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Alzheimer’s disease (AD) is the most common form of dementia, characterized by progressive loss of memory and cognitive
dysfunctions. A central pathological event of AD is accumulation and deposition of cytotoxic amyloid-𝛽 peptide (A𝛽) in the
brain parenchyma. Heparan sulfate proteoglycans (HSPGs) and the side chains heparan sulfate (HS) are found associated with A𝛽
deposits in the brains of AD patients and transgenic animal models of AD. A growing body of evidence from in vitro and in vivo
studies suggests functional roles ofHSPG/HS inA𝛽 pathogenesis. Although the question of “how andwhyHSPG/HS is codeposited
with A𝛽?” still remains, it is within reach to understand the mechanisms of the events. Recent progress by immunohistochemical
examination with advanced antibodies shed light on molecular structures of HS codeposited with A𝛽. Several recent reports have
provided important new insights into the roles of HSPG in A𝛽 pathogenesis. Particularly, experiments on mouse models revealed
indispensible functions of HSPG inmodulating A𝛽-associated neuroinflammation and clearance of A𝛽 from the brain. Application
ofmolecules to interferewith the interaction betweenHS andA𝛽 peptides has demonstrated beneficial effects onADmousemodels.
Elucidating the functions of HSPG/HS in A𝛽 deposition and toxicity is leading to further understanding of the complex pathology
of AD. The progress is encouraging development of new treatments for AD by targeting HS-A𝛽 interactions.

1. Introduction

Structure of Heparan Sulfate Proteoglycans. Heparan sulfate
proteoglycans (HSPGs) are heavily glycosylated proteins,
in which several heparan sulfate (HS) glycosaminoglycan
(GAG) chains are covalently attached to a core protein.
HSPGs are expressed on the cell surface and in the extra-
cellular matrix (ECM) in all tissues. Cell surface HSPGs are
membrane-spanning syndecans (SDCs) and lipid-anchored
glypicans (GPCs). There are four members in SDC family
(SDC 1–4) and six in GPC family (GPC 1–6). Secreted
HSPGs are agrin, collagen type XVIII, and perlecan [1]. HS
polysaccharide chains are characterized by highly structural
heterogeneity with respect to the chain length and sulfation
pattern, generated by a complex biosynthetic process within
the Golgi apparatus [2, 3]. Functions of HSPGs are mainly
attributed to the HS side chains that interact with a spec-
trum of protein ligands including growth factors, cytokines,

enzymes, lipase, apolipoproteins, and protein components
of the ECM, exerting biological activities in development,
homeostasis, and diseases [3, 4].

The diverse functions ofHS in different biological settings
have been extensively studied, and substantial information
is obtained. One of the most studied molecular mechanisms
of HS is in signal transduction process, particularly growth
factor medicated signaling. For example, HS mediates high
affinity binding of fibroblast growth factor-2 (FGF-2) to
its receptor promoting the formation of a stable tertiary
signal complex of FGF-2-HS-FGF-2 receptor [5]. Apart from
mediating growth factor activities, HS also functions as
coreceptors in other biological activities, for example, modu-
lating the interaction of neuropeptide agouti-related protein
with melanocortin receptors 3 and 4 (MC3R and MC4R) in
the hypothalamus and regulating food consumption [6–8].
Moreover, membrane HSPGs also act as endocytic receptors
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for diverse macromolecules such as lipid, growth factors,
receptor ligands, and morphogens [1, 9].

Secreted HSPGs, agrin [10] and perlecan [11], consti-
tute major structural molecules in the ECM and basement
membrane (BM) along with collagens and other proteins
(for review, see [12]). In the ECM, HSPG serves as storage
for a number of molecules, such as growth factors and
chemokines. In addition, HSPG also plays important roles
in maintaining the integrity of ECM and BM [13, 14] and
modulating cell mobility [15–17] (also for review, see [4]).
In the BM, HSPG, along with collagen IV and laminin-
entactin/nidogen complex, controls blood vessel permeabil-
ity and takes a part in transportation of solutes between
vessels and ECM [18, 19]. The ultrastructure of BM can be
changed in disease conditions [20] and aging [21], probably
due to abnormal production and breakdown of BM compo-
nents including HSPGs [20].

Heparanase. Heparanase is an endo-𝛽-glucuronidase that
specifically cleaves HS side chains of HSPG, releasing
oligosaccharide products at the size of 4–7 kDa (10–20 sugar
units) [22]. Heparanase is normally expressed at a low level
in majority of tissues including the brain [23]. Surprisingly,
this uniqueHS-specific glycosidase is not essential for animal
development and homeostasis, as demonstrated by targeted
interruption of the heparanase gene in mouse [24]. The
heparanase null mice produce longer HS chains in compar-
ison to wildtype mice; however, there is no accumulation of
the polysaccharide in organs, indicating that heparanase is
not an indispensible enzyme for HS catabolism. In contrast,
overexpression of heparanase in mice resulted in extensive
modification of HS chains, producing short fragments with
increased sulfation that exert higher potency for FGF-2-HS-
FGF-2 receptor resembling [25]. This makes the heparanase
transgenic mouse (Hpa-tg) a valuable tool for study of HS
functions in different diseases [26–29]. Changes in expression
of heparanase in tissues, mainly upregulation, have been
reported in several diseases, particularly in cancers [30].
Increased expression of heparanase is detected in brain tumor
glioma tissues from human and animal models, where hep-
aranase is suggested to play an important role in the control of
tumor cell proliferation and invasion [31]. Cerebral ischemia
markedly increased heparanase levels in endothelial cells
and astrocytes of mouse [32] and rat [33] brains. Available
information suggests that heparanase may function as a
regulatory factor in different pathological conditions, includ-
ing tumor and inflammation, exerting its functions through
modification of HS structure [34]. Moreover, heparanase has
been shown to have nonenzymatic activities, most likely
through direct interaction with cell surface receptors, which
needs further investigations [35].

A𝛽 Pathology of Alzheimer’s Disease. Alzheimer’s disease
(AD) is a major central nervous system disease characterized
by a progressive neurodegeneration with a clinical phenotype
of cognitive impairment. A histopathological hallmark of AD
is extracellular A𝛽 deposition in brain parenchyma mani-
fested as senileA𝛽 plaques [36].Thepathological A𝛽peptides
of 40 or 42 amino acids are products of sequential cleavage of

the amyloid 𝛽 precursor protein (A𝛽PP), a transmembrane
glycoprotein, by 𝛽-secretase (𝛽-site APP cleaving enzyme 1:
BACE1) [37] and 𝛾-secretase, a multisubunit protease com-
plex composed of at least 4 proteins including presenilin 1
and 2 [38]. Deposition of A𝛽 in the brain is attributed to
excessive accumulation and aggregation of A𝛽 in the brain.
Accumulation and deposition of A𝛽 most probably resulted
from overproduction in the brain or/and impaired removal
of A𝛽 from the brain [39]. Autosomal dominant mutations in
three genes, that is, A𝛽PP gene (APP) and presenilin 1 and 2
genes (PSEN1 and PSEN2), can cause early onset familial AD,
accounting for<10%ofADcases [40–42]. All thesemutations
can result in overproduction of the A𝛽 peptides, leading to
their accumulation and aggregation in the brain [43–45]. In
clinic, the most common form of AD is late-onset sporadic
ADaccounting for about 90%ofADcases. SporadicAD is not
associated with genetic mutations, and no overproduction of
A𝛽 was found. In these cases, it is generally believed that
overall A𝛽 clearance is impaired, resulting in accumulation
of A𝛽 peptides [46, 47]. In the brains of AD patients and
some aging individuals with no clear diagnosis of dementia,
A𝛽 is found to accumulate and deposit in blood vessel walls,
named cerebral amyloid angiopathy (CAA), which has been
interpreted as a sign of impaired A𝛽 clearance from the brain
[48].

There are several ways for A𝛽 clearance, including degra-
dation by proteolytic enzymes [49], receptor mediated A𝛽
transport across the blood-brain barrier (BBB) in which
the main receptor is low-density lipoprotein receptor related
protein-1 (LRP-1) [50], phagocytosis by innate immune cells
(macrophages) [51], and perivascular drainage along the BM
of blood vessels [52].

2. Interaction of HS with A𝛽

Several in vitro studies demonstrate interaction of A𝛽 with
GAGs including HS and heparin (a HS analogue with higher
sulfation degree) [53–56]. It has been found that the HHQK
domain at the N-terminus of A𝛽 is a HS binding motif
and this sequence has also been shown to bind microglial
cells, suggesting that microglia interact with A𝛽 through
membrane associated HS [57]. Concurrently, a HS sequence
of 𝑁-sulfated hexasaccharide domain containing critical
2-O-sulfated iduronic acid residues binds fibrillar A𝛽 and
was identified in human cerebral cortex. Interestingly, thisHS
domain also serves as a binding site for the neuroprotective
growth factor FGF-2. This evidence suggests that, in AD
brain, neurotoxic A𝛽 may compete with neuroprotective
FGF-2 for a common HS binding site [58]. Affinity of HS
binding to A𝛽 is associated with its sulfation pattern, as
heparin shows a higher affinity to A𝛽, while desulfated HS
essentially lost binding capacity to A𝛽. This interaction is
also dependent on chain length of the GAGs, as heparin
fragments shorter than 6-sugar units do not bind to A𝛽
[58]. Furthermore, it has been proposed that the A𝛽-HS
interaction is mutually protective, such that HS is protected
from heparanase degradation [53] and A𝛽 is protected from
protease degradation [59].
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3. Codeposition of HS with A𝛽 in
AD Brain—Updated Findings

The presence of glycosaminoglycans (GAGs) in A𝛽 plaques
in AD brain was first identified using Congo red staining for
A𝛽 fibrils and Alcian blue dye for sulfated GAGs in brain
sections of autopsy specimens of AD patients about 30 years
ago [60].The presence of HSPGs in A𝛽 plaques and CAAwas
later revealed by immunostaining with specific antibodies
recognizing the core proteins of HSPGs [61–63]. With these
antibodies, subtypes ofHSPGs including SDC 1–3,GPC 1, and
agrin have been immunolocalized in A𝛽 plaques and CAA of
AD brains [64, 65]. Development of antibodies recognizing
different A𝛽 fragments further promoted characterization of
interaction between A𝛽 and HS.

Recent studies employed advanced type of anti-HS anti-
bodies that differentially recognizes certain structures of HS
polysaccharide chains [66, 67]. For example, phage display
antibodies EV3C3 and HS4C3 recognize fully N-sulfated
motifs in HS chain, while RB4EA12 and HS4E4 recognize
partially N-sulfated and N-acetylated HS motifs [66, 68,
69]. Availability of these unique antibodies allowed us to
analyze the molecular structure of HS codeposited with
A𝛽 in the brain. By costaining the AD brain sections with
an anti-HS phage display antibody HS4E4 and antibodies
specific for A𝛽 species, we found that HS is differentially
deposited with A𝛽40 or A𝛽42 in neuritic and diffuse plaques
[70]. In sporadic AD cases, HS4E4 immunosignals are
preferentially colocalized with A𝛽40 in the cores of senile
plaques; however, the HS4E4 signals are absent from A𝛽42-
rich diffuse deposits. In a recent study, antibodies (EV3C3
and HS4C3) recognizing highly N-sulfated HS detected
strongest immunosignals in both fibrillar and nonfibrillar A𝛽
plaques, while antibodies (RB4EA12 andHS4E4) recognizing
HS regions with lower degree of N-sulfation only stained
fibrillar A𝛽 plaques [68], indicating a distinct property of
HS structures in interaction with different A𝛽 aggregates
in vivo. These reports are in agreement with our findings,
confirming that only fibrillar A𝛽plaques ofA𝛽40 deposits are
colocalized with lower sulfated HSmotifs.We have identified
the membrane bound HSPGs, GPC 1, and SDC 3 in glial
cells associated with A𝛽 deposits in dense core plaques,
proximal to sites of HS accumulation, and suggested that HS
codeposited with A𝛽40 in neuritic plaques is mainly derived
from glial cells [70]. RB4CD12 is another phage display
antibody that recognizes highly sulfated domains of HS [71].
This antibody strongly stained both diffuse and neuritic A𝛽
plaques in the brains of AD and several transgenic ADmouse
models. Interestingly, the RB4CD12 epitope accumulated in
A𝛽 plaques can be demolished by extracellular sulfatases
(Sulf-1 and Sulf-2) ex vivo [72], suggesting that 6-O-sulfated
glucosamine residues are within the HS sequence interacting
with A𝛽.

These recent findings of selective deposition of HS with
different species and forms of A𝛽 strongly suggest distinct
roles of HS in A𝛽 aggregation and deposition. These studies
point that HS/HSPG constitutes a part of A𝛽 plaques and the
findings support the notion that HS plays a role in A𝛽 plaque
formation and persistence.

4. HS Mediated A𝛽 Uptake—Implications in
A𝛽 Cytotoxicity and Clearance

In the brain, A𝛽 are present in both extracellular and intracel-
lular pools and extracellular A𝛽 contributes to intracellular
A𝛽 through internalization mechanisms [73]. Cell types
in the brain are known to engulf A𝛽 including neurons,
endothelial cells [74], smooth muscle cells [75], and glial
cells (microglia and astrocytes) [76, 77]. Internalization of
A𝛽 into cells has been shown to be associated with A𝛽
cytotoxicity [78, 79]. Several cell surface macromolecules
of microglia/macrophages are reported to play roles in
A𝛽 uptake, including toll-like receptor [80], complement
receptors [81], scavenger receptors [76, 82], LRP-1 [83], and
transmembrane protein CD33, a member of the sialic acid-
binding immunoglobulin-like lectins [84] (also for review,
see [85]). HSPG functions as a cell surface receptor for entry
of diverse macromolecules into cells; in this context, both the
core protein and the HS side chains of HSPG are attributed to
regulation of endocytosis (for review, see [9]). Having this in
mind, we studiedA𝛽40 uptake and associated toxicity in Chi-
nese hamster ovary (CHO) cell lines. After exposure to A𝛽40,
the CHOwildtype cells (CHO-WT) survived poorly, whereas
the HS-deficient CHO pgsD-677 cells were resistant to the
treatment. In correlation with A𝛽 cytotoxicity, the added
A𝛽40 was substantially uptaken by CHO-WT but barely
by CHO pgsD-677 cells [86]. Likewise, A𝛽40 cytotoxicity
was attenuated in human embryonic kidney cells (HEK293)
overexpressing heparanase due to extensive degradation of
HS chains [86]. These findings suggest that cell surface HS
mediates A𝛽 internalization and toxicity.

According to “amyloid hypothesis,” the cause of the
majority form of AD, that is, late-onset sporadic, is due to
impaired clearance ofA𝛽 from the brain [47, 87]. Transport of
A𝛽 across the BBB from brain to blood is an important route
for A𝛽 clearance, where transcytosis requires A𝛽 to attach
to cell surface after which it is internalized and subsequently
released at the luminal side of the endothelium. LRP-1 at
the surface of blood vessel endothelial and smooth muscle
cells has been reported to function as A𝛽 cargo in this
process [50, 75]. It has been recently reported that LRP-
1 and HSPGs mediate A𝛽 internalization in a seemingly
cooperative manner, in which HSPG is more important
for A𝛽 binding to cell surface than LRP-1 [88]. Another
important player in this context is apolipoprotein E (ApoE).
ApoE and HS are consistently codetected in A𝛽 deposits
and have been ascribed various roles in the pathogenesis of
AD [89, 90]. ApoE can bind to HSPG forming functional
complex of ApoE/HSPG; alternatively, it joins HSPG/LRP-1
uptake pathway in which ApoE first binds to HSPG and then
presents to LRP-1 for uptake (for review, see [91]).The finding
of codistribution of ApoE, HS, and LRP1 in A𝛽40-positive
microvasculature in the hippocampus of individuals with
Down’s syndrome (DS), diagnosed with AD, encouraged us
to investigate correlation of thesemolecules in A𝛽 uptake and
clearance [92]. We investigated the functional relationship
betweenA𝛽 andApoE and their interactions with cell surface
HS and LRP-1 [92]. Coincubation of A𝛽 with CHO cells
either deficient in HS (CHO pgsD677) or in LRP-1 (CHO
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Figure 1: Heparan sulfate (HS) is involved in essentially each step of amyloid-𝛽 (A𝛽) pathological development in Alzheimer’s disease. HS
modulates 𝛽-secretase (BACE) activity and accelerates A𝛽 aggregation and fibrillization. It is unclear whether HS is involved in formation of
the toxic oligomers/protofibrils; however, HS mediates toxic effect of different types of A𝛽 fibrils. HS in the basement membrane participates
in clearance of A𝛽.

13-5-1) along with CHO-WT revealed that addition of ApoE
in the cell culture increased A𝛽 association to the cells,
which is dependent on presence of HSPG and LRP-1 on
the cell surface. ApoE uptake by the cells does not require
presence of both HSPG and LRP1; however, lack of HS in the
CHO pgsD677 cells resulted in aberrant intracellular ApoE
processing.These data propose that the complex interactions
of ApoE, LRP-1, and HSPG facilitate A𝛽 internalization,
which may represent one of major routes for A𝛽 clearance
through transportation of ECMA𝛽 across BBB into the vessel
lumen [92].

5. Heparanase in Aging and
AD—Implications in Transmigration of
Blood-Borne Monocytes

Heparanase expression in the brain is atmarginally detectable
level [23, 29], while, in several pathological conditions of
the brain, expression of heparanase has been found elevated
[31, 32]. Although limited information is available regarding
the impact of heparanase on AD pathogenesis, A𝛽40 has
been shown to protect heparanase-catalyzed degradation of
HSPGs in vitro with predicted effect contributing to the

stability and persistence of A𝛽 plaques [53]. Our recent study
has revealed increased vasculature expression of heparanase
in the brains of AD patients and a mouse model that
overexpresses human A𝛽PP (Tg2576 mice) [29]. Since HS is
involved in almost every step of A𝛽 pathogenesis found in
AD (Figure 1), it is of great importance to study expression
and activity of heparanase in the brain of aging subjects, both
human and animal models.

In the brain, perivascular macrophages derived from
blood-borne mononuclear cells play an important role in
A𝛽 clearance [51, 93, 94]; A𝛽 peptides are uptaken and
subsequently degraded by proteases [95]. Several in vivo
studies have demonstrated the multiple functions of HS
and heparanase in inflammatory reactions with regard to
infiltration of blood-borne immune cells into infected tis-
sues [28, 96]. In this scenario, molecular structures of
HS, for example, sulfation pattern and chain length, are
pivotal in interaction between endothelial cells and leuko-
cytes as well as with the soluble inflammatory cytokines.
Accordingly, we have recently studied the potential roles of
heparanase and HS in mediating blood-borne monocytes
across blood vessel wall into the brain parenchyma on the
transgenic mouse model overexpressing heparanase (Hpa-
tg). Overexpression of heparanase resulted in shorter HS
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chains in the brain of Hpa-tg mouse [29]. In the study, we
applied two experimental regimens, that is, localized cerebral
microinjection of aggregated A𝛽42 and systemic challenge
by intraperitoneal injection of lipopolysaccharide (LPS), a
bacterial endotoxin. Microinjection of aggregated A𝛽42 into
the brain elicited an inflammatory response restricted to the
injection site of the wildtype mice, characterized by massive
infiltration of microglia/macrophages. This inflammatory
reaction clearly showed a beneficial effect for clearance of the
injected A𝛽. In comparison, recruitment and activation of
immune cells (microglia and blood-borne monocytes) were
significantly attenuated around the injection site of Hpa-tg
mouse brain, which resulted in detainment of the injected
A𝛽42 [29]. The LPS-treated wildtype mice also showed
massive activation of residentmicroglia aswell as recruitment
of monocyte-derived macrophages in the brain parenchyma,
whereas Hpa-tg mice exhibited restricted inflammation with
significantly fewer infiltrated macrophages. The mechanism
for the reduced recruitment of inflammatory cells into the
brain of Hpa-tg mice was verified with an in vitro BBBmodel
constituted with primary endothelia cells and pericytes [29].

The integrity of ECM and the capillary vascular basement
membrane (VBM) scaffold is often found severely damaged
in association with A𝛽 deposition [97, 98], which may be
responsible for perturbed elimination of solutes and A𝛽 from
parenchyma, consequently leading to development of CAA
[99]. As HSPGs are major components of the ECM and VBM
and heparanase activity is strongly implicated in structural
remodeling of the ECM and BM through degradation of HS,
heparanase expressionmaymarkedly contribute to patholog-
ical changes in the ECM and VBM in AD brain, accordingly
affecting A𝛽 clearance. There is essentially no information
with this regard and studies are needed to explore the
implications of HS in A𝛽 transportation and clearance.

6. Conclusion and Perspectives

Principle treatments for AD with regard to A𝛽 pathology
are to reduce production, improve clearance, and prevent
aggregation of the pathological peptides. Considering that
HS-A𝛽 interaction contributes to every stage of the A𝛽
pathogenesis in AD, including production, clearance and
accumulation, aggregation, and toxicity of A𝛽 (Figure 1), it
is rational to hypothesize that interfering HS-A𝛽 interaction
may have multiple beneficial effects. Earlier studies show
that treatment with low molecular weight heparin (LMWH)
reduced A𝛽 burden in the brain of an AD mouse model
overexpressing human A𝛽PP [100]; the effect is probably that
the LMWH competes with endogenous HS, blocking the HS-
A𝛽 interaction.This assumption is supported by our findings
that the fragmentation of HS by overexpressed heparanase
in mouse attenuated deposition of serum A amyloid (SAA;
another amyloid protein) [27]. Though it is improper to use
LMWH for treatment of AD, it is possible to apply non-
anticoagulant LMWH or HS mimetics for the purpose. With
the progress in characterization of HS molecular structures
dissected from A𝛽 plaques, it should be possible to design
compounds mimic to the HS structures that interact with A𝛽

to block its aggregation as well as to neutralize its toxicity.
Moreover, targeting A𝛽 producing enzymes, that is, BACE1
and 𝛾-secretase, constitutes one of the potential treatments
for AD. Interestingly, HSPG has been found to modulate
BACE activity [101, 102], and efforts are being made to
synthesize HS-oligosaccharides as inhibitors of BACE [103].
In light of experimental and clinical evidences addressing
the role of HS in A𝛽 pathology, it is plausible to expect
that novel treatments by targeting HS-A𝛽 interaction may
contribute to AD treatment and to improve effects of other
treatments. Apart from designed synthesis of HS mimetics,
natural anionic oligosaccharides, such as glycosaminoglycans
isolated from marine animals and natural herbs, should
also be explored for the potential to be developed as drug
candidates for this particular application.
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