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In contrast to other pathogenic agents that directly destroy host cells and tissues, the
lethal power of SARS-CoV-2 resides in the over-reactive immune response triggered by
this virus. Based on numerous evidences indicating that the lipid composition of host
membranes is dramatically affected by COVID-19, and in the fact that our endogenous
antimicrobial peptides (AMPs) are sensitive to the membrane composition of pathogenic
agents, we propose that such destructive immune response is due to the direct action of
AMPs. In a scenario where most host cell membranes are dressed by a pathogenic lipid
composition, AMPs can indiscriminately attack them. This is why we use the “AMP
betrayal” term to describe this mechanism. Previously proposed cytokine/bradykinin
storm mechanisms are not incompatible with this new proposal. Interestingly, the
harmful action of AMPs could be prevented by new therapies aimed to reestablish the
lipid composition or to inhibit the action of specific peptides.
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INTRODUCTION

Severe acute respiratory syndrome–coronavirus 2 (SARS-CoV-2) is a single-stranded positive-sense
RNA virus responsible for the coronavirus disease 2019 (COVID-19) global pandemic. Its name
comes from its crown-like appearance under the electron microscope (1–3). Prior to SARS-CoV-2,
six coronaviruses were known to cause diseases in humans, four of them provoking only mild to
moderate symptoms and other two (SARS-CoV and MERS-CoV) leading to severe respiratory
syndromes (4). Coronaviruses share a common spherical structure enclosed by a lipid bilayer. A
large number of partially protruding proteins decorates the viral envelope. The typical diameter of
coronaviruses ranges from 50 to 200 nm (5). Both SARS-CoV and SARS-CoV-2 use angiotensin-
converting enzyme 2 (ACE2) as a cellular entry receptor, which is expressed mainly in the type II
surfactant-secreting alveolar cells of the lungs, but also in most of human tissues, such as oral
mucosa and gastrointestinal tract, kidney, heart, blood vessels, etc (6). Upon infection, SARS-CoV-2
typically penetrates external mucous membranes (nose, eyes and/or mouth) to subsequently access
internal organs, mainly the lungs. Many individuals are apparently asymptomatic or they are
recovered from mild symptoms within 1–2 weeks (7–10) but severe respiratory syndromes are often
manifested. Patients with different chronic pathologies (diabetes, hypertension and cardiovascular
disease) are especially susceptible to this virus (11). A large and still growing number of symptoms
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were ascribed to COVID-19, the most evident being shared with
other coronavirus infections: fever (87.9%), cough (67.7%),
fatigue (38.1%) and, to a lesser extent, diarrhea (3.7%) and
vomiting (5.0%) (3, 12). Additional common symptoms
ascribed to SARS-CoV-2, which are typically reversible within
2–4 weeks after infection, are the loss of smell and taste (13).
However, in contrast with other coronaviruses, COVID-19
frequently exhibits unexpected long-term severe consequences
(5, 14). Patients recovered from the severe form of the disease,
and even those who had mild and moderate symptoms present
abnormal findings on cardiovascular MRI (on average up to 71
days after diagnosis), dyspnea, unusual fatigue, muscle weakness
headaches, memory lapses, changes in mood, sleep difficulty,
palpitations, needle pains in arms and legs, etc.
THE INNATE IMMUNE RESPONSE IN
COVID-19: CYTOKINE AND/OR
BRADYKININ STORMS?

Immune response against strange pathogenic agents is not a
trivial process. A battery of defensive resources is available to
protect organisms from potentially toxic invasions, which can be
classified in those belonging to the innate and to the adaptive
immune systems. These two defensive barriers are not
independent but they are closely connected to each other (15).
Both consist of complex networks of cells, signaling molecules
and regulatory pathways. The innate immune response is
involved in the activation of adaptive immunity, and has a
critical role in controlling infections during the period of 4–7
days before the initial adaptive immune response takes effect
(16). It has been reported that the adaptive immune system is key
to explain the large amount of asymptomatic infected people.
Mateus et al. (17) suggested that T cell response to SARS-CoV-2
without previous exposition to the virus could be due to the
presence of homologous epitopes from a common cold
coronavirus. On the other hand, hospitalized patients exhibit
different T cell response patterns, which could be related with
different degrees of severity of the disease and also would be
relevant to decide an appropriate treatment (18). The adaptive
immune response is also important for vaccine development as
well as to establish pandemic control measurements (19).

Most infectious agents induce inflammation by activating
innate immunity. Time response and coordination of the
different immune defensive barriers are key to protect
against pathogenic agents. Immune overreaction may lead to
uncontrolled swelling of the affected tissues. Interestingly, a
similar dysfunctional immune reaction, accompanied by tissue
inflammation, has also been reported for several systemic
diseases and cancer (20). To date, our understanding of the
specific innate immune response to SARS-CoV-2 is not
complete. It is widely accepted that the high mortality in
COVID-19 is not directly caused by the virus but by the
abovementioned innate immune response that provokes
destructive inflammation (21, 22). Numerous studies reveal
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that the level of several inflammatory cytokines is abnormally
high in serum as well as in different organs, suggesting
that they play a significant role in COVID-19 pathogenesis
(23, 24). Several life-threatening respiratory symptoms of
COVID-19 such as plasma leakage, vascular permeability, and
disseminated vascular coagulation have been attributed to this
hypercytokinemia, also called “cytokine storm”. Cytokine storms
have been associated with a wide variety of infectious (SARS-
CoV-1, MERS, avian flu, etc) and noninfectious diseases. They
have even been observed as a result of clinical trials with
monoclonal antibodies able to stimulate T cells (25, 26). This
out-of-control immune response exhibits a double-sided
character, on the one hand it magnifies the danger signal of
the virus invasion and on the other hand it provokes a
destructive inflammation as well as the host cell damage. The
molecules released from the destroyed cells, specially DNA from
stressed mitochondria, cardiolipin, cytochrome C and segments
of nuclear DNA, are recognized as damage associated molecular
patterns (DAMPs) by molecules from the intra and intercellular
immune system (mainly TLR4 TLR7, TLR9, and cGAS). In turn,
this induces the massive release of proinflammatory cytokines
leading to a secondary cytokine storm. This feedback process
becomes cyclic and it eventually results in irreversible damage of
tissues by apoptosis, pyroptosis and necrosis even of non-
infected cells. The suicide of non-infected cells could be a
defensive strategy to obstruct the propagation of the virus but
the final balance of all these competitive processes (virus
propagation and cell death) could become negative (27). Thus,
there is a subtle harmony between protective and pathogenic
immune reaction upon coronavirus infection. Controlling the
local and systemic inflammatory response in COVID-19 and
dampening the devastating overreaction of the immune system
may be as important as antiviral therapies. Immunomodulatory
drugs have been proposed as a treatment to address the
immunopathology of COVID-19 infection. A clear advantage
of this approach is that it is not specific against a given virus
strain, i.e. it is not sensitive to mutations. In practice, this strategy
is difficult to implement due to the limited understanding of the
multidimensional coupled compounds of the immune system.
To date, attempts to develop treatments in this direction were
not successful (28). Moreover, this kind of therapies are
considered to be highly risky since anti-cytokines could
interfere with antiviral natural responses or pharmacological
treatments (22).

A new mechanism called “Bradykinin storm” has been
recently proposed as a non-exclusive alternative to cytokine
storms (29, 30). Based on the analysis of samples collected
from the lungs of patients with COVID-19, this mechanism
considers the antagonist action of ACE and ACE2 to regulate the
blood pressure. The authors of this proposal claim that the renin-
angiotensin system (RAS) and the kinin-kallikrein pathways are
altered by the virus, resulting in a decreased expression of ACE
(a natural bradykinin breaker) together with an increased
expression of ACE2 and the two bradykinin receptors, among
other proteins. All this cooperates to the overexpression of
bradykinin. It is known that this vasodilator peptide induces
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pain as well as an important alteration of the blood vessels: they
are expanded and become leaky, causing swelling and
inflammation of the surrounding tissue (29). The presence of
hyaluronic acid, which is known to absorb relatively large
amounts of water molecule forming a hydrogel, has also been
found to be overexpressed. The leakage of fluid induced by the
action of bradykinin combined to the presence of hyaluronic acid
results in the gelling of the vessels, preventing the O2-CO2

exchange, and thus causing severe acute respiratory syndrome
typically present in COVID-19 patients.
HOST DEFENSE PEPTIDES IN NATURAL
HOST IMMUNITY

A range of cells including neutrophil and macrophage
phagocytic cells, epithelial cells, mast cells, eosinophils, and
natural killer cells form part of the innate immune system.
These structures are immediately available, so they are expected
to respond rapidly to the presence of pathogen agents upon
triggering their pattern recognition receptors (TLRs, C lectin
and scavenger receptors). As a result, several elements are
released and/or activated, namely cytokines, chemokines,
superoxides, nitric oxides, prostaglandins, acute phase
proteins, and antimicrobial peptides (AMPs) (31). AMPs, also
known as host defense peptides, represent an essential part of
the human immune system of virtually all organisms due to
their broad spectrum activity against a wide range of pathogens,
like bacteria, fungi, and viruses (32–34). Owing to their
versatility, microbicidal capability, favorable pharmacokinetic
properties, and low propensity for resistance development,
AMPs are especially promising to deal with a number of
infections, including COVID-19 and also emerging infections
caused by viral pathogens for which no approved vaccines
or treatments are currently available, such as dengue virus
(DENV) and Zika virus (ZIKV) (35, 36). Thus, AMPs can be
considered as endogenous antibiotics (37). They are produced
and stored by epithelial and professional host defense cells such
as macrophages, neutrophils or mast cells, among others. AMPs
are abundant in a wide variety of highly vulnerable to pathogen
tissues, including skin, eyes, oral cavity, ears, airway, lung,
female reproductive tract, cervical-vaginal fluid, intestines,
and urinary tract (38). Some cells such as neutrophils contain
a high number of constitutive AMPs, but their expression can
also be triggered by the presence of microbial or host stimuli.
Consequently, the AMP profile (peptidiome) is highly
variable depending on the location and host condition (20).
Notably, the susceptibility to a virus infection depends on the
type and amount of particular AMPs expressed by the
individual (39). It has been observed that gut microbiome
perturbation by different internal and external mechanisms
may trigger an inflammatory overreaction in healthy
individuals (40, 41). Interestingly, gut bacteria represent a
major source of AMPs production in the gastrointestinal
tract. A number of peptides and proteins able to stop the
invasion of pathogenic microorganisms, including defensins,
Frontiers in Immunology | www.frontiersin.org 3
cathelicidins, C-type lectins, ribonucleases, and S100 proteins
in intestinal epithelial cells and Paneth cells, are regulated by
gut microbiome (42). Thus, there is a synergy or feedback
process involving AMPs and microbiota, s ince the
concentration and composition of the latter is regulated by
AMPs. Mast cells, typically located in the submucosa of the
respiratory tract and in the nasal cavity, have also been reported
to be key in the host-microbiota information exchange, by
triggering the release of AMPs (43). In fact, mast cells not only
express different innate immune receptors, such as TLRs, that
initiate pathogen recognition, but they can also be activated to
directly kill pathogens by phagocytosis or through AMPs
release (44–46). Interestingly, the important role of mast cells
as a key part of the primary defense barrier in coronavirus
infection has been recently observed, presenting a dual role in
the disease (47). On the one hand, they contribute with other
elements of the immune system to prevent the proliferation of
the infection but they also favor the inflammation by releasing
pro-inflammatory cytokines such as IL-1, IL-33, IL-18,
and TNF.

At present, more than 2,000 peptides derived from
animals have been identified, including ~130 of human
origin: defensins, cathelicidins, transferrins, hepcidin, human
antimicrobial proteins, dermcidin, histones, AMPs derived
from known proteins, chemokines, and AMPs from immune
cells, antimicrobial neuropeptides, and beta-amyloid peptides
(48, 49). Most of them are small, cationic, amphipathic peptides
with <50 amino acids and exhibit a diversity of structures
and functions. Many of these peptides act directly on lipid
cell membranes, without the need for specific membrane
receptors (50–53), thus hindering the development of
resistance mechanisms. Although a precise understanding of
the relationship between AMP structure and their cytolytic
function in a range of organisms is still lacking, there are
numerous models to explain their action mechanism,
including the so called toroidal, barrel-stave, and carpet
models (54, 55). The interaction between AMPs and the
target membrane is critical to the specificity and activity of
these peptides. There is an important difference between the
surface electrostatic charge of prokaryotic and eukaryotic cells
due to the large abundance of anionic phospholipids in the
former, compared to the dominance of zwitterionic and
uncharged lipids in the latter (56). Notably, also the outer
leaflet of cancer cells is negatively charged (57–61). Due to their
cationic character, antimicrobial peptides have a preference
for anionic membranes, typically presented by pathogens such
as bacteria, enveloped virus, and even cancer cells. Thus, the
interaction is hypothesized to be driven mostly by electrostatic
interactions, although hydrophobic interactions are
also expected to be important as a last resort. Membrane
composition can therefore be exploited to design new
antimicrobial and tumor cell destroying lytic peptides, since it
is key for their activation and their action mechanism. This is,
AMPs are membrane-composition specific and pathogenic
agents share a range of lipidomic features that makes them
suitable targets for these peptides.
January 2021 | Volume 11 | Article 610024
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THE ROLE OF LIPIDS IN THE INFECTION
BY SARS-COV-2: ALL UPSIDE DOWN

Almost every day global scientific efforts reveal something new
about SARS-CoV-2. Most of the effort has gone into sequencing
the genome of the virus and studying the proteins that are
present in its membrane. This is of unquestionable value.
However, there is still scarce knowledge about the crucial
paper that the lipids play in the infection (62). Since lipids are
a key structural component of the most exposed region of cells
and this virus, they are expected to play a central role during the
infection. It has been proposed that SARS-CoV-2 can rapidly
switch its membrane lipid structure-function (63). A quick
exchange in the membrane composition at the exocytosis stage
could explain the significantly different fatty acid profile in
infected cells compared to that of the virus particles entering
the environment. This adaptive skill of the virus protects it
against strong changes of environmental conditions, thus
maximizing its replication. It has been reported that
coronaviruses take the control of endoplasmic reticulum-Golgi
intermediate compartment and infected cells release mature
virus entities as vesicles budding from the trans-Golgi network
(64, 65).

On the other hand, changes in lipid host membrane
composition triggered by different diseases, including viral
infections, have been reported. It is known that some viruses
cause significant change in the lipid composition of the host cell
membranes. They also take the control of the cell metabolism,
hijacking the host lipidome, to favor the propagation of the
infection (66). This mechanism has also been identified in SARS-
CoV-2 (62). Recent studies observed dyslipidemia in patients
infected by this virus, indicating that blood lipid might be
involved in the pathogenesis of COVID-19, and even
suggesting that blood lipids may be considered as a potential
and available indicator of COVID-19 severity (67). Ayres et al.
(68) showed that the phospholipid profile of the bronchoalveolar
lavage fluid in patients with acute respiratory distress syndrome
had shown significantly low levels of phosphatidylglycerol. A
lower level of palmitate acid had also been observed in the same
individuals. These two molecules are exchanged by an increased
concentration of minor components. It has been also observed
that the development of hypolipidemia begins in patients with
mild symptoms and it progressively becomes worse in an
association with the disease severity (69). Shen et al. (70)
found that over 100 lipids were downregulated in severe
patients. Their data showed decreased sphingolipids in both
non severe and severe COVID-19 patients. They found
continuous decrease of glycerophospholipids after SARS-CoV-
2 infection. Choline and its derivatives were downregulated,
particularly in severe cases, while phosphocholine, the
intermediate product for producing phosphatidylcholine (PC)
was upregulated. It has been recently published that the
serum lipid pattern of infected cells exhibits higher levels of
sphingomyelins (SMs) and plasma monosialodihexosyl
gangliosides GM3s (cell-type specific), and lower amounts of
reduced diacylglycerols (DAGs), compared to cells of healthy
Frontiers in Immunology | www.frontiersin.org 4
patients. Such perturbation in lipid composition is similar to that
of exosomal membranes (71). In the same line, a significant
alteration of the membrane composition in red blood cells from
patients with COVID-19, and in particular a reduction in the
presence of short and medium chain saturated fatty acids, acyl-
carnitines, and sphingolipids, was recently observed by T.
Thomas et al. (72). For longer saturated fatty acids and acyls
groups, palmitate (C16) and specially stearate (C18) the trend
was in the opposite direction while the concentration of the long
unsaturated C18:3 acyl also decreased. No significant changes
were observed in other mono or poly unsaturated fatty acids.
The most significant lipid alterations were observed for
sphingolipids, CmE, lysophosphatidic acids, cPA and
ceramide-phosphorylethanolamine, with a clear reduction of
the former three and a subtle increase in the latter two. A clear
concentration increase was observed for several lipids in infected
red blood cells: mainly PE(30:3), PE(36:2), Hex2Cer(m31:1) and
PC(34:2) (72). The lipid composition of blood plasma cells
was also analyzed by D. Wu et al. (73). These authors found a
correlation between the levels of metabolite and lipid alterations
and the severity of the disease in the fatal cases. In particular, the
concentration of diglycerides, free fatty acids and triglycerides
increase with the advance of the infection, while that of
phosphatidylcholines decreases. The lipid profile was observed
to be significantly less altered in patients with mild to severe
symptoms who finally recovered from the disease. However, even
for these patients, their lipid profile did not return to normal
even after the virus is undetectable and not apparent symptoms
are present. This indicates that the full metabolic recovery after
being hijacked by the virus (74), is much slower than that from
other most evident symptoms (73). This idea is supported by
other studies. Noteworthy, Ayres et al. (68) found several
metabolic alterations, including hyperlipidemia, 12 years after
infection by SARS-CoV. Interestingly, it has been noted that
children affected by SARS-V-2 may develop a disease similar to
Kawasaki’s illness, which, as happens in COVID-19, is mediated
by pro-inflammatory cytokines produced by innate immunity
cells (75). Unfortunately, no lipidemia studies have been
reported in children with this pathology but it is known that
Kawasaki disease produces persistent altered lipid metabolism
(76–78). Overall, this suggests that membranes could be used as a
target to develop new drugs although, to our knowledge, no
treatments based on this strategy have been developed. It is
interesting to mention that the human coronavirus 229E (HcoV-
229E) has been used to characterize the change in lipid
composition of infected cells. This analysis revealed that the
concentration of glycerophospholipids and fatty acids was
significantly increased. In particular, those of arachidonic and
linoleic acids were remarkable. Interestingly, the addition of
these two fatty acids to infected cells lead to a reduction in the
replication of the virus. This inhibitory effect was also observed
for MERS-CoV (13). Curiously, the metabolic and immune
response of bats to the infection of viruses is different to that
of other known mammals. They tolerate better the infection by
avoiding the immune overreaction. Bat lipidomics has been
studied in connection with several diseases. For instance, the
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lipid composition of bat wing epidermis has been analyzed to
study its correlat ion with cutaneous infect ions by
Pseudogymnoascus destructans during hibernation. A reduction
in the amount of myristic and linoleic acids was observed in this
period. These two acids, together with oleic and palmitoleic,
inhibit the growth of this fungus. Thus, bats are more vulnerable
to infection during hibernation (79).
BETRAYAL OF HOST DEFENSE
ANTIMICROBIAL PEPTIDES AMID CHAOS:
A CONFLICT IN THE CELL MEMBRANE

So far, we have disclosed several facts related to SARS-CoV-2
infection and the uncontrolled overreactive innate immune
response resulting in destructive inflammation. To these pieces
of the puzzle, we must add that the alteration of various lipid
species during COVID-19 infection is dramatic, together with
the fact that the specificity exhibited by AMPs, key molecules in
the innate immune response, relies on the different lipid
composition between pathogen and host cells. Given the clear
evidences that SARS-CoV-2 strongly perturbs the membrane
composition of host cells, natural AMPs produced and stored by
specialized defensive cells such as macrophages and neutrophils
are expected to react. Their native mission is to recognize
unspecific strange lipid patterns caused by infections, in order
Frontiers in Immunology | www.frontiersin.org 5
to destroy the corresponding cells. We hypothesize that the
dramatic lipid alteration of the host cells caused by the virus
could trigger the response of natural AMPs, activating the first
line of defense toward host cells that should not be destroyed.
This assumption brings a new player, natural AMPs, into the
overreactive innate immune response observed in COVID-19,
resulting in destructive inflammation. The change in membrane
composition would cheat the natural defenders that act directly
on the lipid cell membrane to indiscriminately attack the cells
with an altered lipid composition. This action mechanism does
not require the presence of protein receptors but it is expected to
happen in a situation where the invading agent perturbs the
environment by dressing all the cells with the same pathogenic
coating. This proposal is illustrated in Figure 1. To our
knowledge, although the great influence that the composition
of the lipid membranes has on the mode of action of natural
AMPs is known, the lipid alteration that takes place in the host
cells during COVID-19 has not been related to the action of these
natural host defense peptides.

The scope of this assumption goes beyond the infection by
SARS-CoV-2 and makes sense also for other diseases. It is known
that AMPs play a pathological role in several inflammatory
diseases, cancer and even psychiatric disorders for which they
have even been proposed as potential biomarkers. They have
been identified as key elements in a number of autoimmune
disorders, acting as potent modulators for both pro- and anti-
inflammatory responses (80, 81). Our proposal might explain the
A B D

E

C

FIGURE 1 | (A) Initial stage of the infection process with the virus in an environment rich in healthy cells. Macrophages, neutrophils and mast cells (among others)
release antimicrobial peptides (AMPs) that act directly on the virus particles. (B–D) The virus changes the membrane composition of the host cells. The mechanism
for this alteration is unknown. (E) The AMPs released by macrophages, neutrophils and mast cells (among others) attack both virus particles and damaged cells,
triggering an immune overreaction.
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connection between the lipid alteration triggered by infections
and undesirable inflammation events resulting from the massive
expression of AMPs. In this scenario, new therapies aimed to
reestablish lipid composition or to block specific AMPs involved
in host suicide missions could arise. Such alternative therapies
are expected to be less aggressive and safer than the chemical
inhibition of immune defensive response. To our knowledge no
drugs have been specifically developed to target AMPs but some
molecules have shown to affect their expression or/and activity,
opening different avenues to design antiAMP drugs. For
instance, dexamethasone is a glucocorticosteroid that proved to
inhibit the expression of human cathelicidin, human beta
defensin 1, lysozyme and secretory leukocyte peptidase 1 in the
THP-1 monocytic cell-line (THP-1 monocytes) (82).
Interestingly, it has been claimed that this drug may reduce
mortality of severe COVID-19 patients. This effect has been
associated to the decreased production of cytokines as well as to
the inhibition of the protective function of T cells and to the
block of B cells from making antibodies (83). Anti-AMPs have
also been designed to optimize complementary coiled-coil
interactions with AMPs (84). Using this strategy, the resulting
superstructures become functionally inert. On the other hand, it
has been shown that iron oxide nanoparticles inhibit AMP
function (85), what can be exploited for therapeutic purposes.
b-arrestin1 was also shown to down regulate AMP expression in
shrimp, by interacting with TC45, tyrosine phosphatase of T cells
(86). Finally, it has also been reported that several cytokines are
able to inhibit the expression of AMPs (87). Some of these
molecules could be taken as a reference to develop new drugs.
SUMMARY AND OUTLOOK

In this work, we have exposed some of the main evidences
revealing the over-reactive innate immune response and the
subsequent destructive inflammation caused by SARS-CoV-2
infection and also by other diseases. We have also compiled
data on the dramatic lipid alteration that the virus causes in the
membranes of host cells and we have related this alteration to the
role of natural host defense peptides (AMPs), often ignored in
the currently accepted cytokine or bradykinin storm
mechanisms. As far as we know, the lipid composition
alteration that takes place in the host membrane cells during
Frontiers in Immunology | www.frontiersin.org 6
COVID-19 had not been directly related yet to the action of
AMPs, although it is well known that the action mechanisms of
most of these peptides converge to the destruction of pathogenic
membranes. We propose that the massive modification of the
altered host membranes by the virus, widely documented,
triggers the response of natural AMPs by destroying them as
they do with the membranes of other pathogenic agents. This
proposal could contribute to explain the first cause of death by
COVID-19: acute respiratory failure due to the self-immune
disruption of the lung cells. The reestablishment of lipid
composition or the blockage of specific AMPs involved in the
destruction of host cells could be considered as possible
therapeutic intervention points.
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