformation model (V–t Model) to
predict and simulate the spiking behavior of threshold-switching selector-based neurons
(TS neurons). The V–t Model combines the physical nucleation theory and the
resistor–capacitor (RC) equivalent circuit and successfully depicts the history-dependent
threshold voltage of TS selectors, which has not yet been modeled in TS neurons.
Moreover, based on our model, we analyzed the currently reported TS devices, including
ovonic threshold switching (OTS), insulator-metal transition, and silver- (Ag-) based
selectors, and compared the behaviors of the predicted neurons. The results suggest
that the OTS neuron is the most promising and potentially achieves the highest spike
frequency of GHz and the lowest operating voltage and area overhead. The proposed V–
t Model provides an engineering pathway toward the future development of TS neurons
for neuromorphic computing applications.

Keywords: threshold switching selector, spiking neuron, nucleation theory, history-dependent, neuromorphic
computing

INTRODUCTION

With the increasing demand for massive data storage and processing, conventional computing
systems based on the von-Neumann architecture have encountered their limitations. Frequent data
transition between the separated processor and memory units makes conventional computation
less efficient. Recently, emerging neuromorphic computing is regarded as the next-generation
computing paradigm. Unlike the conventional von-Neumann-based computing system, brain-
inspired neuromorphic computing not only provides energy-efficient computation with high
parallelism but also shortens the latency of data transmission by realizing in-memory computing
within crossbar memory arrays (Ielmini and Wong, 2018; Hua et al., 2019; Woo et al., 2019).
In a neuromorphic computing system, an artificial synapse provides an adjustable and long-
lasting weight value. In addition, an artificial neuron integrates and processes signals from
synapses and then transmits the processed signals to the next neural layer as inputs. Both
synapses and neurons have been extensively studied based on solid-state devices for neuromorphic
hardware implementation (Lee et al., 2019a; Woo et al., 2019; Zhang et al., 2020). However,
the conventional complementary metal-oxide semiconductor- (CMOS-)based neuron circuit
occupies large chip areas because it requires a large number of transistors and capacitors for
generating spike signals. In contrast, the neuron circuit area can be 10 times smaller by using
novel devices, such as magnetoresistance memory (MRAM) (Wu et al., 2019, 2020; Liang et al.,
2020), phase-change memory (PCM) (Tuma et al., 2016), and threshold switching (TS) selector
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(Park et al., 2016; Song et al., 2018; Grisafe et al., 2019;
Hatem et al., 2019; Hua et al., 2019), which is beneficial
for ultrahigh density neuromorphic computing applications
(Liang et al., 2021).

Among several novel device-based neurons, threshold-
switching selector-based neurons (TS neurons) are especially
promising for ultra-high density neuromorphic architectures due
to their simpler and smaller neuronal circuits (Liang et al.,
2021). A circuit-level model solving Kirchhoff’s Law based on the
resistor–capacitor (RC) equivalent circuit has been proposed to
describe the behavior of TS neurons (RC Model) (Chen et al.,
2016; Wang et al., 2020). However, the RC Model oversimplified
the TS neuron by assuming constant switching behavior of
the TS selector. Indeed, the switching dynamics of the real TS
selector is affected by the external electric field, which can be
explained using the nucleation theory (Karpov et al., 2008; Lee
et al., 2020). Specifically, the way the external electric field is
previously accumulated determines the device behavior, and we
regard this time-dependent phenomenon as history dependence.
Consequently, the TS voltage (V th) in the TS selector is history
dependent rather than constant. In this study, aiming for
constructing a more comprehensive and accurate neuron model,
we proposed an improved voltage–time transformation model
(V–t Model) on top of the original RC Model by considering the
TS behavior both experimentally and theoretically.

In the following sections, we will first verify the spiking
behavior of the TS neuron according to different synaptic
weights. A silver- (Ag-)based TS selector was chosen to observe
the switching dynamics and the history-dependent V th of the
device. Additionally, based on the nucleation theory, we will
introduce a V–t transformation (V–t) equation to describe
the variant V th of the TS selector, and a V–t Model will be
constructed. Furthermore, several types of TS neurons based on
the reported TS selectors, including ovonic threshold switching
(OTS) (Song et al., 2018; Hatem et al., 2019), insulator–metal
transition (IMT) (Park et al., 2016), and Ag-based selectors
(Grisafe et al., 2019; Hua et al., 2019), will be evaluated.
The results suggest that the OTS neuron has the fastest spike
frequency and a lower history-dependent V th. The V–t Model
not only successfully depicts and predicts the characteristics of
TS neurons, but it also provides a useful engineering guideline
for future high-performance neuron circuits for neuromorphic
computing applications.

EXPERIMENTAL DETAILS AND
MEASUREMENT SETUP

Ag-Based Threshold Switching Selector
In this study, an Ag/hafnium oxide (HfOx)/Pt TS selector was
fabricated and investigated. The schematic illustration of the
Ag-based TS selector is shown in Figure 1A. The Pt bottom
layer was first deposited on a Ti/Si substrate using electron
beam evaporation, followed by the silicon dioxide (SiO2) layer
deposition using plasma-enhanced chemical vapor deposition.
After the photolithography process, the reactive ion etching
of SiO2 was applied to form a via contact with a diameter

of 1 µm, which defines the effective device area. Then, the
4.5-nm-insulating HfOx layer was deposited using atomic layer
deposition. After that, 2-nm-thick Ag was deposited on the HfOx
layer using electron beam evaporation followed by rapid thermal
annealing (RTA) at 500◦C for 5 min to form Ag nanoparticles
(NPs) as the active electrode. Finally, a 60-nm-thick Ni capping
layer was deposited using electron beam deposition to prevent the
oxidation of Ag NPs. Electrical measurements were performed
using an Agilent B1500A and B1530A waveform generation/fast
measurement unit at room temperature. Figure 1B shows the
scanning electron microscope (SEM) image of Ag NPs. The size
distribution of NPs is shown in the inset. Figure 1C shows
the DC current-voltage (I-V) characteristics of the Ag/HfOx/Pt
TS selector with 500 DC cycles of TS and a compliance
current (Icc) of 0.1 mA. The device provides an extremely
high on/off ratio (∼109) and small V th and hold voltage
(Vhold) for both positive and negative bias, showing typical
behaviors of Ag-based TS selectors as reported in the literature
(Yoo et al., 2017).

Threshold Switching Neuron Circuit
To emulate neuromorphic hardware in which synapses and
neurons are connected in the neural network (Figure 2A),
the measurement setup adopted in this study is illustrated in
Figure 2B. The effective resistor connected in series (Rseries)
represents the total resistance of multiple synaptic devices in the
synaptic array connecting in parallel to the same TS neuron.
A parasitic capacitor (Cparasitic) of the TS selector is exploited;
therefore, no extra capacitor is needed for signal integration.
The evolution of the total current (Itotal) flowing through Rseries
and the voltage across TS selector (Vselector) is described in
Figure 2C: when a constant input voltage (V input) is applied to
the neuron circuit, most of the voltage initially drops across the
TS selector in the off-state. Then, Vselector is gradually increased
by charging Cparasitic. Once Vselector reaches V th, the TS selector
is switched to the on-state due to the formation of a volatile
conducting filament, and an increase in Itotal can be observed.
However, Vselector drops right after the TS selector is switched to
the on-state due to the discharge of Cparasitic, and Itotal starts to
decrease. The TS selector returns to the off-state when Vselector
reduces to Vhold because of the rupture of the volatile conducting
filament. ton and toff define the required period of time for the
selector to be turned on (Vselector to increase from Vhold to
V th) and off (Vselector to decrease from V th to Vhold) in the
neuron circuit, respectively. When the circuit is biased, a series
of continuous current and voltage spikes are generated, and the
spike frequency can be calculated as the number of spikes per
second (Hz) accordingly. To fulfill the requirement of neural
network applications, artificial neurons should be capable of
generating different spike frequencies according to the weights
of connected synapses, i.e., Rseries. In the RC Model (Chen et al.,
2016; Wang et al., 2020), the ton in the TS neuron circuit is
obtained by

ton = −RseriesCseries × ln
(∣∣∣∣ Vinput−Vth

Vinput − Vhold

∣∣∣∣) (1)
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FIGURE 1 | Silver- (Ag-) based threshold switching (TS) selector studied in this study. (A) The schematic structure showing the cross-section view of the Ag/hafnium
oxide (HfOx)/Pt device. (B) The top-view scanning electron microscope (SEM) image of Ag nanoparticles (NPs) with an average diameter of 30 nm formed by 500◦C
rapid thermal annealing (RTA) for 5 min. The inset shows the size distribution plot of the Ag NPs. (C) DC current–voltage (I–V) characteristics of the device with a
current compliance of 0.1 mA, showing the success of TS for 500 DC cycles.

FIGURE 2 | (A) Inspired by the biological neural network, neurons are connected with synapses through bit lines and word lines in the crossbar memory array. V input

received from the pre-neurons is applied on the word lines, and the post-neurons connected to bit lines generate output spikes according to the weight of synapses.
(B) Equivalent circuit of the measurement setup where the synaptic devices along the same bit line (with a total resistance of Rseries) are connected in series with a
TS selector as a neuron. A parasitic capacitor Cparasitic is considered and is connected in parallel with the TS neuron. (C) The evolution of Itotal and Vselector shows
the spiking behavior of the TS neuron when V input is applied due to the charging and discharging of Cparasitic. ton and toff define the required period of time for the TS
selector to turned on and off in the neuron circuit, respectively.

In this study, we assume that the IR voltage drop on Rseries is
negligible when the TS selector is at its off-state due to the low
leakage current (below pA in our case). Figure 3A illustrates the
statistically measured ton of the TS neuron when connecting to
different Rseries, and the inset is an example of experimentally
obtained current spikes (Itotal) when Rseries is 3,300 k�. Figure 3B
presents the calculated spike frequency, as shown in Figure 3A.
The results indicate that, with the decrease of Rseries, ton is
decreased and the spike frequency is increased accordingly.
However, the spike frequency cannot be further increased when
Rseries is < 100 k�. It is worth mentioning that Rseries in the
neuron circuit also acts as current compliance, where it controls
the morphology and the size of conducting filaments in the TS
selector (Chae et al., 2017). If Rseries is too small, the filaments of
extremely large size become non-volatile and cannot be ruptured
even at Vhold = 0 V. Consequently, toff increases and limits
the spike frequency due to the difficult dissolution of large-size
filaments in the TS selector. As a result, the resistance range of

Rseries requires careful adjustment ( > 100 k� in our case) to
prevent the dysfunction of neuron circuits. With a suitable range
of Rseries and with toff being much smaller than ton, the spike
frequency is the inverse of ton, thus proportional to the inverse
of Rseries, i.e., the effective total conductance of the synaptic array.

RESULTS AND DISCUSSION

History-Dependent V th of the Threshold
Switching Selector in Nueron Circuit
An important assumption of the RC Model in Equation 1 is
that the V th of the TS selector is constant. Figure 4A compares
the measured V th captured by an oscilloscope with Rseries of
150 and 470 k�, and the statistical results are indicated in
Figure 4B. Instead of remaining constant, the V th of the TS
selector varies with Rseries. Different Rseries modulate the charging
rate of Vselector and give rise to the history-dependent V th. The
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FIGURE 3 | (A) The measured ton increases with increasing Rseries while the calculated spike frequency shown in panel (B) decreases with increasing Rseries in the
neuron circuit. The inset in panel (A) shows an example of the experimentally obtained spike current (Itotal) when Rseries is 3,300 k�. The spike frequency is defined
by the number of spikes per second (Hz). The spike frequency is approximately equal to the inverse of ton when Rseries is greater than 100 k� and ton is much larger
than toff.

FIGURE 4 | (A) The oscilloscope waveform of Vselector when the TS selector is connected with Rseries of 150 and 470 k� and V input = 2 V. Corresponding V th is also
indicated. (B) Statistically measured V th increases with decreasing Rseries. Instead of remaining constant, the history-dependent V th needs to be carefully considered
in the TS neuron model.

FIGURE 5 | Time-varying Vselector in the neuron circuit is approximated using a finite number of constant voltage stress (CVS) steps from (t1, V1) to (t2, V2) and
eventually to (ton, V th). 1V and 1t determine the voltage and time intervals, respectively. Based on the proposed V–t Model, the transformed (t1, V2) step indicated
by the red-dashed rectangle is equivalent to the (t1, V1) step indicated by the blue-filled rectangle. The new t2 of V2 is now t′1+1t, which includes the history effect
of the previously accumulated (t1, V1) step.
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FIGURE 6 | Measurement data and simulated results of (A) ton and (B) V th of the TS neuron with different Rseries. The results suggest a more accurate prediction
based on the V–t Model than the RC Model (Chen et al., 2016; Wang et al., 2020) by considering the history-dependent V th of the TS selector.

naïve RC model does not consider the history-dependent V th
of the TS selector, thus reducing the accuracy and prediction
capability of the neuron model.

Voltage–Time Transformation Model
To include the characteristic of history-dependent V th into
the neuron model, the V–t Model is proposed. Starting from
considering the switching dynamics of TS selectors when
constant voltage stress (VCVS) is applied directly on the device,
i.e., Vselector equals to VCVS. This is the case similar to Figure 2B
but without the external Rseries. The time delay before turning
on the selector (ton_CVS) is determined by the nucleation theory
(Karpov et al., 2008; Lee et al., 2020):

ton_CVS = τ0exp

(
W0α

3
2 E0d

kTVCVS

)
(2)

where τ0 is the intrinsic time constant of the device, W0 is the
nucleation barrier energy without electric field, α is a geometric
factor of a nucleus, E0 is the voltage acceleration factor, d is
the effective thickness of the insulating layer, k is Boltmann’s
constant, and T is the ambient temperature. We define A as a
material-related constant at a fixed T, and (2) can be rewritten as

A= VCVS · ln
(
ton_CVS

τ0

)
=
W0α

3
2 E0d

kT
(3)

where A and τ0 can be obtained from fitting the measured VCVS
and ton_CVS. We assume A remains constant when measuring
the same device. Therefore, the V–t equation can be used to
describe the transformation relation between any two arbitrary
CVS voltages,VCVS1 andVCVS2, and their corresponding turn-on
times, ton_CVS1 and ton_CVS2 as

VCVS1 · ln
(
ton_CVS1

τ0

)
= VCVS2 · ln

(
ton_CVS2

τ0

)
(4)

When connecting the TS selector with Rseries to form a
complete TS neuron circuit, as shown in Figure 2B, Vselector
becomes time-varying according to the RC equivalent circuit.

FIGURE 7 | Relation between ton, τ0, A, and V th of TS selectors based on the
nucleation theory in Equation 2.

TABLE 1 | Key parameters extracted from the reported threshold
switching (TS) selectors.

TS selector type A (V·s) τ 0 (s) Capacitor (F)*

IMT (Lee et al., 2020) 1.29 10−8 6 × 10−13

IMT (Park et al., 2016) 1.602 10−8 7 × 10−13

OTS (Lee et al., 2020) 30.28 10−21 2 × 10−15

OTS (Lee et al., 2019b) 45.78 10−24 6 × 10−16

Ag-based (Lee et al., 2020) 3.09 10−6 3.25 × 10−10

Ag-based (Yoo et al., 2017) 2.92 10−6 2.95 × 10−10

*The value of an integrated capacitor in the neuron circuit is adjusted to keep the
maximum Vth below 1.2 V at Rseries = 10 k� .

The time-varying Vselector could be approximated using a finite
number of CVS steps as depicted in Figure 5, which increase
from (t1, V1) to (t2, V2) and eventually to (ton, V th) indicated
by the blue line. 1V and 1t are the voltage and time intervals,
respectively. A similar conversion between CVS and ramp voltage
stress has been reported and validated in resistive switching
memory devices (Luo et al., 2013). As indicated in Figure 5,
the stress effect of the (t1, V1) step indicated by the blue-filled
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FIGURE 8 | V–t Model prediction on (A) ton and (B) V th of the neuron circuit based on insulator–metal transition (IMT) (Park et al., 2016; Lee et al., 2020), ovonic
threshold switching (OTS) (Lee et al., 2019b, 2020), and Ag-based (Yoo et al., 2017; Lee et al., 2020) selectors. Rseries is assumed to range from 10 k� to 1 M�.
The value of an integrated capacitor in each condition is listed in Table 1.

rectangle on the device is transformed to that of an equivalent
(t′1, V2) step indicated by the red dashed rectangle based on (4),
t′1 is therefore expressed as:

t′1 = exp
[
V1

V2
· ln

(
t1
τ0

)
+ln (τ0)

]
(5)

A new equivalent CVS step of (t2, V2) with an equivalent
stress time of t2 = t′1 + 1t at V2 includes the history effect
of the previous (V1, t1) step. This equivalent stress time is
accumulated until it reaches the ton_CVS at the stop voltage,
i.e., V th, which could be calculated by Equation 2. Under these
circumstances, V th becomes history-dependent and is affected by
the RC charging process and Rseries. The larger Rseries, the lower
V th, and longer ton.

To confirm the feasibility of the V–t Model on the prediction
of the TS neuron behavior, the simulation results obtained from
the RC Model (Chen et al., 2016; Wang et al., 2020) and the
proposed V–t Model are compared in Figures 6A,B with the
measurement. The RC Model only describes the RC behavior
of the neuron circuit with a constant V th of the TS selector,
therefore it not only underestimates ton but also fails to depict
the history-dependent V th of the TS selector. In contrast, the
proposed V–t Model predicted well ton and V th of the TS selector
under different Rseries.

Prediction of Threshold Switching
Neuron Performance Based on V–t Model
In this section, we explored the impact of the TS selector on TS
neurons, and the effect of ton and A on V th can be predicted based
on Equation 2. As shown in Figure 7, when ton approaches τ0,
the voltage required for nucleation (V th) approaches infinity. In
addition, the TS selector with larger A requires a higher V th to be
turned on. These results indicated that, under the same ton, the
TS selector with larger τ0 and A needs a higher applied voltage
than the one with smaller τ0 and A. However, the required high
applied voltage is not favorable because it not only may result in
an irreversible breakdown of the device but also may increase the
difficulty of circuit integration. Therefore, the TS selector with

larger τ0 and A may require an additional external integration
capacitor to maintain a reasonable V th, which on the other hand
increases the circuit footprint and ton and decreases the spike
frequency. The energy consumption per spike of the neuron
circuit could also increase due to slow spiking (Liang et al., 2021).

Table 1 lists the reported parameters of τ0 and A of different
TS devices (Park et al., 2016; Yoo et al., 2017; Lee et al., 2019b,
2020), and the simulated ton and V th of the neuron circuit based
on the V–t Model are indicated in Figure 8. In this study, the
Rseries is given from 10 to 1,000 k�. The value of the integration
capacitor in the neuron circuit is adjusted to keep the maximum
V th below 1.2 V at Rseries = 10 k�, and the adopted capacitance
corresponding to each TS device is also given. Among IMT,
OTS, and Ag-based TS devices, the OTS neuron matched with
the lowest capacitance is the most favorable for reducing the
neuron circuit area. It is noted that the minimal integration
capacitor is limited by the parasitic capacitor of the TS selector
itself. As a result, the device area scaling would be necessary to
achieve a low enough capacitance value. Moreover, the simulated
ton in Figure 8A shows that the OTS neuron is capable of
achieving GHz-level spike frequency due to its extremely small
τ0 (10 − 21 s), even though its A is larger. Furthermore, in
Figure 8B, the OTS selector with the smallest τ0 results in a
large ton/τ0; therefore, the V th is less history dependent. The
OTS selector shows promising potential not only in generating
high spike frequency but also consuming less area and energy in
the neuron circuit.

CONCLUSION

In this study, a V–t Model is successfully constructed to
simulate the spiking behavior of TS neurons according to
the synaptic weight of connected synapses. By considering
the history-dependent V th of the TS selector based on the
nucleation theory, the proposed V–t Model is in good agreement
with the measurement results and provides more accurate
prediction compared to the conventional RC Model. Moreover,
the behavior of TS neurons based on different TS devices,
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including IMT, OTS, and Ag-based selectors, are simulated and
compared using the proposed V–t Model. The results show
that the OTS selector matched with the lowest capacitance that
is the most favorable for reducing the circuit area overhead.
Moreover, the OTS selector with the lowest τ0 and ton not only
achieves less history-dependent V th but also realizes a high-
speed neuron with GHz-level spike frequency. The proposed V–t
model provides a useful engineering pathway toward the future
development of TS neurons.
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