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a database of high-density surface 
electromyogram signals comprising 
65 isometric hand gestures
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Christian Cipriani2,3, Marco Controzzi  2,3, anders Björkman4 & Christian antfolk1 ✉

Control of contemporary, multi-joint prosthetic hands is commonly realized by using electromyographic 
signals from the muscles remaining after amputation at the forearm level. although this principle is 
trying to imitate the natural control structure where muscles control the joints of the hand, in practice, 
myoelectric control provides only basic hand functions to an amputee using a dexterous prosthesis. this 
study aims to provide an annotated database of high-density surface electromyographic signals to aid 
the efforts of designing robust and versatile electromyographic control interfaces for prosthetic hands. 
The electromyographic signals were recorded using 128 channels within two electrode grids positioned 
on the forearms of 20 able-bodied volunteers. The participants performed 65 different hand gestures in 
an isometric manner. the hand movements were strictly timed using an automated recording protocol 
which also synchronously recorded the electromyographic signals and hand joint forces. to assess the 
quality of the recorded signals several quantitative assessments were performed, such as frequency 
content analysis, channel crosstalk, and the detection of poor skin-electrode contacts.

Background & Summary
The electromyographic signal (EMG) encodes information related to the recruitment patterns of motor neu-
rons innervating skeletal muscles close to the site of signal acquisition. A good understanding of the underlying 
electrophysiology is important for studying human biomechanics1 and for diagnosing neuromuscular disease2. 
Furthermore, the knowledge of the underlying neurophysiology behind motor control acquired non-invasively 
by surface EMG (sEMG) and high density surface EMG (HD-sEMG) has attracted increasing interest in the 
pursuit of novel human-computer interfaces3. Among salient uses for this application of the technique in the field 
of upper-limb prosthetics, where sufficiently accurate mappings from measured forearm myoelectricity to hand- 
and wrist kinematics could be used to deliver intuitive motor commands to a robotic replacement limb. At pres-
ent, commercially available myoelectric prostheses are most commonly controlled via direct, proportional control 
of a single degree of freedom (DoF)4. Advanced multifunctional prostheses5 are within this framework typically 
controlled sequentially by employing some protocol for switching between active DoFs6. Although simple, this 
type of interface is often perceived as slow and unintuitive by the user, requiring nontrivial cognitive efforts and 
leading to a high number of users abandoning their prosthesis7. Efforts to improve the ability to automatically 
decode forearm sEMG into natural movement commands, therefore, have the potential to be of considerable 
value for transradial (forearm) amputees.

Despite having been the subject of studies for several decades, the exact relationship connecting sEMG to 
limb kinematics remains in part elusive. Due to the apparent stochasticity, nonstationarity, and nonlinearity of 
sEMG with respect to muscle contractions8–10, many studies aimed at the extraction of motor intent have found 
success by refraining from modelling this relationship explicitly and instead resorting to a combination of man-
ual feature engineering and machine learning11. With this strategy, the information density of acquired sEMG 
signals is increased by compression into a set of numeric descriptors (i.e. features) via a sliding time window tech-
nique. Given that the selected features capture discriminative properties of the latent generative process, pattern 

1Department of Biomedical engineering, faculty of engineering, Lund University, Lund, Sweden. 2the BioRobotics 
institute, Scuola Superiore Sant’Anna, Pisa, italy. 3Department of excellence in Robotics and Ai, Scuola Superiore 
Sant’Anna, Pisa, italy. 4Department of Hand Surgery, clinical Sciences, Sahlgrenska Academy, University of 
Gothenburg and Sahlgrenska University Hospital, Gothenburg, Sweden. ✉e-mail: nebojsa.malesevic@bme.lth.se; 
christian.antfolk@bme.lth.se

Data DESCriPtOr

OPEN

https://doi.org/10.1038/s41597-021-00843-9
http://orcid.org/0000-0001-8140-5453
http://orcid.org/0000-0003-2135-0707
mailto:nebojsa.malesevic@bme.lth.se
mailto:christian.antfolk@bme.lth.se
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-00843-9&domain=pdf


2Scientific Data |            (2021) 8:63  | https://doi.org/10.1038/s41597-021-00843-9

www.nature.com/scientificdatawww.nature.com/scientificdata/

recognition algorithms12–15 can thereafter be deployed to map such features to grasps and motions. More recently, 
the application of automated feature learning in the form of deep neural networks16–23 has enabled end-to-end 
mappings directly, from raw EMG to movement representations. Such methods are arguably uniquely appropri-
ate for processing HD-sEMG due to the signal’s structural resemblance to conventional image data. Both feature 
engineering and deep learning circumvent the complexity of explicitly modelling the underlying electrophysiol-
ogy, but at the cost of requiring labelled data sets containing (I) recorded EMG and (II) numeric representation 
of synchronous performed movements.

Multiple databases18,24–29 exist which contain collections of EMG or HD-sEMG together with synchronous 
movement stimuli and/or joint angle time series. The general importance of publicly available resources of this 
kind can be understood as twofold: firstly, it allows for the development of novel methods by other researchers 
without requiring time-consuming data collection. Secondly, it allows for inter-method collation, as the perfor-
mances of different methods are difficult to compare fairly if evaluated on data sets with differing characteristics.

The aim of this data set was to contribute to the development of better myoelectric decoding schemes by 
presenting a new HD-sEMG data set, distinguished by a different approach compared to previous contributions 
to the same end. 128 channels of sEMG data were recorded at the level of the forearm from 20 able-bodied and 
healthy participants with a recording protocol constituted by 65 unique movements. These 65 movements were 
furthermore interpreted as compounds of 16 basis movements that capture the major DoFs of the hand and wrist. 
It is our hope that this type of decomposition will allow for multi-label machine learning20 approaches to be lever-
aged and potentially lead to the development of more dextrous control interfaces. Furthermore, forces exerted at 
the level of the wrist and the digits were collected and are provided here to allow for regression-type approaches, 
which might offer new possibilities in the domain of proportional control for prosthetic hands.

Methods
Participants. Twenty able-bodied volunteers (14 men and 6 women) aged between 25 and 57 years (mean 
age 35 years) participated in the study. All participants were right-handed and neurologically intact. All partic-
ipants provided informed consent, and the study was approved by the Regional Ethical Review Board in Lund, 
Sweden (Dnr 2017-297).

High density sEMG recording. The EMG signals were recorded using a Quattrocento (OT Bioelettronica, 
Torino, Italia) biomedical amplifier system. The Quattrocento is able to acquire up to 400 channels sampled with 
16-bit resolution. In this study, the EMG recording chain comprised high density sEMG electrodes, preamplifiers 
with 5x gain located at the electrode connectors, amplifiers within the Quattrocento device, and the A/D convert-
ers. In total, including preamplifiers and amplifiers, the HD-sEMG signals were amplified 150 times. The EMG 
signals were sampled at 2048 Hz and a hardware high-pass filter at 10 Hz and a low-pass filter at 900 Hz were used 
during recordings.

The electrodes used in his study consisted of 64 contacts arranged in an 8 × 8 matrix, with an inter-electrode 
distance of 10 mm (ELSCH064NM3, OT Bioelettronica, Torino, Italy). To reduce common-mode noise in the 
EMG signal, the recording was performed in a differential manner. In this mode, consecutive channels were 
subtracted, where the enumeration of the electrode channels is shown in Fig. 1c. Due to the electrode orientation 
with respect to the underlying muscles, the differentiation of the EMG signals was done along the muscle fibers. 
As the result, ch1 signal was calculated as the difference between EMG signals at electrode contacts 2 and 1, ch2 
as the difference between signals at contacts 3 and 2, and so on. This methodology also implies that channels that 
are a multiple of 8 (ch8, ch16…) have different EMG signal pick-up area as contacts 8 and 9 (contacts 16 and 17, 
and so on) span along the whole length of the electrode. Additionally, the last channel of the electrode (ch64) is 
calculated as the difference between EMG signals at first contact of the next electrode (contact 1) and the last 
electrode contact (contact 64) of the current electrode.

Two HD-sEMG electrodes were positioned on the dorsal and the volar aspects of the forearm with the inten-
tion to cover, or partially cover, the main fingers flexors and extensors (flexor digitorum profundus – responsible 
for flexion of fingers D2-D5, extensor digitorum communis – responsible for extension of fingers D2-D5), wrist 
flexor/extensor (flexor carpi radialis, flexor carpi ulnaris – responsible for wrist flexion, extensor carpi radialis 
longus, extensor carpi ulnaris – responsible for wrist extension) and pronator/supinator (pronator teres, supina-
tor), and thumb flexor/extensor (flexor pollicis longus – responsible for thumb flexion, extensor pollicis longus 
– responsible for thumb extension) and thumb abduction (abductor pollicis longus). As the HD-sEMG electrodes 
can cover a relatively large area, the positioning of the electrodes was guided by physiological landmarks, such as 
distance from the elbow for the distal placement, and distance from the ulna for radial orientation. The electrodes 
were placed approximately 3 cm from elbow (elbow to closest electrode corner) and 2 cm from ulna (edge of the 
ulna to edge of the electrode). The positions of the electrodes are shown in Fig. 1. An electrode consists of a thin, 
flexible substrate layer on which a foamy single-use double-adhesive layer is applied. The foamy layer has holes 
punched at the locations of electrode contacts which were filled with a conductive gel. This structure permits 
a tight and comfortable fit on a forearm regardless of the circumference. In addition, to ensure firm electrode 
contact throughout a long measurement (lasting approximately 1 h) an elastic bandage was placed over both elec-
trodes. The reference electrode, which was in the form of a ribbon, was placed around the wrist.

The HD-sEMG signals were recorded with the OT Biolab program (OT Bioelettronica, Torino, Italia) that 
saves the uncompressed data in a proprietary file format.

isometric force recording. A custom-made force measurement device was used to obtain hand forces dur-
ing the recording protocol30. The device was designed in a manner that enables independent acquisition of finger 
and wrist isometric forces. The motivation for choosing an isometric setup was to simulate muscle behaviour in a 
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forearm amputee where the remaining muscles have a relatively small contraction amplitude. The hand position 
inside the force measurement device is shown in Fig. 1.

The device comprises nine strain gauges, four measuring D2-D5 flexion/extension forces, two measuring 
thumb flexion/extension and abduction/adduction, and three measuring wrist flexion/extension, pronation/supi-
nation, and radial/ulnar deviation. Force gauges and hand joints were interfaced through 3D printed finger braces 
which were specifically chosen for each participant. Using the braces, the fingers were placed in a neutral posi-
tion, approximately in the middle of the range of motion. During the recording protocol, the force measurement 
device was placed on the table with the participant sitting in front of it. The chair height was adjusted to provide 
the participant with a comfortable body posture during the recordings. Although the device could be adjusted for 
both, right and left hand, for simplicity in this study it was used only in the right-hand setup (as all participants 
were right-handed).

The measured hand forces were provided as analog signals in the range of 0–5 V for the force range ± 100 N, 
where in neutral position (0 N) the force sensors value was 2.5 V. Within this range, the sensor output was pro-
portional to the force with less than 1% full-scale error. The signals from the force sensors were digitalized using 
a NI-USB 6218 (National Instruments, Austin, Texas, USA) A/D with 16-bit amplitude resolution and sampling 

Fig. 1 Measurement setup. (a) The participant’s hand was positioned inside the force measurement device. Two 
64 contacts electrodes were placed on dorsal and volar aspects of the upper forearm. Preamplifiers were placed 
at the electrode connector and amplified EMG signals were routed to Quattrocento device. HD-sEMG signals 
were displayed on a laptop screen in real-time while hand forces and cues were shown on a separate screen in 
front of the participant. (b) Hand positioned inside force measurement device taken from a different angle.  
(c) Pinout of ELSCH064NM3 electrode (skin top view). The differentiation of the EMG channels was done 
along the increasing channel indexes. For example, the first output (ch1) is calculated as the difference between 
EMG signals at contacts 2 and 1, ch8 as 9-8, and the last output (ch64) as the difference between the first of the 
next electrode and the last of the current electrode. (d) Position of flexion and extension electrodes in supinated 
and fully pronated forearm orientations.
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frequency of 200 Hz. The visualization and the recording of the signals were managed by a custom-made 
LabVIEW (National Instruments, Austin, Texas, USA) program. The same program controlled synchronization 
between the Quattrocento and the force signals by generating TTL pulses recorded by both devices. The pulses 
generated by one of the digital outputs of NI-USB 6218 were 0.2 s wide and occurring every 2 s. The forces pre-
sented in this paper are given in volts [V], and the transfer function between sensor analog output and the force 
is the following:

force = analog_voltage*40–100 [N]
The detailed description of the measurement device and its error validation could be found in our previous 

publication30.

recording protocol. The recording session was initiated by a brief explanation of the protocol to the partic-
ipant, after which he/she signed the informed consent. Next, the chair height and finger braces were adjusted to 
fit the participant to ensure comfortable body posture and hand fit inside the force measurement device. Before 
applying the electrodes, the participant was informed about the specific hand movements to be performed during 
recordings. The list of all the movements was provided to the participant, and a time period was given to the par-
ticipant to go through the list and try to execute the hand movements with the hand outside the force measure-
ment device. In the case the participant felt that a specific hand movement was difficult to execute, the participant 
had an opportunity to ask for an explanation and practice the movement in both an isometric manner and in a 
free-hand manner. Upon confirming that the participant was able to perform the hand movements from the list, 
the electrodes were placed on the upper forearm. Subsequently, the participant was asked to place the hand into 
the force measurement device and perform random hand movements so that the electrode-skin contact could 
be assessed. At this stage, it was checked if there were any EMG channels containing high noise or spikes that 
occurred during the muscle contractions. The presence of a high amplitude signal was usually an indicator that 
some of the electrodes have poor contact with the skin surface. In these cases, the elastic bandage covering the 
electrodes was tightened. If there were still channels with high amplitude noise, the electrode was removed and 
reapplied at the same position (with a new foamy layer and gel). Upon confirming that the EMG channels were 
not contaminated with excessive noise nor movement artefacts the automated measurement protocol was started.

The recording protocol consisted of 66 hand movements (65 unique movements and one repeated 
twice) with five repetitions separated with rest periods each lasting 5 s. As the main aim of this data-
base was to provide useful data for EMG classification, specifically for multi-label classification, the selec-
tion of movements was made so that it comprised all single degree of freedom movements (1DoF) that 
could be obtained by the means of the force measurement device, such as flexion/extension of individ-
ual fingers, but also, compound movements comprising combinations of basic movements. In this study, 
16 basic/1DoF movements were selected, two per D2-D5 fingers (flexion-extension), four for thumb 
(flexion-extension-abduction-adduction) and four for wrist (flexion-extension-pronation-supination). To make 
the movement commands more understandable for the participants, terms flexion-extension for D2-D5 fingers 
were replaced with bend-stretch, flexion-extension-abduction-adduction for thumb with down-up-left-right, and 
flexion-extension-pronation-supination for wrist with bend-stretch-rotate anti clockwise-rotate clockwise. With 
16 basic movements, the number of all the possible combinations is very high, and it would be impractical to 
record all of them. Thus, the subset of compound movements was derived using several rules:

 1. All co-contractions of a single joint were excluded from the list. For example, a command to simultane-
ously flex and extend a finger was not included as the net finger force would be zero, thus it would not be 
detected by the force sensor.

 2. For movements comprising two fingers, only flexions of adjacent fingers were included in the list. Besides 
being more common in activities of daily living, the flexions of adjacent fingers are movements that could 
be performed without specific motor skills or extensive training (unlike flexion of non-adjacent fingers).

 3. Hand movements including combinations of joints flexion and extension were excluded from the list, 
with the exception of wrist extension that was included with fingers flexions, and pointing movement that 
included extension of index finger together with flexion of D3-D5 fingers. Similar to the rationale provided 
for rule 2, hand movements comprising a mixture of joints flexions and extensions are rare in activities of 
daily living, and difficult to execute.

 4. For the multi-joint hand movements (>2 DoF movements), the selection was based on the most common 
hand grips and gestures. These movements include known muscle synergies that enable easy and intuitive 
execution even in an isometric fashion.

 5. As the fingers extensions were underrepresented in the recording set, two instances of D2-D5 fingers 
extensions were included in the list of movements (movement codes 58 and 60 in Online-only Table 1).

During the pilot measurements (not included in this study), the list of movements was modified and some of 
the hand movements were removed if there were difficulties in performing them. In total, 66 hand movements (65 
unique) were used in this protocol, see Online-only Table 1.

The measurement was guided automatically by the custom-made software developed in LabVIEW. The 
graphical interface presented to the participant textual commands for the next/current hand movement (as in 
Online-only Table 1). The onset of the hand movement was directed by a large green light indicator (visual cue) 
and a short beeping sound (auditory cue). The participant was supposed to “hold” the movement at a comfortable 
force level until the visual indicator was turned off. The movement end was also signalled by the change of the 
displayed textual command, which during the rest periods comprised words “Rest, prepare for: (movement from 
Online-only Table 1)”. Each hand movement was performed five times before switching to the next movement. 
The transition between different movements was additionally highlighted by the change of the text colour, which 
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toggled between red and blue after the fifth repetition of a movement. This feature was added as it was noted dur-
ing the pilot recordings that the participants tend to focus more on the movement onset cue than on the textual 
command. This often resulted in producing the same hand movement for extra repetitions although the move-
ment textual command was changed. With the colour change between different hand movements, the occurrence 
of wrong repetitions was significantly reduced.

Data processing. The HD-sEMG data recorded with OT Biolab was filtered offline to further remove power 
line noise. A zero-phase 3rd order band-pass Butterworth filter centered at 50 Hz with 4 Hz width implemented 
in Matlab (command: filtfilt) was used for this task. No additional processing was done to the HD-sEMG signals.

The signals acquired with two devices (Quattrocento and NI-USB 6218) and recorded with two programs run-
ning in parallel (OT Biolab and LabVIEW) were synchronized using the common TTL pulses that were supplied 
to both recording chains. In the offline processing, these pulses were detected in both files and the signals were 
truncated so that the beginning was at the leading edge of the first pulse, while the end was at the trailing edge 
of the last pulse. As an additional check, the pulses were counted in both files to verify that there was no missing 
data. To join the HD-sEMG data sampled at 2048 Hz and force and movement label data sampled at 200 Hz, 
interpolations were performed so that all the signals matched the HD-sEMG sampling rate (2048 Hz). This step 
was done using Matlab command interp1.

The onset and cessation of each movement were presented to the participant using visual and audio cues. 
Nevertheless, the hand movement was usually delayed due to physiological reaction time, but also due to reduced 
focus of the participant during prolonged measurement. Thus, the real movement onset and cessation were not 
matching the movement labels that correspond to movement cues. To provide movement labels that correspond 
to real hand movements, a temporal re-labelling was done (see Fig. 2a). The main aim of this process was to 
provide movement (class) labels that separate rest periods from movements, thus providing consistent signals 
for training procedure of a classifier, but also providing better segmented data for classifier testing purposes. The 
temporal re-labeling relied on measured hand forces as the indicators of the movement offset and cessation. The 
algorithm of temporal re-labeling can be described as the sequence of the following steps:
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Fig. 2 An example of the recorded signals, markings, and histograms of latencies for movement onsets and 
cessations. (a) shows an EMG channel (out of 128) from the electrode placed over the volar portion of the 
forearm. Superimposed with the EMG signal (blue) are ring finger force (red), movement cue timings presented 
to the participant (yellow), and the re-labelled movement durations estimated using force levels (purple). This 
signal example comprised movements 31 (Ring finger: bend + Wrist: rotate anti-clockwise), 32 (Ring finger: 
bend + Wrist: rotate clockwise) and 33 (Middle finger: bend + Index finger: bend). From the figure, it could be 
noted how the force fluctuates during movements, similarities, and differences between consecutive repetitions 
of the same movement, but also clear differences between the EMG and the force profiles when switching to a 
completely different finger (joint). (b) shows latencies of re-labelled movements for all repetitions, movements, 
and participants. Mean latencies for onset was 0.24 s, while for the cessation was 0.7 s.
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•	 In the period preceding the movement cue, the “rest” hand forces were obtained as the average values within a 
1 s window. This resulted in a 1 × 9 vectors (one for each sensor) that was updated before each movement cue.

•	 The “rest” hand forces were subtracted from each force channel. This process was done in a loop that stepped 
through the signal in a sample-by-sample manner, where the “rest” vector was updated at the beginning of 
each movement cue.

•	 Subtracted signals were rectified and all 9 force channels were summed together for each sample, resulting in 
a 1 x (signal_length) vector.

•	 For each hand movement, the algorithm found the minimal hand force within 1 s period preceding the move-
ment onset cue, and maximal hand force during 5 s after the movement onset cue.

•	 The real movement onset was then defined as the sample at which the summed force signal was above 50% of 
the difference between minimal and maximal movement forces.

•	 A similar procedure was done for estimating when the real hand movement ended. For each hand movement, 
the algorithm found the maximal hand force within 1 s period preceding the movement cessation cue, and 
minimal hand force during the 5 s after the movement cessation cue.

•	 The real movement cessation was then defined as the sample at which the summed force signal crosses below 
50% of the difference between minimal and maximal movement forces.

Calculated latencies between the presented cue and the real movement were joined for all participants, move-
ments, and repetitions (Fig. 2b). Based on the cumulative data, mean latencies were extracted; 0.24 s (std = 0.33 s) 
for onset and 0.56 s (std = 0.46 s) for cessation. It should be noted that movement onset was expressed by both 
auditory and visual cue, while movement cessation was only expressed by turning off of the visual cue (onscreen 
virtual LED). This fact could be used to explain the differences between latency distributions for onset and ces-
sation of the movements. Another difference between these two conditions is that for onset, participants were 
focusing on the incoming cues, while for the movement cessations, the participants were focusing on maintaining 
the desired hand gesture, and transitioning to rest state required more time. Finally, as the movement executions 
were rhythmical (5 s on, 5 s off, 5 s on…) it was possible to anticipate the timing of the onset cue, which is also the 
reason for some early movement onsets (before actual cue). The observed movement latencies (relabelling results) 
are comparable with previous studies focused on human reaction time31,32.

Data records
The data presented in the current paper can be downloaded from figshare33 and used freely for any purpose. This 
section describes the contents of the provided files.

Each file, encoded in.mat format, contains data recorded from a single test participant and is named according 
to the convention sx.mat, where x is the participant index (i.e. an integer in the range 1–20). Each file contains 
a set of variables, listed below, together constituting the data and metadata connected to the participant. L here 
denotes the total number of sampled time points across the entirety of the recording session.

•	 subject: An integer in the range 1–20, representing the participant number (same as in file name).
•	 Fs: The sampling rate of the HD-sEMG signal and of the synchronized forces and movement stimuli signals, 

here always equal to 2048 Hz.
•	 emg_extensors: An L × 8 × 8 matrix containing the sEMG samples of the 64 channels recorded from the dor-

sal side of the forearm. The second and third matrix indices correspond to the relative positions of the corre-
sponding electrodes along and across the forearm, respectively.

•	 emg_flexors: An L × 8 × 8 matrix containing the sEMG samples of the 64 channels recorded from the volar 
side of the forearm. The second and third matrix indices correspond to the relative positions of the corre-
sponding electrodes along and across the forearm, respectively.

•	 force: A L × 9 matrix containing the 6 force channels, samples synchronized with those of the EMG signals.
•	 class: An 1D array of length L containing integers in the range [0,65] which encodes the class of the movement 

stimuli being presented to the participant concurrently with collected sEMG and forces. Array elements of 
value 0 denote the rest state.

•	 labels: An L × 16 Boolean matrix, computed directly from the class variable via a lookup table. The truth value 
of labels(i, j) is 1 if the movement which the participant is prompted to perform at time j incorporates the i:th 
DoF and 0 if it does not.

•	 repetition: An 1D array of length L containing integers in the range 0–5 which encodes the repetition number 
of the movement stimuli being presented to the participant.

•	 adjusted_class: The class variable following automated re-labelling as described in the Data Processing section.
•	 adjusted_labels: The labels variable following automated re-labelling as described in the Data Processing 

section.
•	 adjusted_repetition: The repetition variable following automated re-labelling as described in the Data Pro-

cessing section.
•	 outlier_scores_extensors: An 8 × 8 matrix containing channel-specific outlier scores, computed via the method 

described in the Technical Validation section, of the sEMG channels presented in emg_extensors. The value 
stored in outlier_scores_extensors[i, j] corresponds to the channel emg_extensors[i, j, :].

•	 outlier_scores_flexors: An 8 × 8 matrix containing channel-specific outlier scores, computed via the method 
described in the Technical Validation section, of the sEMG channels presented in emg_flexors. The value 
stored in outlier_scores_flexors[i, j] corresponds to the channel emg_flexors[i, j, :].
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technical Validation
In addition to the protocol followed during recording sessions for ascertaining the quality of acquired signals 
(described in the Methods section), the resulting dataset was subsequently assessed quantitatively in an offline 
setting. This validation of HD-sEMG signals entailed (i) extracting signal frequency spectrums from all EMG 
channels, (ii) computing the cross-correlations between all possible pairs of channels for all recording sessions, 
and (iii) computing a channel outlier metric separately for each participant and EMG channel. The details and 
implications of these approaches are given in the following sections.

Frequency spectra. The frequency spectra of the EMG signals comprising the current dataset are summa-
rized graphically in Fig. 3. A single spectrum was computed for each participant and channel (20 128 = 2560 
spectrograms in total) using Welsh’s method; the curves plotted in Fig. 3 represents quartiles, computed 
frequency-wise, over all such spectra. Excluding the discontinuities induced by offline notch filtering at 50 Hz 
power line interference, the morphologies of the spectra correspond to those expected in light of the previous 
studies34. As it could be expected, there was a notable variation in average amplitude between deciles, which is 
a result of the variation in average amplitude between channels – the 128 electrodes cover muscles situated at 
different depths, and different muscles are moreover recruited for different numbers of unique movement classes, 
resulting in significant variation in amplitude and by extension observable variations in vertical offsets of deciles.

Channel correlations. The two HD-sEMG electrode arrays used for the current study were, during the 
experiments, placed on the skin in a way to cover multiple forearm muscles. Consequently, when a participant 
attempted to perform a movement, a specific subset of covered muscles was recruited, leading to a spatially clus-
tered pattern of activity in the concurrent HD-sEMG. This behavior is the consequence of the nature of the 
electromyography technique that relies on the electrical signal traversing along the muscle fibers (action poten-
tial) which is then transmitted through tissues radially, eventually reaching recording electrodes. The ampli-
tude of this signal on different electrodes is proportional to the distance between the source (muscle) and the 
recording points (electrodes). The zero-lag cross-correlation coefficient between a given pair of EMG channels 
is therefore expected to be large for channels with electrodes situated close together, and small for channels with 
electrodes situated far apart. In the event of non-negligible interference or other types of noise shared across 
multiple channels (e.g. excessive motion artefacts), this regularity can no longer be expected to hold true, as even 
signals acquired by electrodes far apart would exhibit notable covariation. To verify the absence of this type of 
noise in the presented dataset, the zero-lag cross-correlation coefficient between every possible pair of channels 
was computed for each participant and compared to the physical distance separating the electrodes of the pair. 
The analysis was performed on whole signals (comprising all movements) for all electrode pairs within the same 
row or column, and for all the participants. Only pairings where both channels belong to the same electrode 
row/column were used. This also means that only channels within the same electrode were considered, as the 
distance separating the two 8 × 8 electrode arrays was not noted. As the electrodes were coarsely aligned with the 
direction of muscle fibers of major muscles within the forearm, the electrical activity picked by electrode rows  
(channels 1-2-3… 63–64) and columns (channels 1-9-17-… 56–64) is resulting from different physical pro-
cesses. In the case of electrode rows, the electrical signal is directly coupled with the propagation of action 
potentials along the muscle fibers, while in the case of electrode columns the signal is reaching recording sites 
by passive radial propagation from muscle fibers through surrounding tissues. To observe both of these effects 
the cross-correlation was calculated for the two directions separately and is presented in Fig. 4. In Fig. 4a, the 
observed relationship of the inter-electrode distance across muscles and channel cross-correlation is presented; 
Fig. 4b contains the observed relationship of the distance along muscles and channel cross-correlation. In both 

Fig. 3 Aggregated representation of HD-sEMG signal spectra from all participants, movements, and channels. 
The central red line represents the median spectrum and the blue regions represent the quartiles (computed 
separately for each frequency bin).
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cases, a strong negative relationship was observed between the variables, indicating that the amount of common 
noise and crosstalk was limited, but it is notable that the channel cross-correlation decreases much slower in 
the case of electrodes placed across the muscle. As mentioned before, this behavior reflects underlying electro-
physiology coupled with the zero-lag cross-correlation method which was used to assess channels crosstalk. The 
employed method results in (1) higher cross-correlation values between channels across the muscle where the 
signal from muscle fibers is only attenuated in proportion to the electrode-fiber distance (Fig. 4a), and (2) lower 
cross-correlation when the signal is propagated with some time delay (Fig. 4b).

Outlier scores. As the used HD-sEMG electrodes have some mechanical constraints, such as limited cur-
vature and adhesion properties, there is always a possibility of having a poor skin-electrode contact at specific 
electrode portions. This issue results in an increased environmental noise level (50 Hz) and the appearance of 
movement artifacts in the form of high-amplitude spikes during some specific contractions that deform the fore-
arm surface more than the electrode can follow. Thus, the signal quality of HD-sEMG can plausibly be expected 
to vary across channels for a given participant and recording session. Although the movement artifacts spikes are 
usually very sparse, as they appear together with some specific hand gestures, they could potentially, impede some 
of the machine-learning algorithms by providing false EMG behavior.

In subsequent offline processing of signals, it may thus be of interest to exclude channels deemed as outliers by 
some appropriate measure of channel deviation. In order to provide such a measure in the current dataset, a sim-
ple outlier score was defined and calculated for each individual channel and recording session. To calculate this 
score, denoted Oi for the ith channel, the following procedure was carried out: initially, the 99th percentile of all 
rectified voltages sampled from each channel, denoted pi

99%. for the ith channel, was calculated. This value approx-
imates the voltages reached by the considered channel at signal peaks. This statistical measure proved to be more 
robust than simply finding the maximum voltage across all samples. Next, the first and third quartile (Q1 and Q3, 
respectively) were extracted from the lists of all such values across all channels (pi

99% for all i) and used to compute 

a)

b)

Fig. 4 Coefficient of determination R2 of channels pairs for all 8 possible inter-electrode distances (a) 
perpendicular to muscles and (b) parallel to muscles. The central markers represent means and the upper 
and lower delimiters of the error bars represent the 75th and 25th percentile, respectively, computed across all 
participants and possible channel pairings.
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the interchannel interquartile range as = −IQR Q Q3 1. In accordance with one common definition of a statisti-
cal outlier, a nonzero outlier score Oi was lastly assigned to the ith EMG channel if and only if pi

99% exceeded a 
threshold voltage given by = + . ⋅T Q IQR3 1 5 . For such channels, i.e. where >p Ti

99% , the value of Oi was set 
to be proportional to the number of IQRs with which pi

99% exceeded the threshold:

=
−

O
p T

IQR
max(0, )

i
i
99%

A channel with an outlier score Oi = 0 can be interpreted as falling within expected boundaries of valid EMG 
amplitude variation. For a channel with nonzero Oi, the outlier score is intended to quantify the degree to which 
the channel generated notably higher peak voltages, as caused by e.g. signal high-amplitude spiking, than those 
of the other channels. With the provided list of scores, it is possible to exclude channels at an arbitrary level of 
acceptable channel deviation.

Due to the bipolar sampling protocol used to acquire EMG signals during recording sessions, an outlier score 
was computed only for the − ⋅ =128 (8 2) 114 channels not originating from the electrodes at the proximal end 
of the two electrode arrays (the remaining 16 channels were automatically given an outlier score of 0). In the 
current database, recording sessions contained an average of 92.24% (SD 3.61%) channels with an outlier score of 
0. Among channels with nonzero outlier score, the mean value of Oi was calculated as 2.63 (SD 3.68).

In addition, due to the bipolar setup, channel 128 (the last channel of the second electrode) should not be used 
as it was not referenced in the same manner as other channels.

Code availability
The signal recording was performed using two programs in parallel: OT BioLab version 2.0.6254 available at 
www.otbioelecttronica.com for recording HD-sEMG and synchronization signals, and the custom recording 
software developed in LabVIEW 2016 for force signals recording, generating synchronization pulses, visualizing 
forces, and generating commands and cues. Data post-processing was done in Matlab and Python. The custom 
codes for temporal re-labeling and outlier scores are available at the GitHub repository: https://github.com/
Neuroengineering-LTH/HDsEMG-database-Associated-codes.
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