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1. INTRODUCTION AND MOTIVATION

Through incremental change, Nature reworks and repurposes
its functional machinery. In this way, proteins that photo-
chemically repair DNA by moving protons and electrons have a
structural and functional link to proteins that are implicated in
bird navigation.1 A protein that reduces NO but pumps no
protons is similar to a protein that reduces O2 and pumps
protons.2,3 Biology employs reactions with intricate coupling of
proton and electron movement, so-called proton-coupled
electron transfer (PCET). Biological PCET underpins photo-
synthesis and respiration, light-driven cell signaling, DNA
biosynthesis, and nitrogen fixation in the biosphere.4 The scope
of natural PCET reactions is as breathtaking as the possible
quantum chemical mechanisms that underlie them. Consid-
erable focus has been placed on uncovering how specific
proteins utilize PCET in their function. Cytochrome c oxidase
oxidizes cytochrome c and reduces and protonates O2 to water.

2

Sulfite reductase reduces SO3
2− to S2− and water with the help

of protons.5 BLUF domains switch from light to dark states via
oxidation and deprotonation of a tyrosine.6 Are there
overarching mechanistic themes for these seemingly disparate
PCET reactions? For instance, do certain protein amino acids
promote different biological PCET reactions? Is the dielectric
environment important? How do the (quantum and classical)
laws of motion and the statistical mechanics of complex
assemblies constrain the structure and function of PCET
assemblies? Knowledge of individual PCET protein structure
and function, combined with a predictive theoretical frame-
work, encourage us to seek general principles that may guide
both protein design and understanding of biological PCET. To
better inform protein design, we must look very closely at
examples of biological PCET mechanisms and at the
underpinnings of the theoretical foundations governing these
critical reactions.
Since electrons and protons have very different masses, they

can tunnel over very different distances. Thus, not surprisingly,
in many PCET reaction mechanisms, the electron donor−
acceptor pair differs from the proton donor−acceptor pair (for
example, long-distance electron transfer (ET) coupled to
proton transfer (PT) at a hydrogen-bonded interface inspired
Cukier’s theory; see sections 2.1.1 and 11). In other
circumstances (see sections 5, 7, and 12), the electron and
proton transfer between the same chemical donor and acceptor,
as occurs for hydrogen atom transfer. This diversity contributes
to the richness of PCET reaction mechanisms.
The relative time scales of ET and PT reactions depend

dramatically on the respective transfer distances, as well as on
the environmental (nuclear) motions that couple to the two
reactions. Therefore, the time scales of the reactive electron and
proton motions also need to be compared with relevant time
scales of the environment (e.g., solvent and/or protein). Nature
has evolved a diverse array of PCET reactions, ranging from
distinctly sequential electron and proton transfer reactions
(where the first reaction precedes and promotes the second

one, so that the two events are coupled although temporally
separated; for example, see section 8) to simultaneous or
concerted transfer, with a wide range of intermediate regimes
whose difficult interpretation has prompted the development of
several experimental and theoretical methods (e.g., see sections
7, 11, and 12).
Fluctuations of PCET systems are particularly significant

(e.g., see sections 10 and 12), because structural changes can
dramatically change the time scales of motion required for the
reaction. Addressing such fluctuations defines a current rich
frontier for theory and experiment.
Electron and proton sources and sinks, time scales of motion,

energetics, and structural fluctuations have been the objects of
evolutionary forces. These terms appear prominently in the
theory, described by free energy parameters (e.g., reaction free
energy and reorganization energy) and electronic and vibronic
couplings. At the atomistic level, critical questions remain as to
dominant pathways, or families of pathways, for proton and
electron motion from their initial to their final positions (or
ensembles of positions). Indeed, given the exponential
sensitivity of rates to reaction barriers, the fluctuations of
these pathways and of their energetics is a focal point of intense
current interest (e.g., see sections 5, 10, and 12). Biological
cofactors and amino acids can play active roles in PCET
pathways, and understanding the ET and PT pathways (e.g., see
section 8) sheds light on reaction and control mechanisms.
Ultimately, PCET is influenced by the topology and geometry
of thermally fluctuating interacting components in chemical
and biological systems. The topological and geometric factors
that control PCET reactions are a central theme in the
experimental and theoretical analysis of this review.
This review has the following structure: (i) The amino acid

radical environments of tryptophan and tyrosine are elaborated
for a handful of proteins that utilize these amino acids for
PCET. Part i provides primarily experimental results, although
some theoretical work is also discussed. (Indeed, theory is often
essential to elucidate mechanism for PCET in these and related
systems.) This part also emphasizes the possible complications
in PCET mechanism (e.g., sequential vs concerted charge
transfer under varying conditions) and sets the stage for part ii
of this review. (ii) The prevailing theories of PCET, as well as
many of their derivations, are expounded and assessed. This is,
to our knowledge, the first review that aims to provide an
overarching comparison and unification of the various PCET
theories currently in use.
While PCET occurs in biology via many different electron

and proton donors, as well as involves many different substrates
(see examples above), we have chosen to focus on tryptophan
and tyrosine radicals as exemplars due to their relative
simplicity (no multielectron/proton chemistry, such as in
quinones), ubiquity (they are found in proteins with disparate
functions), and close partnership with inorganic cofactors such
as Fe (in ribonucleotide reductase), Cu, Mn, etc. We have
chosen this organization for a few reasons: to highlight the rich
PCET landscape within proteins containing these radicals, to
emphasize that proteins are not just passive scaffolds that
organize metallic charge transfer cofactors, and to suggest parts
of PCET theory that might be the most relevant to these
systems. Where appropriate, we point the reader from the
experimental results of these biochemical systems to relevant
entry points in the theory of part ii of this review.
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1.1. PCET and Amino Acid Radicals

Proteins organize redox-active cofactors, most commonly
metals or organometallic molecules, in space. Nature controls
the rates of charge transfer by tuning (at least) protein−protein
association, electronic coupling, and activation free energies.7,8

In addition to bound cofactors, amino acids (AAs) have been
shown to play an active role in PCET.9 In some cases, such as
tyrosine Z (TyrZ) of photosystem II, amino acid radicals fill the
redox potential gap in multistep charge hopping reactions
involving several cofactors. The aromatic AAs, such as
tryptophan (Trp) and tyrosine (Tyr), are among the best-
known radical formers. Other more easily oxidizable AAs, such
as cysteine, methionine, and glycine, are also utilized in PCET.
AA oxidations often come at a price: management of the
coupled-proton movement. For instance, the pKa of Tyr
changes from +10 to −2 upon oxidation and that of Trp from
17 to about 4.10 Because the Tyr radical cation is such a strong
acid, Tyr oxidation is especially sensitive to H-bonding
environments. Indeed, in two photolyase homologues, H-
bonding appears to be even more important than the ET
donor−acceptor (D−A) distance.11 Discussion concerning the
time scales of Tyr oxidation and deprotonation indicates that
the nature of Tyr PCET is strongly influenced by the local
dielectric and H-bonding environment. PCET of TyrZ is
concerted at low pH in Mn-depleted photosystem II, but is
proposed to occur via PT and then ET at high pH (vide
infra).12 In either case, ET before PT is too thermodynamically
costly to be viable. Conversely, in the Slr1694 BLUF domain
from Synechocystis sp. PCC 6803, Tyr oxidation precedes or is
concerted with deprotonation, depending on the protein’s
initial light or dark state.13 In general, Trp radicals can exist
either as protonated radical cations or as deprotonated neutral
radicals. Examples of both forms are found in DNA
photolyase.1,14 The management of protons coupled to AA
oxidations may provide a means for a protein to control the
timing of chemical reactions via protein structural changes and
fluctuations. In general, proton transfer requires the proximity
of the proton donor and acceptor to be within the distance of a
typical H-bond (∼2.8 Å between heavy atoms). Any protein
dynamics that shifts this H-bond distance can thus considerably
influence the reaction kinetics.
An argument can be posited that almost all charge transfer in

biology is proton-coupled on some time scale to prevent the
buildup of charge in the low dielectric environment character-
istic of proteins. However, proteins are anisotropic and have
atomic-scale structure, so the utility of a dielectric constant
itself may be questioned, and estimated dielectric parameters
may vary on the length scale of a few AAs. What is the nature of
the protein environment surrounding AA radicals in different
proteins? What do these proteins have in common, if anything?
Below, we compare the Tyr and Trp environments of proteins
that utilize these AA radicals in their function. (For a more
detailed view of the local protein environments surrounding
these Tyr and Trp radicals, see Figures S1−S9 of the
Supporting Information.) This side-by-side comparison may
begin to suggest design principles associated with AA radical
PCET proteins. To better inform protein design, we must look
more closely at PCET in these proteins and, finally, appreciate
the underlying physical mechanisms and physical constraints at
work.

1.2. Nature of the Hydrogen Bond

Because hydrogen bonding is critical for proton and proton-
coupled electron transfer, we now explore the criteria that give
rise to strong or weak hydrogen bonds. Since hydrogen atoms
are rarely resolved in electron density maps, a hydrogen bond
(H-bond) distance is traditionally characterized by the distance
between donor and acceptor heteroatoms (RO···O, RN···O, RN···N,
etc.).15 Normal H-bond distances between oxygen heteroatoms
are 2.8−3.0 Å.15,16 In fact, a hydrogen bond is often posited
when RA···B < RA + RB, where RA and RB are the van der Waals
radii of two heteroatoms and RA···B is the distance between
heteroatom nuclei. Strong hydrogen bonds are defined as RA···B
≪ RA + RB, typically <2.6 Å for RO···O, and tend to be ionic in
nature.15 Here, ionic refers to a positively charged H-bond
donor and/or a negatively charged H-bond acceptor, i.e., A+−
H···B. (A negatively charged H-bond acceptor is more
strongly attracted to the partial positive charge of the H-bond
donor, and similarly, a positively charged donor is more
strongly attracted to the partial negative charge of the H-bond
acceptor. An example of such an ionic bond would be N+−H···
O of a doubly protonated histidine and a deprotonated
tyrosinate anion.) Even if RA···B ≥ RA + RB, weak H-bonds are
defined as RH···B < RH + RB, where RH is the van der Waals
radius of hydrogen and RH···B is the radial distance between the
donor hydrogen and the acceptor heteroatom centers. Because
H-bonds, especially weak ones, can be easily deformed in
crystal lattices, the H-bond angle tends to be a less reliable
discriminator of strong vs weak bonds. (If a H-bond is
dominated by electrostatic interactions, the heteroatom-H-
heteroatom bond angle will be nonlinear, given the roles of
heteroatom lone pair orbitals in the donor−acceptor
interaction.)
There is some debate concerning the existence of “low-

barrier” vs “short, strong, ionic” H-bonds, particularly in the
field of serine protease enzymology,17,18 but also within the area
of natural photosynthesis.19,20 TyrZ of photosystem II (vide
infra) has a particularly short hydrogen bond (2.5 Å) with a
nearby histidine.21 A typical H-bond energy viewed against the
proton position would trace a standard double-well potential
(Figure 1, left), with the difference in pKa of the H-bond donor
and acceptor giving rise to the energy difference between
minima of the two wells. Low-barrier H-bonds (LBHBs) have a
reduced barrier between the wells due to the shorter distance
between the H-bond donor (A−H) and acceptor (B), with
barrier heights approximately equal to or below the proton

Figure 1. Zero-point energy effects in (left) weak, (center) strong, and
(right) very strong hydrogen bonds. The hydrogen vibrational level
(H) is depicted above the barrier for a strong H-bond. The deuterium
vibrational level (D) is depicted below the barrier for weak and strong
H-bonds, whereas the barrier is absent for very strong H-bonds. The
proton is attached to the H-bond donor (A−H), and the H-bond
acceptor is B. The reaction coordinate is the A···H bond distance,
shown for different distances between A and B.
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vibrational energy (Figure 1, center).22 The deuterium
vibrational energy may be lower than the barrier, leading to
significant isotope effects, such as a reduction in the ratio of IR
stretching mode frequencies between H and D (νH/νD) and a
fractionation factor of ∼0.3.16,23 (The fractionation factor is the
ratio of deuterium to hydrogen within the H-bond due to
equilibrium isotope exchange with water.) The most distin-
guishing characteristic of a low-barrier H-bond is a similar
distance of the shared proton from the donor and the acceptor
(see Figure 1, center). In the case of a barrierless, single-well
potential, the proton would be shared equally between the H-
bond donor and acceptor (Figure 1, right). Matching of the H-
bond donor and acceptor pKa as well as shortening the H-bond
distance leads to a flatter well potential and stronger H-bond,
since the two protonated states would have nearly equal
energies and strong coupling.23

Although formation of LBHBs in biology remains con-
troversial,24,25 clearly H-bond formation is key in PCET
processes. One example involves a hypothesized model of
PCET in TyrZ of photosystem II, where TyrZ forms an LBHB
with histidine 190 of the D1 protein, which becomes a weak H-
bond upon TyrZ oxidation and proton transfer.20 Although still
speculative, some experiments and quantum chemical calcu-
lations suggest that TyrD of photosystem II (vide infra) in its
singlet ground state forms a normal H-bond to histidine 189 of
the D2 protein, whereas at pH > 7.6, TyrD and histidine 189
form a short, strong H-bond.26,27 Tyr122 of ribonucleotide
reductase has also been shown to switch H-bonding states upon
oxidation, where the Tyr neutral radical moves away from its
previously established H-bonded network.28

One of the most important chemical consequences of H-
bonds is that they often act as a conduit for proton transfer
(although in rare cases, proton transfer may occur without the
formation of a H-bond).29,30 Indeed, the same factors leading
to strong H-bonds can also lead to efficient PT. Through
manipulation of the amino acid (and bound cofactor) pKafor
instance, via direct H-bonds or electron transfer events
proteins can modulate the driving force for PT.31 In this way,
we see that H-bond formation is strongly tied to PCET in
chemistry and biology. The equilibrium positions of the proton
before and after PT are important in the underlying PT kinetics
(e.g., see section 10); however, knowledge of the geometry and
energetics of the transition-state complex is critical for a correct
interpretation of and insight into the PCET mechanism (see
sections 5 and 7−12). In this regard, theoretical investigations
of PCET reactions have proven invaluable.32,33

2. TYROSYL RADICAL ENVIRONMENTS
Tyr is a major player in many important PCET proteins, such
as photosystem II,34 ribonucleotide reducatase,35,36 galactose
oxidase,37 cyctochrome c oxidase,2 and many more. The
proton-coupled nature of Tyr oxidation is often relevant and
integral in biochemical reactions as diverse as water oxidation
and ribonucleotide reduction. The Tyr redox potential is highly
sensitive to pH and therefore the presence or absence of nearby
bases to which Tyr could form a H-bond. For example, Tyr-OH
oxidation to Tyr-OH•+ at pH < 2 has a midpoint potential
greater than 1.2 V vs. NHE, whereas, at a pH of 7, the Tyr
midpoint potential is 0.9 V.10 This means the oxidizing power
of the Tyr radical varies with its protonation state. Tyr has been
demonstrated to perform both reductive and oxidative roles in
relation to inorganic metal cofactors bound in proteins. For
instance, the neutral radical Tyr-O• (TyrZ) is capable of

oxidizing the manganese−calcium water-oxidizing complex in
photosystem II, whereas Tyr-OH reduces a diiron complex in
class Ia ribonucleotide reductase at the beginning of a long-
distance radical transfer chain.36,38 In the following section, we
explore the roles of Tyr in several proteins and their relation to
inorganic cofactors. The PCET reactions involved with Tyr can
display quite different character. Where appropriate con-
nections can be made between these experimental results and
theory, we point the reader to relevant theoretical sections of
this review.

2.1. Photosystem II

Photosystem II (PSII) of green plants and cyanobacteria is a
multiprotein, membrane-associated complex that converts,
transduces, and stores photonic energy in the form of chemical
potential energy, initially as a proton gradient and ultimately as
new chemical bonds.34,39−42 PSII uses water as a reductant of
photo-oxidized chlorophyll and after four such reductions
produces molecular oxygen.
PSII is often invoked as a paradigm of biological PCET (see

Figure 2), with proton-coupled redox processes occurring
during tyrosine oxidation and reduction, water oxidation, and
quinone reduction.43,44 The remarkable quantum efficiency of
PSII has encouraged many researchers to develop synthetic
models to mimic its PCET reactions. These models initially
focused on photoinduced electron transfer in covalently linked
donor−bridge−acceptor (D−Br−A) quinone systems.45−48

Models for Tyr radical formation have also been developed
and coupled to a Mn cluster similar to the water-oxidizing
complex (WOC).39−42,49,50

To separate an electron and hole over 25 Å across a
membrane, PSII utilizes multistep charge hopping on many
different time scales (Figure 2). Control over these time scales
is intimately linked to the nearby protein environment of each
cofactor. The reaction center (RC) of PSII is housed in the D1
and D2 proteins (chains a and d of PDB 3ARC) and consists of
two diverging and symmetric branches of cofactors that share a
special pair of chlorophylls (P680). Each branch has an auxiliary
chlorophyll, a pheophytin, and a quinone. As only one branch
of the RC is active (see Figure 2 for the directionality of ET),
these branches have functionally important asymmetries.55

Notably, each branch has an associated tyrosine−histidine pair
that produces a tyrosyl radical, but each radical displays
different kinetic and thermodynamic behavior. Tyr 161 (TyrZ)
of the D1 protein, nearest the WOC, is required for PSII
function, as discussed in the next section, while Tyr 160
(TyrD) of the D2 protein is not essential and may correspond
to a vestigial remnant from an evolutionary predecessor that
housed two WOCs.38 These Tyr radicals serve as excellent
models for Tyr oxidations in proteins due to their symmetri-
cally similar environments yet drastic differences in kinetics and
thermodynamics. Their important role in the process of
oxygen-evolving photosynthesis (and consequently all life on
earth) has led these radicals to become among the most studied
Tyr radicals in biology.

2.1.1. D1-Tyrosine 161 (TyrZ). Tyrosine 161 (TyrZ) of
the D1 protein subunit of PSII acts as a hole mediator between
the WOC and the photo-oxidized P680 chlorophyll dimer
(P680•+) (see Figure 2). Its presence is obligatory for oxygen
evolution, along with its strongly H-bonded partner histidine
190 (His190).44 Photosynthetic function cannot be recovered
even by TyrZ mutation to Trp, one of the most easily oxidized
AAs.56 This might be rationalized by aqueous redox measure-

Chemical Reviews Review

dx.doi.org/10.1021/cr4006654 | Chem. Rev. 2014, 114, 3381−34653384



ments of these AAs between pH > 3 and pH < 12, which point
to Tyr being slightly easier to oxidize than Trp in this range.10

However, these measurements at pH < 3 make apparent that
protonated Tyr-OH is more difficult to oxidize than protonated
Trp-H, such that management of the phenolic proton is often a
requirement for Tyr oxidation in proteins. (Mutation of His190
to alanine also impairs the electron donor function of TyrZ,
which can be recovered by titration of imidazole.57). TyrZ is a
H-bond donor to His190, which is in turn a H-bond donor to
asparagine 298 (see Figure 3). The H-bond length RO···N is
unusually short (2.5 Å), indicating a very strong H-bond.
Under physiological conditions (pH ≈ 6.5 or less) oxidation

of TyrZ by P680•+ appears to be concerted with deprotonation
to His190 to form the H-bonded pair TyrZ-O•···HN+-
His190.12 The transferred proton may then rock back to
TyrZ-O• upon reduction of TyrZ by the WOC, or it may exit
to the lumen through a H-bonded pathway of amino acids and
waters.31,58 Both fates for the phenolic proton have been
suggested in the literature, and perhaps both are possible

depending on which part of the Kok cycle the WOC is in. (The
Kok cycle is the five states, S0 through S4, that characterize the
oxidation states of the WOC during the proton-coupled
oxidation of water to molecular oxygen. The current view of
proton release during transitions between these states is one (S0
→ S1), zero (S1 → S2), one (S2 → S3), and two (S3 → S4)
protons.58) If the phenolic proton remains on HN+-His190, the
positive charge of the doubly protonated imidazole may drive
shifts in the pKa values of nearby protonatable residues and thus
act as a gating mechanism for proton transduction from the
WOC to the bulk.58

TyrZ oxidationwhich is often probed by monitoring the
recovery of P680 from P680•+is multiphasic, with a fast time
component of ∼10 ns and a longest time component of ∼0.5
μs.12 A hypothesis has been proposed that the fastest
component of TyrZ oxidation displayed by O2-evolving PSII
is characteristic of oxidation of an equilibrated population of
TyrZ-O•− ···HN+-His190. Indeed, QM calculations have shown
that the H-bond distance of this ion pair is equivalent (2.46 Å)
to that in the neutral pair (TyrZ-OH···N-His190).19 The slower
components of Tyr oxidation may involve slower protein
motions that promote proton transfer or protein relaxation.12

The redox potential of TyrZ has been estimated to lie around 1
V vs NHE and to have a pKa of 10.3−12, while His190 has a
pKa = 7−7.5 in Mn-depleted PSII.38 The presence of the WOC
seems to provide a sufficiently strong electrostatic influence to
lower the pKa of His190 by 2−3 log units (pKa ≈ 4−5) in O2-
evolving PSII. Because the “working pH” for O2-evolving PSII
is ∼5.5−7, His190 should be neutral, allowing it to act as a H-
bond acceptor of the phenolic proton of TyrZ.38

The WOC reduces TyZ-O• in the microsecond to
millisecond time regime. For a longer lived radical signal, the
WOC is removed by treatment with detergent in so-called Mn-
depleted PSII preparations. In Mn-depleted PSII, the H-
bonding environment around TyrZ could be drastically
modified, leading to changes in the kinetics and even the
PCET mechanism. For instance, the X-ray crystal structure of
PSII from Thermosynechococcus vulcanus (PDB 3ARC) shows
Ca2+ organizes two water molecules that H-bond with TyrZ.21

These water molecules are part of a group of four water
molecules that may play a large role in shortening the TyrZ-
OH···N-His190 H-bond distance, which would reduce the

Figure 2. Top: Time scales of electron transfer (blue arrows) and hole
transfer (red arrows) of the initial photosynthetic charge transfer
events in PSII, including water oxidation.51−53 The time scale of
unproductive back electron transfer from the WOC to TyrZ is shown
with a dashed arrow. Auxiliary chlorophylls are shown in light blue,
pheophytins in magenta, and quinones A (QA) and B (QB) in yellow.
WOC = water-oxidizing complex. Distances shown (dotted lines) are
in angstroms. The brackets emphasize that the protein complex is
housed within a bilayer membrane. Bottom: Alternative view of the
PSII reaction center displaying the locations of TyrZ and TyrD in
relation to P680, with H-bond distances to histidine (His) shown in
angstroms. The figure was rendered using PyMol.54

Figure 3. Model of the protein environment surrounding Tyr161
(TyrZ) of photosystem II from T vulcanus (PDB 3ARC). Distances
shown (dashed lines) are in angstroms. Crystallographic waters (HOH
= water) are shown as small, red spheres and the WOC as large
spheres with Mn colored purple, oxygen red, and Ca green. The
directions of ET and PT are denoted by transparent blue and red
arrows, respectively. The figure was rendered using PyMol.54
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energy barrier for proton transfer.19 Indeed, in Mn-depleted
PSII, the radical signal of TyrZ-O• is not observed at liquid
helium temperatures, nor is it observed at high pH (>7.6) in
photosynthetically competent PSII.59 This implies the presence
of an energetic barrier to proton transfer from TyrZ-OH to
His190 at high pH and in Mn-depleted PSII preparations (see
Figure 1, left, in section 1.2 and Figure 21a in section 5.3.1).
Therefore, at high pH (>7.6), sequential PT and then ET may
play a larger role in TyrZ redox behavior. The TyrZ-O• radical
signal is present however at low pH (<6.5), indicating that
under physiological conditions TyrZ experiences a barrierless
potential to proton transfer and a strong H-bond to His190
(see Figures 1, right, in section 1.2 and 21b in section
5.3.1).19,31,60

The protein seems to play an integral role in the concerted
oxidation and deprotonation of TyrZ, in the sense that protein
backbone and side chain interactions orient water molecules to
polarize their H-bonds in particular ways. The backbone
carbonyl groups of D1-pheylalanine 182 and D1-aspartate 170
orient two key waters in a diamond cluster that H-bonds with

TyrZ, which may modulate the pKa of TyrZ (see Figure 3). The
WOC cluster itself seems responsible for orienting particular
waters to act as H-bond donors to TyrZ, with Ca2+ orienting a
key water (W3 in ref 26, HOH3 in Figure 3).
The local polar environment around TyrZ is mostly localized

near the WOC, with amino acids such as Glu189 and the five-
water cluster. Away from the WOC, TyrZ is surrounded by
hydrophobic amino acids, such as phenylalanine (182 and 186)
and isoleucine (160 and 290) (see Figure S1 in the Supporting
Information). These hydrophobic amino acids might shield
TyrZ from “unproductive” proton transfers with water, or may
steer water toward the WOC for redox chemistry. A
combination of the hydrophobic and polar side chains seems
to impart TyrZ with its unique properties and functionality.
TyrZ so far contributes the following knowledge regarding

PCET in proteins: (i) short, strong H-bonds facilitate
concerted electron and proton transfer, even among different
acceptors (P680•+ for ET and D1-His190 for PT); (ii) the
protein provides a special environment for facilitating the
formation of short, strong H-bonds; (iii) the pH of the

Table 1. Amino Acid Radical Properties Found in Various Proteins

nAA is in a non-polar protein environment. PAA is in a polar protein environment.
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surrounding environmenti.e., protonation state of nearby
residuesmay change the mechanism of PCET (e.g., from
concerted to sequential; for synthetic analogues, see, for
instance, the work of Hammarström et al.50,61).
2.1.2. D2-Tyrosine 160 (TyrD). D2-Tyr160 (TyrD) of

PSII and its H-bonding partner D2-His189 form the sym-
metrical counterpart to TyrZ and D1-His190. However, the
TyrD kinetics is much slower than that of TyrZ. The distance
from P680 is practically the same (∼8 Å edge-to-edge distance
from the phenolic oxygen of Tyr to the nearest ring group, a
methyl, of P680; see Table 1), but the kinetics of oxidation is
on the scale of milliseconds for TyrD, and its kinetics of
reduction (from charge recombination) is on the scale of hours.
TyrD, with an oxidation potential of ∼0.7 V vs NHE, is easier
to oxidize than TyrZ, so its comparatively slow PCET kinetics
must be intimately tied to management of its phenolic proton.
Interestingly, TyrD PCET kinetics is only slow at physiological
pH. At pH > 7.7, the rate of oxidation of TyrD approaches that
of TyrZ.62 At pH > 7.7, oxidations of TyrZ and TyrD by
P680•+ in Mn-depleted PSII are as fast as 200 ns.62 However,
below pH 7.7, TyrD oxidation occurs in the hundreds of
microseconds to milliseconds regime, which differs drastically
from the kinetics of TyrZ oxidation. For example, at pH 6.5,
TyrZ oxidation occurs in 2−10 μs, whereas that of TyrD occurs
in >150 μs.62

TyrD-O• forms under physiological conditions via equilibra-
tion of TyrZ-O• with P680•+ in the S2 and S3 stages of the Kok
cycle.60 The equilibrated population of P680•+ allows for the
slow oxidation of TyrD-OH, which acts as a thermodynamic
sink due to its lower redox potential. Whereas oxidized TyrZ-
O• is reduced by the WOC at each step of the Kok cycle, TyrD-
O• is reduced by the WOC in S0 of the Kok cycle with much
slower kinetics, so that most “dark-adapted” forms of PSII are
in the S1 state.60 TyrD-O• may also be reduced through the
slow, long-distance charge recombination process with quinone
A•−. If indeed the phenolic proton of TyrD associates with
His189, creating a positive charge (H+N-His189), the location
of the hole on P680•+ may be pushed toward TyrZ, accelerating
oxidation of TyrZ. Recently, high-frequency electronic−nuclear
double resonance (ENDOR) spectroscopic experiments
indicated a short, strong H-bond between TyrD and His189
prior to charge transfer and elongation of this H-bond after

charge transfer (ET and PT). On the basis of numerical
simulations of high-frequency 2H ENDOR data, TyrD-O• is
proposed to form a short 1.49 Å H-bond with His189 at a pH
of 8.7 and a temperature of 7 K.27 (Here, the distance is from H
to N of His189.) This H-bond is indicative of an unrelaxed
radical. At a pH of 8.7 and a temperature of 240 K, TyrD-O• is
proposed to form a longer 1.75 Å H-bond with His189. This H-
bond distance is indicative of a thermally relaxed radical.
Because the recent 3ARC (PDB) crystal structure of PSII was
likely in the dark state, TyrD was most likely present in its
neutral radical form TyrD-O•. The heteroatom distance
between TyrD-O• and N-His189 is 2.7 Å in this structure,
which could represent the “relaxed” structure, i.e., the
equilibrium heteroatom distance for this radical. At least at
high pH, these experiments corroborate that TyrD-OH forms a
strong H-bond with His189, so that its PT to His189 may be
barrierless. On the basis of these ENDOR data for TyrD, PT
may occur before ET, or perhaps a concerted PCET
mechanism is at play. Indeed, at cryogenic temperatures at
high pH, TyrD-O• is formed whereas TyrZ-O• is not.60 Many
PCET theories are able to describe this change in equilibrium
bond length upon charge transfer. For an introduction to the
Borges−Hynes model where this change in bond length is
explicitly discussed and treated, see section 10.
Why is TyrD easier to oxidize than TyrZ? Within a 5 Å

radius of the TyrD side chain lie 12 nonpolar AAs (green
shading in Table 2) and 4 polar residues, which include the
nearby crystallographic “proximal” and “distal” waters. This
hydrophobic environment is in stark contrast to that of TyrZ in
D1, which occupies a relatively polar space. For TyrD,
phenylalanines occupy the corresponding space of the WOC
(and the ligating Glu and Asp) within the D1 protein, creating a
hydrophobic, (nearly) water-tight environment around TyrD.
One might expect a destabilization of a positively charged
radical state in such a comparatively hydrophobic environment,
yet TyrD is easier to oxidize than TyrZ by ∼300 mV. The
positive charge due to the WOC, as well as H-bond donations
from waters (expected to raise the redox potentials by ∼60 mV
each31) might drive the TyrZ redox potential more positive
relative to TyrD.
The fate of the proton from TyrD-OH is still unresolved.

Indeed, the proton transfer path may change under various

Table 2. Local Protein Environments Surrounding Amino Acid Tyr or Trp That Are Redox Activea

aHydrophobic residues are shaded green, and polar residues are not shaded.
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conditions. Recently, a proximal water, as opposed to His189,
was suggested as the phenolic proton acceptor during PCET
from TyrD-OH under physiological conditions (pH < 6.5).26,63

High-field 2H Mims-ENDOR spectroscopic studies of the
TyrD-O• radical at a pD (deuterated sample) of 7.4 from
WOC-present PSII indicate His189 as the only H-bonding
partner to TyrD-O•.64 However, this does not preclude TyrD-
OH from H-bonding to a proximal water which then
translocates upon acceptance of the phenolic proton. Indeed,
at pH 7.5, FTIR evidence (changes in the His189 stretching
frequency) points to His189 as a proton donor to TyrD-O• in
Mn-depleted PSII.65 However, FTIR spectra also indicate that
two water molecules reside near TyrD in Mn-depleted PSII at
pH 6.0.63 Of these two waters, one is strongly H-bonded and
the other weakly H-bonded; these water molecules change H-
bond strength upon oxidation of TyrD. The recent crystal
structure of PSII (PDB 3ARC) with 1.9 Å resolution shows the
electron density for occupancy of a single water molecule at
two distances near TyrD. The proximal water is 2.7 Å from the
phenolic oxygen of TyrD, whereas the so-called distal water is
out of H-bonding distance at 4.3 Å from the phenolic oxygen.
Recent QM calculations associate the proximal water
configuration with the reduced, protonated TyrD-OH and
the distal water configuration as the most stable for the
oxidized, deprotonated TyrD-O•.26 Since TyrD is likely
predominantly in its radical state TyrD-O• during crystallo-
graphic measurements, the distal water should show a greater
propensity of occupancy in the solved structure. Indeed, this is
the case (65% distal vs 35% proximal). An even more recently
solved structure of PSII from T. vulcanus with 2.1 Å resolution
and Sr substitution for Ca shows no occupancy of the proximal
water (both structures were solved at pH ≈ 6.5).66 Notably, no
H-bond donor fills the H-bonding role of the proximal water to
TyrD in this structure, yet all other H-bonding distances are the
same. Due to this suggested evidence of water as a proton
acceptor to TyrD-OH under physiological conditions and
His189 as a proton acceptor under conditions of high pH, we
must take a closer look at the protein environment which may
enable this switching behavior.
Although D1-His190 and D2-His189 share the identity of

one H-bond partner (Tyr), their second H-bonding partners
differ. D1-His190 is H-bonded to the carbonyl oxygen of
asparagine 298, whereas D2-His189 is H-bonded to arginine
294 (see Figures 3 and 4). At physiological pH, the H-bonded
nitrogen of the guanidinium group of arginine 294 is
protonated (the pKa of arginine is ∼12), which forces arginine
294 to act as a H-bond donor to D2-His189. On the contrary,
asparagine 298 acts as a H-bond acceptor to D1-His190. This
should have profound implications for the fate of the phenolic
proton of TyrD vs TyrZ, since the proton-accepting ability of
His189/190 from TyrD/Z is affected. At physiological pH, D2-
His189 is presumably forced to act as a H-bond donor to TyrD-
OH. At high pH, if arginine 294 or His189 becomes
deprotonated (doubly deprotonated in the case of His189),
the capability of His189 to act as a proton acceptor from TyrD
is restored. This may explain the barrierless PT from TyrD-OH
to (presumably) His189 at pH > 7.6. Although water is not an
energetically favored proton acceptor (its pKa is 14), Saveant et
al. found that water in water is an intrinsically favorable proton
acceptor of a phenolic proton as compared to bases such as
PO4H2

−.67 A reason for this includes a smaller reorganization
energy when the proton can be delocalized over several water
molecules in a Grotthus-type mechanism. Indeed, Saito et al.

describe that movement of the proximal water (now a positively
charged hydronium ion) 2 Å to the distal site, where the proton
may concertedly transfer via several H-bonded residues and
waters to the bulk, as a possible mechanism for the prolonged
lifetime of the TyrD-O• radical. It is tempting to suggest, that
under physiological pH, TyrD-OH forms a normal H-bond
with a proximal water, which may result in slow charge transfer
kinetics due to the large difference in pKa as well as a larger
barrier for PT, whereas, at high pH, the now-allowed PT to
His189 leads to PT through a strong H-bond with a more
favorable change in pKa. (See section 10 for a discussion
concerning the PT distance and its relationship to PT coupling
and splitting energies.) Although the proton path from TyrD is
not settled, the possibility of water as a proton acceptor still
cannot be excluded.
TyrD so far contributes the following knowledge to PCET in

proteins: (i) the protein may influence the direction of proton
transfer in PCET reactions via H-bonding interactions
secondary from the proton donor (e.g., D1-asparagine 298 vs
D2-arginine 294); (ii) as for TyrZ, the pH of the surrounding
environmenti.e., the protonation state of nearby residues
may change the mechanism of PCET; (iii) a largely
hydrophobic environment can shield the TyrD-O• radical
from extrinsic reductants, leading to its long lifetime.
2.2. BLUF Domain

The BLUF (sensor of blue light using flavin adenine
dinucleotide) domain is a small, light-sensitive protein attached
to many cell signaling proteinssuch as the bacterial
photoreceptor protein AppA from Rhodobacter sphaeroides or
the phototaxis photoreceptor Slr1694 of Synechocystis (see
Figure 5). BLUF switches between light and dark states as a
result of changes in the H-bonding network upon photo-
induced PCET from a conserved tyrosine to the photo-oxidant
flavin adenine dinucleotide (FAD).6,13 Although the charge
separation and recombination events happen quickly (less than
1 ns), the change in H-bonding network persists for seconds
(see Figures 6 and 8).6,68 This difference in H-bonding between
Tyr8, glutamine (Gln) 50, and FAD is responsible for the
structural changes that activate or deactivate BLUF.
The light and dark states of FAD are only subtly different,

with FAD present in its oxidized form in both cases. For both

Figure 4. Model of the protein environment surrounding Tyr160
(TyrD) of photosystem II from T. vulcanus (PDB 3ARC). Distances
shown (dashed lines) are in angstroms. Crystallographic waters
[HOH(prox) = the “proximal” water, HOH(dist) = the “distal” water]
are shown as small, red spheres. The directions of ET and PT are
denoted by transparent blue and red arrows, respectively. The figure
was rendered using PyMol.54
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dark and light states, photoinduced PCET, initiated via light
excitation of FAD to FAD*, ultimaltely produces oxidized,
deprotonated Tyr8-O• and reduced, protonated FADH•.
However, this charge-separated state is relatively short-lived
and recombines in about 60 ps.6,13 The photoinduced PCET
from tyrosine to FAD* rearranges H-bonds between Tyr8,
Gln50, and FAD (see Figure 6), which persist for the
biologically relevant time of seconds.6,68,69 Perhaps not
surprisingly, the mechanism of photoinduced PCET depends
on the initial H-bonding network through which the proton
might transfer; i.e., it depends on the dark or light state of the
protein. Sequential ET and then PT has been demonstrated for
BLUF initially in the dark state and concerted PCET for BLUF
initially in the light state.6,13 The PCET from the initial dark-
adapted state occurs with an ET time constant of ∼17 ps in

Slr1694 BLUF and PT occurring ∼10 ps after ET.6,13 The
PCET kinetics of the light-adapted state indicate a concerted
ET and PT (the FAD•− radical anion was not detected in the
femtosecond transient absorption spectra) with a time constant
of ∼1 ps and a recombination time of 66 ps.13 The concerted
PCET may utilize a Grotthus-type mechanism for PT, with the
Gln carbonyl accepting the phenolic proton, while the Gln
amide simultaneously donates a proton to N5 of FAD (see
Figures 5 and 7).13

Unfortunately, the nature of the H-bond network between
Tyr−Gln−FAD that characterizes the dark vs light states of
BLUF is still debated.6,68,70 Some groups believe that Tyr8-OH
is H-bonded to NH2-Gln50 in the dark state, while others argue
CO-Gln50 is H-bonded to Tyr8-OH in the dark state, with
opposite assignments for the light state.6,68,71 Surely, the H-
bonding assignments of these states should exhibit the change
in PCET mechanism demonstrated by experiment. Like PSII in
the previous section, we see that the protein environment is
able to switch the PCET mechanism. In PSII, pH plays a
prominent role. Here, H-bonding networks are key.
The exact mechanism by which the H-bond network changes

is also currently debated, with arguments for Gln tautomeriza-
tion vs Gln side-chain rotation upon photoinduced PCET.6,68,70

Radical recombination of the photoinduced PCET state may
drive a high-energy transition between two Gln tautameric
forms, which results in a strong H-bond between Gln and FAD
in the light state (Figure 7).68 Interestingly, when the redox-
active tyrosine is mutated to a tryptophan, photoexcitation of
Slr1694 BLUF still produces the FADH• neutral semiquinone
as in wild-type BLUF, but without the biological signaling
functionality.72 This may suggest a rearrangement of the H-
bonded network that gives rise to structural changes in the
protein does not occur in this case.
What aspect of the H-bonding rearrangement might change

the PCET mechanism? Using a linearized Poisson−Boltzmann
model (and assuming a dielectric constant of 4 for the protein),
Ishikita calculated a difference in the Tyr one-electron redox
potential between the light and dark states of ∼200 mV.71 This
larger driving force for ET in the light state, which was defined
as Tyr8-OH H-bonded to CO-Gln50, was the only calculated
difference between light and dark states (the pKa values
remained nearly identical). A larger driving force for ET would
presumably seem to favor a sequential ET/PT mechanism.
Why PCET would occur via a concerted mechanism if ET is
more favorable in the light state is unclear. Further theoretical
studies concerning an explicit theoretical treatment of the
PCET mechanism (see section 5 and onward) are needed to
clarify what gives rise to the switch from sequential to
concerted PCET in BLUF domains.

Figure 5. Model of the protein environment surrounding Tyr8 of the
BLUF domain from Slr1694 of Synechocystis sp. PCC 6803 (PDB
2HFN). Distances shown (dashed lines) are in angstroms. N5 of the
FMN (flavin mononucleotide) cofactor is labeled. The directions of
ET and PT are denoted by transparent blue and red arrows,
respectively. The figure was rendered using PyMol.54

Figure 6. Scheme depicting initial events in photoinduced PCET in
the BLUF domain of AppA. Reprinted from ref 68. Copyright 2013
American Chemical Society.

Figure 7. A possible scheme for H-bond rearrangement upon radical recombination of the photoinduced PCET state of BLUF. The energy released
upon radical recombination may drive the uphill ZE to ZZ rearrangement. Adapted from ref 68. Copyright 2013 American Chemical Society.
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What is unique about BLUF that gives rise to a Tyr radical
cation, Tyr-OH•+, whereas in PSII this species is not observed?
We suggest the most important factor may be Coulombic
stabilization. In general, the driving force for ET must take into
account the Coulombic attraction of the generated negative and
positive charges, EC = (−14.4 eV)/(εRDA), where ε is the
dielectric constant and RDA is the distance (Å) between the
donor and acceptor. Tyr8-OH•+ and FAD•− are separated by
3.5 Å edge-to-edge, whereas TyrZ or TyrD of PSII is ∼32 Å
from quinone A•−. Further experimental and theoretical insight
into the reason for radical cation formation is clearly necessary.
The oxidation of Tyr8 to its radical cation form in BLUF is
quite unusual from a biological standpoint and sets BLUF apart
from other PCET studies concerning phenols.
While the BLUF domain is a convenient small biological

protein for the study of photoinduced PCET and tyrosyl radical
formation in proteins, it is far from a perfect “laboratory”.
Structural subtleties across species affect PCET kinetics, and
the environment immediately surrounding the Tyr radical
cannot be manipulated without influencing the protein fold.73

Nonetheless, BLUF is a valuable model from which to glean
lessons toward the design of efficient PCET systems. The main
ideas involving PCET from Tyr8 in BLUF are as follows: (i)
PCET occurs via different mechanisms depending on the initial
state of the protein (light vs dark). These mechanisms are
either (a) concerted PCET from Tyr8 to FAD, forming Tyr8-
O• and FADH•, or (b) sequential ET and then PT from Tyr8
to FAD, forming first FAD•− and then FADH•. (ii) The
existence of a Tyr-OH•+ radical cation has been argued against
on energetic grounds for PSII TyrZ and TyrD. However, Tyr-
OH•+ was demonstrated experimentally for BLUF. (iii) More
experimental and theoretical research is needed to elucidate the
differences in dark and light states and the structural or
dynamical differences that give rise to changes in the PCET
mechanism depending on the Tyr8 H-bonding network.

2.3. Ribonucleotide Reductase

Ribonucleotide reductase (RNR) is a ubiquitous enzyme that
catalyzes the conversion of RNA to DNA via long-distance
radical transfer, which is initiated by the activation and
reduction of molecular oxygen to generate a stable tyrosyl
radical (Tyr122-O•, t1/2 = 4 days at 4 °C).35,36 The formation
of Tyr122-O• is the first step in long-distance radical transfer
across a protein dimer interface to the active site of nucleotide
reduction. As such, the formation of Tyr122-O• is perhaps one
of the most important PCET reactions in nature. Its initiation is
tightly coupled with redox states of the nearby nonheme
dinuclear iron center.
Tyr122-O• formation is a thermally induced, ground-state

process (i.e., no photoexcitation is involved) and occurs slowly
(1 s−1) relative to phototriggered radical formation (ps, ns) of
Tyr in proteins such as photolyase, PSII, and BLUF.14,19,75−77

Initiation of Tyr122-O• involves dioxygen activation and
reduction via a diiron center. Interestingly, the mechanism of
Tyr122-O• formation in catalytically competent RNR involves
a Trp radical cation (vide infra). Trp48 reduction of Fe1(IV) to
Fe1(III) produces the diiron intermediate Fe1(III)Fe2(IV)
(denoted as X in the literature) responsible for the oxidation of
Tyr122-OH.75,76 In the oxidation of Tyr122-OH, the electron
acceptor is Fe2(IV) (the more distant of the two irons) and the
proton acceptor is a hydroxyl coordinated to Fe1.78 The
phenolic proton possibly transfers through Asp84, which forms
a weak H-bond with Tyr122-OH (see Figures 9 and 10) in the

met-RNR structure (met = Fe1(III)Fe2(III)).74 There are
currently no reported crystal structures of the catalytically
active RNR, i.e., Fe1(III)Fe2(III)-Tyr122-O•, so the H-
bonding environment of the Tyr radical has been deduced
via FTIR and EPR experiments (discussed below).
The reduction and protonation of Tyr122-O• in forward

radical propagation to the cysteine active site (which is uphill in
energy35) is currently hypothesized to occur via Tyr356 (or

Figure 8. Model of the protein environment surrounding Tyr122 of
ribonucleotide reductase from E. coli (PDB 1MXR). Distances shown
(dashed lines) are in angstroms. Crystallographic water (HOH =
water) is shown as a small red sphere, and the diiron sites are shown as
large orange spheres. The directions of ET and PT are denoted by
transparent blue and red arrows, respectively. The figure was rendered
using PyMol.54

Figure 9. Schematic of the Asp84 H-bond shift, which is linked to
Tyr122-O• reduction (PCET). Adapted from ref 74. Copyright 2011
American Chemical Society.

Figure 10. Model of the protein environment surrounding Trp48 of
ribonucleotide reductase from E. coli (PDB 1MXR). Distances shown
(dashed lines) are in angstroms. Crystallographic waters (HOH =
water) are shown as small red spheres and the diiron sites as large
orange spheres. The directions of ET are denoted by transparent blue
arrows. The figure was rendered using PyMol.54
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Trp48) and the water coordinated to Fe1, respectively. PT to
and from Tyr122 is therefore suggested to be a rocking
mechanism, such as PT to/from TyrZ in PSII (where the
proton rocks back and forth between TyrZ and D1-His190; see
Figure 9 and section 2.1).74,78 Because Tyr356 seems to be
nearly isoenergetic with Tyr122 in terms of oxidation potential,
the stability of Tyr122-O• is apparently kinetic in nature, most
likely due to PT gating enabled by protein conformational
changes.35

Radical propagation along the 35 Å hopping chain is
proposed to occur in the microsecond time regime, although
exact rates of each step are yet to be determined.35 Time scales
of radical transfer and identities of radical intermediates along
the hopping pathway have been inferred via Tyr substitution of
unnatural amino acids with altered redox potentials and pKa
values.35,79 For instance, the reduction of an unnatural amino
acid, NO2-Tyr122-O

•, occurs in less than 1 ms, with the caveat
that this reduction is not proton coupled (NO2-Tyr122-O

•− is
formed).35,80 This ET uncoupled from PT might speed up the
observed radical transfer kinetics by bypassing protein
conformational gating of PT. Incidentally, the rate-limiting
process for radical propagation is hypothesized to be protein
conformational changes upon substrate and allosteric effector
binding.35

The nature of the Tyr122 H-bond appears to play an
important role in radical formation and longevity. Tyr122 of
class Ia RNR from Escherichia coli shares a hydrogen bond with
Asp84, with RO···O = 3.4 Å (see Figure 8). There is debate as to
whether a water molecule acts as a H-bond intermediary
between Tyr122 and Asp84, due to the long, observed H-bond
distance and the fact that class Ib RNRs from other species
contain an intermediary H-bonded water.75 Numerical
modeling of difference FTIR experimental data indicated the
neutral radical form of Tyr122 (Tyr122-O•) from E. coli is
displaced by either 4 or 7 Å from its reduced, protonated form
within met-RNR (PDB 1MXR).28 Consequently, the Tyr122-
O• radical is not in a H-bonded environment (although in
species other than E. coli the radical is in fact involved in H-
bonding).28,81,82 The absence of a discernible H-bond (due to
rotation and translation of the radical away from Asp84 and the
diiron cluster) and the relatively hydrophobic environment of
Tyr122-O•, which is dominated by the hydrophobic side chains
of isoleucine and phenylalanine (see Figure 8 and Table 2),
lead to its long lifetime (days).36,75 Replacement of Tyr122
with a nitrotyrosine analogue in its hydrophobic pocket
increased the analogue’s pKa by >2.5 units, suggesting this
hydrophobic environment plays a significant role in the PCET
process.35,83

Although the directionality of PT relative to ET has been
inferred in RNR for various hopping steps (orthogonal PT/ET
in the β subunit, collinear PT/ET in the α subunit), relatively
little is known concerning the other PT steps along the radical
transfer pathway. Furthermore, the PCET mechanism for
generation of Tyr122-O• may be a concerted or sequential
PCET process, and further research is necessary to fully
characterize this important radical formation.
PCET of Tyr122 in RNR has many parallels with PCET

from TyrZ/D of PSII: (i) the phenolic proton is probably
transferred back and forth via a rocking mechanism; (ii) Tyr-
OH donates an electron in one direction (Fe2 for RNR, P680•+

for PSII) and accepts an electron from another direction
(Tyr356 or Trp48 for RNR, WOC for PSII); (iii) both Tyr122-

O• and TyrD-O• reside in hydrophobic environments and have
very long lifetimes (days and hours).
Tyr122 so far contributes the following knowledge to PCET

in proteins: (i) protein conformational changes may be a means
for PT gating and controlling radical transfer processes; (ii)
elimination of H-bonding interactions in the radical state
(Tyr122-O•) by translocation away from a H-bonding partner
provides a means for an increased radical lifetime; (iii) a largely
hydrophobic environment can increase the pKa of Tyr.

3. TRYPTOPHAN RADICAL ENVIRONMENTS
Like Tyr radicals, Trp radicals are also major players in PCET
processes in proteins, playing various roles in ribonucleotide
reductase,35,36 photolyase,1,90 cytochrome c peroxidase,91,92 and
more. Similar to that of Tyr, the pKa of Trp changes drastically

following its oxidation (ΔpKa
Tyr/Tyr‑OH•+

= 12, ΔpKa
Trp/Trp‑H•+

=
13).10 However, the pKa of neutral Trp-H (pKa = 17) is high
enough for its one-electron-oxidized form to remain protonated
under physiological conditions (the pKa of Trp-H

•+ is ∼4), and
often, this is the case. Although proton management does not
seem to be as vital for oxidation of Trp in proteins, PT still
plays a large role in some cases. Studies of Trp oxidation in
proteins may have particular relevance for guanine oxidation in
DNA, where long-distance radical hopping along double- or
single-stranded DNA has been experimentally demonstrated
and theoretically investigated.93−95 In fact, a guanine radical in a
DNA strand has been experimentally observed to oxidize Trp
in a complexed protein.96 Although Trp is one of the most
easily oxidizable amino acids, it is still difficult to oxidize. Its
generation and utilization along a hole-hopping pathway could
preserve the thermodynamic driving force needed for chemistry
at a protein active site. Below, we review a few proteins that
produce Trp radicals to highlight features relevant for their
design in de novo systems. Where appropriate, we point the
reader to theoretical sections of this review to mark possible
entry points to further theoretical exploration.
3.1. Ribonucleotide Reductase

Tryptophan 48 (Trp48) of class Ia RNR of E. coli is necessary
for functionally competent RNR: its one-electron oxidation
forms intermediate X (see section 2.3), which then establishes
the Tyr122-O• radical (with a rate of 1 s−1).75,76 Without
Trp48 present as a reductant, the diferryl iron center oxidizes
Tyr122, creating X-Tyr122-O•, whose fate is dominated by
nonproductive side reactions and, to a lesser extent, slow
“leakage” (<0.06 s−1) to the catalytically competent Fe1(III)-
Fe2(III)-Tyr122-O• state.97 The radical cation form of Trp48
(Trp-H•+) is also capable of oxidizing Tyr122 directly, with a
slightly faster rate than X (6 s−1 vs 1 s−1, respectively36,76) and
does so in the absence of external reductants.76 Curiously,
Fe1(IV) of the diferryl species oxidizes Trp48 and not the
closer Tyr122 (see Figure 10), which would be thermodynami-
cally easier to oxidize in water (i.e., Tyr has a lower redox
potential in water at pH 7). This selectivity is perhaps an
example of how proteins utilize proton management to control
redox reactions.
Once intermediate X is formed by one-electron transfer from

Trp48 to Fe1, Trp48-H•+ is reduced by an external reductant
(possibly a ferredoxin protein in vivo98), so that the radical
does not oxidize Tyr122-OH in vivo. Because Trp48-H is re-
formed due to ET from an external reductant, yet another
curiosity is that Tyr122-OH, and not Trp48-H, is oxidized by
Fe2(IV) of X. Formation of intermediate X by oxidation of
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Trp48-H may lead to a structural rearrangement enabling
efficient PT from Tyr122-OH to a bound hydroxyl. RNR might
also control the kinetics by modulating the electronic coupling
matrix element between the iron sites and these amino acids.
Additionally, RNR may adopt an alternate conformation where
Trp48 is actually closer to the diiron site than Tyr122. The
precise reasons for the preferred oxidation of Trp48 by Fe1(IV)
and Tyr122 by X are unknown.
Although Trp48 has been implicated in the long-distance

radical transfer pathway of RNR,36,99 its direct role in this hole-
hopping chain is not yet confirmed.35,100 Instead, the proposed
radical transfer mechanism consists of all Tyr: (β)Tyr122-O•

→ (β)Tyr356 → (α)Tyr730 → (α)Tyr731 → (α)cysteine 439
→ reductive chemistry and loss of water. (α and β represent
AAs found in the α and β subunits of the RNR dimer.) This
radical transfer process is uphill thermodynamically by at least
100 mV, driven by the loss of water at the ribonucleotide
substrate.100 The back radical transfer, which re-forms Tyr122-
O•, is downhill in energy and proceeds rapidly.35

The protein environment surrounding Trp48 appears to
poise its function as a reductant. In the met structure of the
RNR R2 subunit (diferric iron and unoxidized Tyr122-OH),
Trp48 is surrounded by mainly polar AAs, as well as 14 waters
within a 6 Å radius of its indole side chain (see Figure S6 in the
Supporting Information and Table 2). The indole proton of
Trp48 occupies a highly polar environment, immediately H-
bonded to Asp237 (a conserved residue) and water 3010,
which forms a H-bonding network with four more waters and
Arg236 (Figure S6). The protonation state of the oxidized
Trp48 was inferred from absorption spectroscopy, which
displayed a spectrum characteristic of a Trp radical cation.76

While proton transfer may not be involved in Trp48 oxidation,
its H-bonding and local dielectric environment likely play
important roles in modulating its redox potential for the facile
reduction of the diferryl iron site to make intermediate X.36

Indeed, mutation of Asp237 to asparagine resulted in loss of
catalytic function, which may be explained either by loss of PT
capability from Trp48 to Asp237 or by adoption of a different,
nonviable protein conformation.101 Moreover, Trp48, Asp237,
His118, and Fe1 form a motif similar to that found in
cytochrome c peroxidase, where the ferryl iron is derived from a
heme moiety (Figure 11).36,102 This motif may provide a H-
bonding network to position Trp48 preferentially for oxidation
by Fe1(IV).
There seem to be more open questions concerning Trp48

than there are answers: Fe1(IV) oxidizes Trp48-H and not
Tyr122-OH, which is closer by 3 Å (see Figure 10). Why?

Once established, Fe1(III)Fe2(IV) oxidizes Tyr122-OH and
not Trp48-H. Why? Would knowledge of PCET matrix
elements shed light on the preferences of these proton-coupled
oxidations? The interested reader is referred to sections 5, 7,
and 9−12 for an introduction and discussion of PCET matrix
elements. Radical initiation in RNR highlights the intricate
nature of PCET in proteins, which results from possible
conformational changes, subtle H-bonding networks, perturbed
redox potentials and pKa values (relative to solution values),
etc. More research is clearly needed to shed light on the vital
Trp48 oxidation.
3.2. DNA Photolyase

3.2.1. Tryptophan 382. Photolyase is a bacterial enzyme
that catalyzes the light-activated repair of UV-induced DNA
damage, in particular the monomerization of cyclobutylpyr-
imidine dimers (CPDs).90 Because photolyase is evolutionarily
related to other FAD-binding proteins, such as cryptochromes,
which share a conserved Trp hole-hopping pathway (Figure
12), insights regarding photolyase may be directly applicable to

a wide variety of proteins.1,103,104 The catalytic state of FAD,
the anionic hydroquinone FADH•−, donates an electron to the
CPD in the first step of the DNA repair process after
photoexcitation. FADH•− is formed in vitro upon blue light
photoexcitation of the semiquinone FADH• and subsequent
oxidation of nearby Trp382. Studying FAD reduction in E. coli
photolyase, which could provide insight regarding signal
activation via relevant FAD reduction of cryptochromes, Sancar
et al. recently found photoexcited FAD* oxidizes Trp48 in 800
fs.1 Hole hopping occurs predominantly via Trp382 → Trp359
→ Trp306.1,14,90 Oxidation of Trp306 involves proton transfer
(presumably to water in the solvent, since the residue is solvent
exposed), while oxidation of Trp382 generates the protonated
Trp radical cation.1,14 Differences in the protein environment
and relative amount of solvent exposure are responsible for
these different behaviors, as well as a nonzero driving force for
vectorial hole transfer away from FAD and toward Trp306.1,14

The three-step hole-hopping mechanism is completed within
∼150 ps of FAD photoexcitation.1 Through an extensive set of
point mutations in E. coli photolyase, Sancar et al. recently

Figure 11. A common amino acid motif for the reduction of a ferryl
iron. (A) The Asp, Trp, His motif of cytochrome c peroxidase
produces Trp191-H•+ and a heme-derived Fe(III). (B) The Asp, Trp,
His motif of RNR produces Trp48-H•+ (W48) and Fe(III) of
intermediate X. Reprinted from ref 36. Copyright 2003 American
Chemical Society.

Figure 12. Model of the PCET pathway of photolyase from E. coli
(PDB 1DNP). FAD (flavin adenine dinucleotide) absorbs a blue
photon and oxidizes Trp382, which oxidizes Trp359, which oxidizes
Trp306, which then deprotonates to the solvent. Crystallographic
waters (HOH = water) are shown as small red spheres. The directions
of ET and PT are denoted by transparent blue and red arrows,
respectively. The figure was rendered using PyMol.54
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mapped forward and backward time scales of hole transfer (see
Figure 13). The redox potentials shown in Figure 13 and Table

1 are derived from fitting the forward and backward rate
constants to empirical electron transfer rate equations to
estimate free energy differences and reorganization energies.1

These redox potentials are based on the E0,0 (lowest singlet
excited state) energy of FAD (2.48 eV) and its redox potential
in solution (−300 mV).1 The redox potential of FAD in a
protein may differ considerably from its solution value and has
been shown to vary as much as ∼300 mV within LOV, BLUF,
cryptochrome, and photolyase proteins.73,103,105 However,
these recent results emphasize the important contribution of
the protein environment to establish a substantial redox
gradient for vectorial hole transfer among otherwise chemically
identical Trp sites.
The local protein environment immediately surrounding

Trp382 is relatively nonpolar, dominated by AAs such as
glycine, alanine, phenylalanine, and Trp (see Figure S7,
Supporting Information). Although polar and charged AAs
are present within 6 Å of Trp382, the polar ends of these side
chains tend to point away from Trp382 (Figure S7). Trp382 is
within H-bonding distance of asparagine (Asn) 378, although
the long bond length suggests a weak H-bond. Asn378 is
further H-bonded to N5 of FAD, which could suggest a
mechanism for protonation of FAD to the semiquinone
FADH•, the dominant form of the cofactor (see Figure
12).103 Interestingly, cryptochromes, which predominantly
contain fully oxidized FAD (or one-electron-reduced FAD•−),
have an aspartate (Asp) instead of an Asn at this position. Asp
could act as a proton acceptor (or participate in a proton-
shuttling network) from N5 of FAD and so would stabilize the
fully oxidized state.103 Besides the long H-bond between
Trp382 and Asn378, the indole nitrogen of Trp382 is
surrounded by hydrophobic side chains. This “low dielectric”
environment is likely responsible for the elevated redox
potential of Trp382 relative to Trp359 and Trp306 (see Figure
13B), which are in more polar local environments that include
H-bonding to water.1

Trp382 so far contributes the following knowledge to radical
formation in proteins: (i) elimination of H-bonding inter-
actions with the indole side chain may increase the Trp
oxidation potential, while still keeping the Trp side chain within
a biologically useful redox window; (ii) gradients of amino acid
polarity surrounding identical Trp cofactors can drive fast,
vectorial hole transfer over long distances with a minimal
driving force.

3.2.2. Tryptophan 306. Tryptophan 306 (Trp306) of E.
coli photolyase (see section 3.2.1) is the terminal hole acceptor
in a conserved hole transfer pathway consisting of three Trp
residues (see Figure 12). Upon oxidation of Trp306, its
deprotonation, presumably to water, occurs in ∼300 ns.14

Indeed, the crystal structure (Figure 12) indicates a water
(HOH841) H-bonded to the indole nitrogen of Trp306 at a
distance of 2.8 Å. By coupling the oxidation of Trp306 to
proton loss, the lifetime of the charge-separated state is
prolonged (17 ms).14 By studying the temperature dependence
of the charge recombination reaction between FADH•− and
Trp306•, Zieba et al. found a pH-dependent reorganization
energy.87 They infer that charge recombination between
FADH•− and Trp306• is either sequential ET followed by
PT (pH > 7, with a reorganization energy of ∼1.2 eV) or
concerted PCET (pH < 7, with a reorganization energy of ∼2.2
eV).87 Interestingly, they argue that these two mechanisms do
not compete with each other kinetically; that is, a
thermodynamic switch between them occurs, or a proton
donor with a pKa ≈ 6.5 becomes suddenly available. The charge
recombination reaction, which occurs over a distance of 15 Å,
deserves more theoretical attention, as it displays parallels with
other known radicals with pH-dependent PCET mechanisms.
The local protein environment surrounding Trp306 is

certainly more polar than that surrounding Trp382 (see
Figures S7 and S8 in the Supporting Information and Table
2). Not only is Trp306 more solvent exposed, but most of the
AAs within close proximity to Trp306 (e.g., aspartates 302 and
358 and threonines 388 and 301) are polar and/or charged.
Trp306 so far contributes the following knowledge to PCET in
proteins: (i) Trp oxidation coupled to proton loss is an efficient
means to trap a radical and slow charge recombination; (ii)
changes in the PCET mechanism must be considered at varying
pH.

3.3. Azurin

The blue copper protein azurin from Pseudomonas aeruginosa
has played a tremendous role in elucidating a quantitative
understanding for the mechanisms of electron-tunneling,
electron-hopping, and PCET pathways in proteins.9,106−108

The Gray laboratory has exploited single histidine point
mutations to label azurin with nonbiological Ru- and Re-
based phototriggers.109 These phototriggers, either through
flash-quench methods or direct photooxidation, can initiate
charge transfer reactions with the protein Cu redox center.
Experiments from the Gray laboratory identified Trp122 as an
effective hole shuttle between the electronically excited metal-
to-ligand charge transfer (MLCT) triplet state of
ReI(CO)3(dmp) (3[ReII(CO)3(dmp

•−)]*) and Cu(I), when
Re is coordinated by histidine 124 (His124) (Figure 14).88

Mutation of Trp122 to phenylalanine or tyrosine eliminated
charge hopping, emphasizing the importance of redox potential
modulation as well as management of coupled-proton transfers.
Tyr oxidation is slightly more favorable thermodynamically
than Trp oxidation if the ET is properly proton-coupled,10 so

Figure 13. Time scales and thermodynamics of hole transfer in E. coli
photolyase. Reprinted from ref 1.
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the absence of charge hopping with Tyr substitution suggests
an appropriate proton acceptor for the phenolic proton is not
present. The charge transfer mechanism of this modified azurin
system, as well as its associated kinetic time scales, is shown in
Figure 15. Rapid exchange between the electronically excited

MLCT triplet state of ReI(CO)3(dmp) and the charge-
separated state associated with oxidized Trp122 is responsible
for the fast charge transfer (∼30 ns) between
3[ReII(CO)3(dmp•−)]* and Cu(I), which are separated by
19.4 Å.88,89 Hole hopping via Trp122 is the reason for the
dramatic (∼300-fold) increase in the rate of Cu oxidation, since
the distance from the mediating Trp122 is 6.3 Å away from the
Re center and 10.8 Å from the Cu (see Figure 14). The short
distance between Trp122 and Re allows for a rapid oxidation to
generate Trp-H•+ (<1 ns), mediated by the π−π interaction of
the indole ring of Trp122 with dmp•−. Despite its solvent
exposure, Trp122 remains protonated throughout the charge-
hopping process, possibly due to a longer time scale of Trp
deprotonation to water (∼300 ns), as seen in the solvent-
exposed Trp306 of E. coli photolyase (see section 3.2.2).14

Although Trp122 is solvent exposed, its protein environment is

somewhat nonpolar, although polarizable with several methio-
nine residues (see Figure S9 in the Supporting Information and
Table 2).
What might this hole-hopping mediation via Trp122 teach us

concerning PCET in proteins? Like in RNR, hole hopping is
often kinetically advantageous when charge is transferred over
long distances. Even modest endergonic hopping steps can be
tolerated, as in the forward radical propagation of RNR, if the
final charge transfer state is downhill in free energy. Fast charge
hopping is an effective way to reduce the likelihood of charge
recombination and is a tactic applied in PSII, although at the
expenditure of a considerable amount of driving force.110

Certainly a timely topic of study is the elucidation of the criteria
for rapid, photoinduced separation of charge with a minimal
driving force. This azurin hopping system provides an
interesting framework in which to study such events.

4. IMPLICATIONS FOR DESIGN AND MOTIVATION
FOR FURTHER THEORETICAL ANALYSIS

What have we learned from this overview of Tyr and Trp
radical environments and their contributions to proton-coupled
charge transfer mechanisms? The environments not only
illustrate the significance of the local dielectric and H-bonding
interactions, but also point toward design motifs that may prove
fruitful for the rational design of bond breaking and catalysis in
biological and de novo proteins. Indeed, de novo design of
proteins that bind abiological cofactors is rapidly matur-
ing.111−113 Such methods may now be employed to study, in
designed protein systems, the basic elements that give rise to
the kinetic and thermodynamic differences of PCET reactions.
Such systems may prove more tractable than their larger, more
complicated, natural counterparts. However, design clues
inspired by natural systems are invaluable.
Our discussion of Tyr and Trp radicals has emphasized a few,

possibly important, mechanisms by which natural proteins
control PCET reactions. For example, Tyr radicals in PSII show
a dependence on the second H-bonding partner of histidine
(His). While D1-His190 is H-bonded to TyrZ and Asn, D2-
His189 is H-bonded to TyrD and Arg. The presence of the Arg
necessitates His189 to act as a H-bond donor to TyrD, sending
TyrD’s proton in a different direction (hypothesized to be a
proximal water). Secondary H-bonding partners to His could
thus provide a means to control the direction of proton
translocation in proteins.
Physical movement of donors and acceptors before or after

PCET events provides a powerful means to control reactivity.
Tyr122-O• has been shown to move several angstroms away
from its electron and proton acceptors into a hydrophobic
pocket where H-bonding is difficult. To initiate forward radical
propagation upon substrate binding, reduction of Tyr122-O•

may be conformationally gated such that, upon substrate
binding, the ensuing protein movement might organize a
proper H-bonding interaction with Tyr122-O• and Asp84 for
efficient PCET. Indeed, TyrD-O• of PSII may attribute its long
lifetime to movement of a water after acting as a
(hypothesized) proton acceptor. Movement of donors and
acceptors upon oxidation can thus be a powerful mechanism for
extended radical lifetimes.
The acidity change upon Trp oxidation can also be utilized in

a protein design. The Trp-H•+ radical cation is about as acidic
as glutamic or aspartic acid (pKa ≈ 4), so H-bonding
interactions with these residues should form strong H-bonds
with Trp-H•+ (see section 1.2). Indeed, in RNR and

Figure 14. Model of the charge transfer pathway involving Trp122 of
azurin from P. aeruginosa (PDB 2I7O) and the Re center of
3[ReII(CO)3(dmp

•−)]* coordinated at His124 (dmp = 4,7-dimethyl-
1,10-phenanthroline). Distances shown (dashed lines) are in
angstroms. The directions of ET are denoted by transparent blue
arrows. The figure was rendered using PyMol.54

Figure 15. Kinetic scheme of photoinduced hole transfer from
3[ReII(CO)3(dmp

•−)]* to Cu(I) via the populated intermediate
Trp122. The locations of the excited electron and hole are depicted
in blue and red, respectively. Reprinted with permission from ref 89.
Copyright 2011 Wiley-VCH Verlag GmbH & Co. KGaA.
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cytochrome c peroxidase, we see this H-bonding interaction
between the indole nitrogen of Trp and aspartic acid (Asp) (see
Figures 10 and 11). The formation of a strong, ionic hydrogen
bond (i.e., the H-bond donor and acceptor are charged, with
matched pKa values; see section 1.2) between Trp and Asp
upon oxidation of Trp could provide an additional thermody-
namic driving force for the oxidation.
Under what circumstances does Nature utilize Trp radicals vs

Tyr radicals? The stringent requirement of proton transfer
upon Tyr oxidation suggests that its most unique (and possibly
most useful) feature is the kinetic control of charge transfer it
affords via even slight changes in the protein conformation.
Such control is most likely at play in long-distance radical
transfer of RNR. Conversely, requirements for Trp deprotona-
tion are not so stringent. If the Trp radical cation can survive
for at least 0.5 μs, as in Trp306 of photolyase, a large enough
time window may exist for reduction of the cation without the
need for reprotonation of the neutral radical. In this way, Trp-
H•+ radicals may be useful for propagation of charge over long
distances with minimal loss in driving force, as seen in
photolyase.
Studying PCET processes in biology can be a daunting task.

For instance, the PCET mechanism of TyrZ and TyrD of PSII
depends on pH and the presence of calcium and chloride; the
PCET kinetics of Tyr8 of BLUF domains depends on the
species; fast PCET kinetics can be masked by slow protein
conformational changes, as in RNR. Accurate determination of
amino acid pKa values in proteins is formidable due to the many
titratable residues often present. Here, especially in the realm of
PT, where convenient optical handles often associated with ET
are absent, theory leads the way toward insight and the
development of new hypotheses. However, profound theoreti-
cal challenges exist to elucidate PCET mechanisms in proteins.
Accurate theoretical calculations of even the simplest PCET
reactions are heroic efforts, where the theory is still under active
development (see section 5 and onward). Naturally, larger
more complicated biological systems provide an even greater
challenge to the field of PCET theory, but these are the systems
where theoretical efforts are most needed. For instance,
accurate calculation of transition-state geometries would
elucidate design criteria for efficient PCET in proteins.
There are clearly deep challenges and opportunities for the

theory of PCET as it applies to biology. In the following part of
this review, we aim to summarize and analyze the current status
of the field of theoretical PCET (a burgeoning field with a rich
past), as well as to examine interconnections with ET and PT
theories. We hope to provide a focus such that the theory can
be further developed and directed to understand and elucidate
PCET mechanisms in their rich context of biology and beyond.
Providing a unified picture of different PCET theories is also
the first step to grasp their differences and hence understand
and classify the different kinds of biological systems to which
they have been applied. The starting point of this unified
treatment is indeed simple: the time-independent and time-
dependent Schrödinger equations give the equations of motion
for transferring electrons and protons, as well as other relevant
degrees of freedom, while the Born−Oppenheimer approx-
imation, with its successes and failures, marks the different
regimes of the transferring charge and environmental dynamics.

5. COUPLED NUCLEAR−ELECTRONIC DYNAMICS IN
ET, PT, AND PCET

Formulating descriptions for how electrons and protons move
within and between molecules is both appealing and timely.
Not only are reactions involving the rearrangements of these
particles ubiquitous in chemistry and biochemistry, but these
reactions also present challenges to understand the time scales
for motion, the coupling of charges to the surrounding
environment, and the scale of interaction energies. As such,
formulating rate theories for these reactions challenges the
theoretical arsenal of quantum and statistical mechanics. The
framework that we review here begins at the beginning, namely
with the Born−Oppenheimer approximation (given its central
role in the development of PCET theories), describes theories
for electron and atom transfer, and reviews the most recent
developments in PCET theory due in great part to the
contributions of Cukier, Hynes, Hammes-Schiffer, and their co-
workers.

5.1. Born−Oppenheimer Approximation and Avoided
Crossings

In molecular systems, the motion of all charged particles is
strongly correlated, due to their Coulomb and exchange
interactions. Nonetheless, many reactions produce a change in
the average position of just a small number of these particles, so
it is useful to formulate physical pictures and rate theories for
the translocation of electrons and protons. To formulate
theories of PT reactions, it is expedient to separate the
dynamics of the transferring proton from the other nuclear
degrees of freedom. This kind of separation is familiar, as it is
the kind of separation accomplished with the ubiquitous Born−
Oppenheimer (BO) approximation,114,115 commonly used to
separate electronic and nuclear motion. The analysis of PCET
reactions is further complicated by the fact that the dynamics of
the transferring electron and proton are coupled and, in
general, cannot be separated via the BO approximation. Thus,
investigating the regimes of validity and breakdown of the BO
approximation for systems with concomitant transfer of an
electron and a proton cuts to the core of the dynamical issues in
PCET reactions and their description using available theoretical
tools.
In this section, we review features of the BO approximation

that are relevant to the study of PCET reactions. Concepts and
approximations are explored to provide a unified framework for
the different PCET theories. In fact, charge transfer processes
(ET, PT, and coupled ET−PT) are consistently described in
terms of coupled electronic and nuclear dynamics (including
the transferring proton). To place PCET theories into a
common context, we will also need a precise language to
describe approximations and time scale separations that are
made in these theories.
Including only the fundamental Coulombic interactions in

the interaction potential energy of the PCET system, the
Hamiltonian is written as

= ̂ +T H Q( )Q (5.1)

where T̂Q is the nuclear kinetic energy operator, H(Q) is the
electronic Hamiltonian, and Q ≡ {Qα} denotes the set of
nuclear coordinates or a (nuclear) reaction coordinate. The
nuclear kinetic energy operator is
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where Pα = −iℏ∇α ≡ −iℏ∇Qα
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where pi is the momentum operator for the ith electron of mass
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which depends on the set of electronic coordinates q ≡ {qi} and
(parametrically after application of the BO separation) on Q.
The BO approximation separates the electronic and nuclear

motion based on the large difference between m and Mα. Next,
we examine the steps of the BO procedure,114,115 focusing on
PCET systems:
(i) The BO approach separates the nuclear and electronic

degrees of freedom from the outset, by assuming that the wave
function can be written as the product

χ ϕΨ =Q q Q Q q( , ) ( ) ( , ) (5.5)

of the vibrational wave function χ(Q) and the electronic wave
function ϕ(Q,q). In the context of PCET systems, the
coordinate of the transferring proton has a privileged role,
which needs to be recognized in the form of the wave function,
thus leading to further factoring of the BO product wave
functions (used as basis functions to describe PCET systems).
Indeed, in sections 5.2 and 5.3, the transferring proton’s
coordinate R is defined, and Q denotes all of the remaining
nuclear coordinates.
(ii) Fixing Q = Q̅, the nuclear kinetic energy is zero and the

eigenvalues of are those of the electronic Hamiltonian H for
the given nuclear coordinates and are provided by the time-
independent Schrödinger equation for the electronic wave
function:

ϕ ϕ ϕ̅ = ̂ + ̅ ̅ = ̅ ̅H Q q T V Q q Q q E Q Q q( , ) [ ( , )] ( , ) ( ) ( , )q

(5.6)

This equation is solved for each fixed set of nuclear coordinates
(“parametrically” in the nuclear coordinates), thus producing
eigenfunctions and eigenvalues of H that depend parametrically
on Q. Using eq 5.6 to describe coupled ET and PT events can
be problematic, depending on the relative time scales of these
two transitions and of the strongly coupled nuclear modes, yet
the appropriate use of this equation remains central to most
PCET theories (e.g., see the use of eq 5.6 in Cukier’s treatment
of PCET116 and its specific application to electron−proton
concerted tunneling in the model of Figure 43).
(iii) Equation 5.5 with ϕ(Q,q) obtained from eq 5.6 is

substituted into the Schrödinger equation for the full system,
yielding
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(iv) At this point, the central approximation of the BO
approach is made:
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This is the adiabatic approximation, which is based on the large
difference in the electron and nuclear masses. This difference
implies that the electronic motion is much faster than the
nuclear motion, consistent with classical reasoning. In the
quantum mechanical framework, applying the Heisenberg
uncertainty principle to the widths of the position and
momentum wave functions, one finds that the electronic
wave function is spatially much more diffuse than the nuclear
wave function.117 As a result, the electronic wave function is
relatively insensitive to changes in Qα and Pα (within the widths
of the nuclear wave functions). That is, the electronic wave
function can adjust quasi-statically to the nuclear motion.114 In
the quantum mechanical formulation of eq 5.6, the concept of
time scale separation underlying the adiabatic approximation is
expressed by the neglect of the electronic wave function
derivatives with respect to the nuclear coordinates (note that Pα
= −iℏ∇α).
The adiabatic approximation is, indeed, an application of the

adiabatic theorem, which establishes the persistence of a system
in an eigenstate of the unperturbed Hamiltonian in which it is
initially prepared (rather than entering a superposition of
eigenstates) when the perturbation evolves sufficiently slowly
and the unperturbed energy eigenvalue is sufficiently well
separated from the other energy eigenvalues.118 In its
application here, the electronic Hamiltonian at a given time
(with the nuclei clamped in their positions at that instant of
time) plays the role of the “unperturbed” Hamiltonian. The
change in the nuclear potential field, as nuclei move, acts as a
perturbation that, de facto, changes the eigenstates and
eigenvalues (thus making them time-dependent).
Substituting eq 5.8 into eq 5.7 and averaging on the

electronic state, one finds
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Equation 5.9 describes the behavior of the nuclear wave
function in the effective potential E(Q), the electronic energy
eigenvalue for fixed Q.
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The terms omitted in the BO adiabatic approximation are
generally non-negligible sufficiently near the Q values where the
BO potential energy surfaces (PESs) are degenerate.114 Indeed,
these crossing points define the geometries where charge
transfer reactions are most likely to occur. Near curve crossings,
the adiabatic separation usually fails, and one has to consider
the dynamical effects of the moving nuclei on the electronic
wave function. In this section, we review these nuclear
dynamics effects on PESs, because they include the transition
between electron donor and acceptor states that are coupled to
nuclear motion corresponding to PT. Classical and quantum
nuclear degrees of freedom are both considered in the analysis,
which aims to establish a unified framework to describe the
different PCET theories reviewed below.
Departure from the BO approximation means that the

system can evolve among multiple BO wave functions of the
form given in eq 5.5. Thus, the wave function Ψ of the system
at a time t is expanded in a complete set of BO-type wave
functions:

∑ χ ϕΨ =Q q t Q t Q q( , , ) ( , ) ( , )
n

n n
(5.10)

For simplicity, the time-dependent coefficients in eq 5.10 were
incorporated into the vibrational functions.
The nuclear wave functions, for classical nuclei, are

characterized approximately as δ functions. Hence, eq 5.10
for classical nuclei is

∑ ϕ δΨ = −Q q t c t Q q Q Q t( , , ) ( ) ( , ) ( ( ))
n

n n
(5.11)

In this case, the nuclear motion is described in terms of classical
trajectories Q(t), while the wave function description is limited
to the electronic degrees of freedom by integrating eq 5.11 over
Q to give

∑ ϕΦ =Q t q t c t Q t q( ( ), , ) ( ) ( ( ), )
n

n n
(5.12)

as in Tully’s formulation of molecular dynamics with hopping
between PESs.119,120 We now apply the adiabatic theorem to
the evolution of the electronic wave function in eq 5.12.
For fixed nuclear positions, Qα = Q̅α, since the electronic

Hamiltonian does not depend on time, the evolution of Φ from
time t0 to time t gives121

∑ ϕΦ ̅ = ̅ − − ℏQ q t c t Q q( , , ) ( ) ( , ) e
n

n n
E t t

0
i ( )/n 0

(5.13)

where

ϕ ϕ̅ = ̅H Q q E Q q( , ) ( , )n n n (5.14)

Taking into account the nuclear motion, since the electronic
Hamiltonian depends on t only through the time-dependent
nuclear coordinates Q(t), ϕn as a function of Q and q (for any
given t) is obtained from the formally identical Schrödinger
equation

ϕ ϕ=H Q t q Q t q E Q t Q t q( ( ), ) ( ( ), ) ( ( )) ( ( ), )n n n (5.15)

The value of the basis function ϕn in q depends on time via the
nuclear trajectory Q(t), so

ϕ
ϕ

∂
∂

= ̇ ·∇ ≠
Q t q

t
Q Q t q

( ( ), )
( ( ), ) 0n

Q n (5.16)

Equation 5.16 describes the coupling between nuclear and
electronic dynamics. That is, ϕn is not a stationary electronic
state of the system Hamiltonian . In fact, while ϕn(Q(t0),q) is
an eigenfunction of the electronic Hamiltonian at time t0,
ϕn(Q(t0),q) is not an eigenfunction of the electronic
Hamiltonian at a later time t. The evolved wave function
ϕn(Q(t),q) is, instead, an eigenfunction at this later time.
Therefore, if the electronic state at time t0 is described by a
single wave function ϕn(Q(t0),q), which implies that cn′(t0) =
δn′n, other electronic wave functions appear in the system wave
function Φ at later times, since the time evolution of the
coefficients is described by the coupled differential equations119

∑ ∑δ̇ = −
ℏ

+ ̇ · = −
ℏ

− ̇ ·
≠

⎜ ⎟
⎛
⎝

⎞
⎠c E Q c E c Q cd d

i i
n

k
n nk nk k n n

k n
nk k

(5.17)

Here, dnk, known as the nonadiabatic coupling vectors,119 are

∫
ϕ ϕ

ϕ ϕ

ϕ ϕ

= ⟨ |∇ ⟩

= * ∇

=
⟨ |∇ | ⟩

−

Q Q Q

Q q Q q dq

Q V Q q Q

E Q E Q

d ( ) ( ) ( )

( , ) ( , )

( ) ( , ) ( )

( ) ( )

nk n Q k

n Q k

n Q k

k n (5.18)

(see the Supporting Information for a derivation). Equation
5.18 holds for k ≠ n (otherwise, dnn = 0119) and

ϕ ϕ ϕ
ϕ̇ · = ⟨ | ̇ ·∇ ⟩ =
∂
∂

Q Q
t

dnk n Q k n
k

(5.19)

The matrix element in the numerator of the rightmost term
in eq 5.18 describes the coupling between the wave functions
ϕn and ϕk, at a given instant in time, due to the variation of
V(Q,q); in fact, multiplication by Q̇ as in eq 5.19 transforms this
matrix element into

ϕ ϕ

ϕ ϕ

⟨ | ̇ ·∇ | ⟩

=
⟨ | | ⟩

Q V Q q

Q t dV Q t q Q t

dt

( , )

( ( )) ( ( ), ) ( ( ))
n Q k

n k
(5.20)

For a given adiabatic energy gap Ek(Q) − En(Q), the probability
per unit time of a nonadiabatic transition, resulting from the use
of eq 5.17, increases with the nuclear velocity. This transition
probability clearly decreases with increasing energy gap
between the two states, so that a system initially prepared in
state ϕn(Q(t0),q) will evolve adiabatically as ϕn(Q(t),q),
without making transitions to ϕk(Q(t),q) (k ≠ n).
Equations 5.17, 5.18, and 5.19 indicate that, if the nuclear

motion is sufficiently slow, the nonadiabatic coupling may be
neglected. That is, the electronic subsystem adapts “instanta-
neously” to the slowly changing nuclear positions (that is, the
“perturbation” in applying the adiabatic theorem), so that,
starting from state ϕn(Q(t0),q) at time t0, the system remains in
the evolved eigenstate ϕn(Q(t),q) of the electronic Hamiltonian
at later times t.
For ET systems, the adiabatic limit amounts to the “slow”

passage of the system through the transition-state coordinate
Qt, for which the system remains in an “adiabatic” electronic
state that describes a smooth change in the electronic charge
distribution and corresponding nuclear geometry to that of the
product, with a negligible probability to make nonadiabatic
transitions to other electronic states.122 Thus, adiabatic states
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are obtained from the BO (adiabatic) approach by diagonal-
izing the electronic Hamiltonian. For sufficiently fast nuclear
motion, nonadiabatic “jumps” can occur, and these transitions
are more probable where two adiabatic states approach in
energy, due to the increase in the nonadiabatic coupling vectors
(eq 5.18). The adiabatic approximation at the core of the BO
approach generally fails at the nuclear coordinates for which the
zeroth-order electronic eigenfunctions are degenerate or nearly
so. At these nuclear coordinates, the terms omitted in the BO
approximation lift the energetic degeneracy of the BO
electronic states,114 thus leading to splitting (or avoided
crossings) of the electronic eigenstates. Moreover, the right-
most expression of dnk in eq 5.18 does not hold at conical
intersections, which are defined as points where the adiabatic
electronic PESs are exactly degenerate (and thus the
denominator of this expression vanishes).123 In fact, the
nonadiabatic coupling dnk diverges if a conical intersection is
approached123 unless the matrix element ⟨ϕn|∇QV(Q, q)|ϕk⟩
tends to zero.
Above, we considered electronic states that are zeroth-order

eigenstates in the BO scheme. These BO states are zeroth order
with respect to the omitted nuclear kinetic nonadiabatic
coupling terms (which play the role of a perturbation, mixing
the BO states), yet the BO states can serve as a useful basis set
to solve the full dynamical problem. The nonzero values of dnk
encode all the effects of the nonzero kinetic terms omitted in
the BO scheme. This is seen by considering the energy terms in
eq 5.8 for a given electronic wave function ϕn and computing
the scalar product with a different electronic wave function ϕk.
The scalar product of ∇αϕn(Q, q)·∇αχn(Q) with ϕk is clearly
proportional to dnk. The connection between the magnitude of
dnk and the other kinetic energy terms of eq 5.8, omitted in the
BO approximation and responsible for its failure near avoided
crossings, is given by (see ref 124 and eqs S2.3 and S2.4 of the
Supporting Information)

∑ϕ ϕ⟨ |∇ | ⟩ = ∇ · + ·d d dn Q k Q nk
j

nj jk
2

(5.21)

Thus, if dnk is zero for each pair of BO basis functions, the latter
are exact solutions of the full Schrödinger equation. This is
generally not the case, and electronic states with zero or
negligible couplings dnk and nonzero electronic coupling

ϕ ϕ= ⟨ | | ⟩V Q H( )nk n k (5.22)

are instead searched for to construct convenient “diabatic” basis
sets.125,126 By construction, diabatic states are constrained to
correspond to the precursor and successor complexes in the ET
system for all Q. As a consquence, the dependence of the
diabatic states on Q is small or negligible, which amounts to
correspondingly small values of dnk and of the energy terms
omitted in the BO approximation.127 For strictly diabatic states,
which are defined by the

= ∀Q n kd ( ) 0 ,nk (5.23)

condition on nuclear momentum coupling,128 the more general
form of eq 5.17, that is119

∑̇ = −
ℏ

+ ̇ ·⎜ ⎟
⎛
⎝

⎞
⎠c V Q cd

i
n

k
nk nk k

(5.24)

takes the form

∑̇ = −
ℏ

c V c
i

n
k

nk k
(5.25)

Therefore, according to eq 5.25, the mixing of strictly diabatic
states arises exclusively from the electronic coupling matrix
elements in eq 5.22. Except for states of the same symmetry of
diatomic molecules, basis sets of strictly diabatic electronic
wave functions do not exist, apart from the “trivial” basis set
made of functions ϕn that are independent of the nuclear
coordinates Q.128 In this case, a large number of basis wave
functions may be needed to describe the charge distribution in
the system and its evolution accurately. Commonly adopted
strategies obtain diabatic basis sets by minimizing dnk
values12,129−133 or by identifying initial and final states of an
ET process, considering the valence bond structures of the
reactants and the products,125 and using suitable computational
techniques to reproduce these states.134−146

Electronically diabatic states are degenerate at the transition-
state coordinate, where the minimum energy (or free energy,
after introduction of an ensemble of quantum states) gap
between the corresponding adiabatic states (which can be
obtained from a suitable linear transformation of the diabatic
states138,144) depends on the magnitudes of the electronic
coupling matrix elements and, for nonorthogonal diabatic
electronic states, on the overlaps among the diabatic
states.134,135,138,141

Diabatic states (reactant or initial ET state I and product or
final ET state F) are considered in the theory of electron

Figure 16. Cross section of the free energy profile along a nuclear reaction coordinate Q for ET. Frictionless system motion on the effective potential
surfaces is assumed here.126 The dashed parabolas represent the initial, I, and final, F, diabatic (localized) electronic states; QI and QF denote the
respective equilibrium nuclear coordinates. Qt is the value of the nuclear coordinate at the transition state, which corresponds to the lowest energy on
the crossing seam. The solid curves represent the free energies for the ground and first excited adiabatic states. The minimum splitting between the
adiabatic states approximately equals 2VIF. (a) The electronic coupling VIF is smaller than kBT in the nonadiabatic regime. VIF is magnified for
visibility. λ denotes the reorganization (free) energy. (b) In the adiabatic regime, VIF is much larger than kBT, and the system evolution proceeds on
the adiabatic ground state.
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transfer,7,147,148 where the transition-state coordinate(s) Qt
remains defined by the nuclear conformations at which the I
and F “potential” (an effective potential) free energy surfaces
(here denoted as PFESs; see the justification for this
terminology in Appendix A) are degenerate.149 In fact, the
Franck−Condon principle and the requirement of energy
conservation are simultaneously satisfied only for Q = Qt. This
observation, together with the assumptions of (a) identical
polarization properties of reactants and products and (b) a
linear response of the polarization of the solvent (which has the
properties of a classical thermal bath with Gaussian
statistics150,151) to any charge change in the redox partners,
led Marcus to a simple expression for the ET rate as a function
of the reorganization (free) energy, λ, and the free energy of
reaction ΔGR° in the prevailing medium at a mean distance R
between the ET partners in the activated complex.7

The Franck−Condon principle follows from the adiabatic
approximation in the BO scheme. The BO scheme fails at Qt.
This failure persists after ensemble averaging, but it does not
appreciably influence the expression for the activation free
energy ΔG* in terms of λ and ΔGR° in the Marcus rate
constant as long as the avoided crossing of the adiabatic states
amounts to a minimum energy gap much smaller than the
activation barrier (see Figure 16a). The non-negligible coupling
between nuclear and electronic dynamics near Qt was
introduced in the Marcus expression of the ET rate152,153 in
the semiclassical framework of Landau and Zener.154−157 The
Landau−Zener integration of the dynamical problem of eqs
5.22 and 5.25 over the region of the avoided crossing, together
with the dependence of the ET rate on λ and ΔGR° determined
by Marcus and developed by Kubo and Toyozawa in the
framework of nonradiative transitions of trapped electrons in
crystals,158 leads to the following nonadiabatic high-temper-
ature expression for the ET rate (for classical nuclear degrees of
freedom)159 when the lifetime of the initial electronic state, τel
≈ ℏ/VIF, is much larger than the time τn that the nuclei require
to pass through the transition-state region, as determined by
the parabolic shape of the Marcus PFESs (e.g., this is the case
for very small electronic couplings):

π
λ

λ
λ

=
ℏ

−
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The Marcus form of the ET rate constant is

ν κ
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where νn is an effective nuclear frequency for motion along the
reaction coordinate that allows the transition state to be
reached and κel is the electronic transmission coefficient, given
by

κ =
− −
− −

v v

v v

1 exp( /2 )

1 exp( /2 )
el

el n
1
2 el n (5.28a)

with

π
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=
ℏ

v
V

k Tel
IF

2

B (5.28b)

Equation 5.27 bridges the nonadiabatic regime and the
adiabatic regime, where the electron transition probability at

Qt is unity and the ET rate takes the simple form (see Figure
16b)
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The resulting Marcus−Levich−Dogonadze charge transfer
theory is the basis of most PCET theories, motivating the
attention given to this theory here.
The nonadiabatic coupling terms of the Schrödinger

equation neglected in the BO approximation play a crucial
role where charge transfer reactions are involved. In PCET, the
transferring proton’s nuclear degrees of freedom need to be
treated quantum mechanically. Hence, we reconsider the
influence of the nonadiabatic interaction terms on the evolution
of the system, writing the analogue of eq 5.24 for quantum
nuclear degrees of freedom, which is relevant to a general
description of PCET.
We first substitute the wave function of eq 5.10, for any given

time (we use a complete set of real and orthogonal electronic
basis functions and mass-weighted nuclear coordinates), into
the time-independent Schrödinger equation. We then compute
the scalar product with the nth electronic basis function, over
the subspace spanned by the electronic degrees of freedom,
obtaining128,160

∑χ χ

χ χ

χ

−ℏ ∇ +

− ℏ ·∇ +

=

Q G Q Q

Q Q V Q Q
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d

2
( ) [ ( ) ( )
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nk Q k nk k

n

2
2

2

(5.30)

Since Q̂ is a multiplicative operator in the coordinate
representation, dnk(Q) in eq 5.30 is still defined by the integral
in eq 5.18; Vnk(Q) is defined by eq 5.22 so that Vnn(Q) =
En(Q), and

∫ ϕ ϕ= −ℏ ∇G Q Q q Q q q( )
2

( , ) ( , ) dnk n Q k

2
2

(5.31)

By separating the diagonal and off-diagonal terms, one finds
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which emphasizes the role of the electronic and nuclear
coupling terms in eqs 5.22 and 5.31 in mixing otherwise
adiabatic BO wave functions. The time-dependent Schrödinger
equation is written by proceeding in a similar way and realizing
that the time evolution of the nuclear state no longer appears in
Q (which is now an eigenvalue of the observable Q̂), but in the
pertinent wave functions:

∑

χ χ
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Using a common notation,125 eq 5.33 was written using wave
functions χk that incorporate the time-dependent expansion
coefficients of the wave function in terms of BO basis functions.
Equation 5.33 is the analogue of eq 5.24 in the quantum case.
|cn(t)|

2 gives the probability of finding the system in the nth BO
wave function, while |χn(Q,t)|

2 gives the probability density that
the value of the nuclear coordinate is Q and the electrons are in
state |ϕn(Q)⟩. The time derivative on the left side of eq 5.33 is
the product of a time-independent nuclear vibrational function
and the total time derivative of the nth expansion coefficient.
A detailed comparison of eqs 5.24 and 5.33 is absent in the

literature, and it is beyond the scope of this review. However,
useful insights into this comparison (which may be useful in the
PCET context, where the reactive proton generally needs to be
treated as a quantum mechanical particle, while other nuclear
degrees of freedom can often be described using classical
mechanics, unless they are directly coupled to the proton
dynamics and are comparably fast) are provided by focusing on
the off-diagonal energy terms related to the nuclear motion that
are responsible for transitions between BO states.
The kinetic off-diagonal terms on the right-hand side of eq

5.33 describe two effects of the nuclear motion on the
electronic state due to the interaction potential in eq 5.4. One
term is the scalar product of ∇Qχk, which is related to the
quantum nuclear momentum, and dnk, which is an expression of
the change in the electronic wave function as a result of a
change in the nuclear coordinates. In the perspective of the
Lagrangian derivative (or material derivative),161 this off-
diagonal term corresponds to the contribution that includes
the “spatial derivative”.
The other off-diagonal term defined in eq 5.31 expresses a

dependence of the electronic state on the nuclear kinetic
energy. This is a kind of intrinsic dependence on the nuclear
motion: in fact, if the same nuclear coordinates are associated
with two different values of the nuclear kinetic energy, two
different electronic states are accordingly obtained as a result of
the interaction potential in eq 5.4. Therefore, the off-diagonal
term arising from the fact that Gnk ≠ 0 would correspond to the
“partial time derivative” in the material derivative of the
Lagrangian picture. Note that this term is present even if the
nth and kth electronic states are associated with the same
vibrational function, and it is absent in the limit of classical
nuclear motion, where a given electronic state corresponds to a
given set of nuclear coordinates and Q(t) acts as a changing
“external” field on the electronic wave function given by eq
5.12, thus yielding the coupling Q̇·dnk in eq 5.24, to be
compared with the analogous term in eq 5.33.
Note that, in both the quantum and the semiclassical cases,

the nonadiabatic couplings that arise from nuclear motion are
zero or negligible for any suitable set of diabatic states (by
construction of the latter), so eqs 5.32 and 5.33 become
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and
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respectively. Near each minimum in Figure 16 one of the
diabatic states is indistinguishable from the adiabatic ground
state. The interaction between the electron donor and acceptor
is negligible near a PES minimum where such a minimum is
deep enough to be a feature of the PES landscape. In other
words, if the system is near the bottom of a sufficiently deep
PES minimum, the reactive electron is localized around a
trapping donor (acceptor) site, and the electron localization is
virtually indistinguishable from that for the isolated donor
(acceptor) site. Therefore, the strictly diabatic electronic state
defined as independent of the nuclear coordinates and equal to
the adiabatic state at the coordinates of the minimum is, within
the BO scheme, a zeroth-order eigenstate of the unperturbed
electronic Hamiltonian for the reactant or product species
corresponding to that minimum. The reactant (product)
Hamiltonian is obtained (a) by partitioning the ET system to
distinguish donor and acceptor groups, with the transferring
charge included in the donor (acceptor), (b) by writing the
energy as a sum of the energies of the single components plus
their interactions, and (c) by removing the interaction between
the donor and acceptor, which is responsible for the transition.
These are known as “channel Hamiltonians”.126,127,159,162 An
example is provided by I

0 and F
0 in eq 9.2.

Only the off-diagonal interaction terms (which determine the
transitions according to eq 5.32) are removed from channel
Hamiltonians.159 In fact, considering an electronic state
localized on the donor or acceptor, a diagonal term such as
Gnn in eq 5.32 represents the interaction between the electron
described by the localized wave function ϕn(Q,q) and the
environment (before or after the transition), acting on ϕn
through the kinetic energy operator −ℏ2∇Q

2/2. In short, using
channel Hamiltonians, the interaction terms causing the charge
transition are removed from the Hamiltonian (with the excess
electron in the donor or acceptor group), and then its
eigenfunctions can be searched. This is an alternative to
working on the differential properties of the wave func-
tions123,128,129,133,163 to obtain diabatic states, by seeking, for
example, unitary adiabatic-to-diabatic transformations that
minimize the nuclear momentum coupling.133,163

5.2. Adiabatic and Nonadiabatic (Diabatic) Behavior in
PCET

When the nuclear motion (or, more generally, the motion of
heavy particles such as atoms or entire molecules where only
the transferring electrons and/or protons need to be treated
quantum mechanically) is sufficiently slow or when the nuclear
coupling terms are negligible compared to the electronic
couplings Vnk, the electron subsystem responds instantaneously
to such a motion. An example is depicted in Figure 16b, where
(a) the atoms are treated classically, (b) dnk = 0 for the given
diabatic states, and (c) the large value of the electronic coupling
Vnk implies that the system evolves on the initially populated
adiabatic electronic state. Thus, the adiabatic states are good
approximations of the eigenstates of H at any time, and at
position Qt the system transits with unit probability to the
product basin. In other words, when the system is at Qt,
depending on the adiabatic or diabatic nature (hence, on the
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localization properties) of the state in which the electronic
subsystem was initially prepared, the transferring electron
charge remains in the lower adiabatic state, or switches to the
product diabatic state without lingering in the initial diabatic
state (note that the two effective potential energy basins
involved in the charge transition belong to the same adiabatic
state, but to different diabatic, or localized, states), thereby
promoting the subsequent nuclear relaxation to the equilibrium
nuclear structure of the products. Figure 16a or 17 (see also ref
159, p 109) shows the opposite nonadiabatic regime, where the
electronic charge distribution does not respond instantaneously
to the nuclear motion.

The BO separation can be applied in different ways for
different PCET reactions in solution. The electronic transition
can be nonadiabatic with respect to both the motion of the
heavy particles that are treated classically (solvent reorientation
and motion of solute atoms that are not involved in proton or
atom transfer) and the motion of the transferring proton(s)
that is (are) treated quantum mechanically, or the electronic
system may follow the first motion adiabatically and the second
motion nonadiabatically164 and so forth. Similarly, proton
transfer reactions can be classified as either adiabatic or
nonadiabatic with respect to the other nuclear coordi-
nates.165−167 Thus, a general theory that can capture different
regimes of PCET needs to include the possibility of
distinguishing between nuclear degrees of freedom with
classical and quantum behavior and to properly model the
interplay of different time scales and couplings that generally
characterize PCET reactions.
In moving the above analysis toward more direct application

to PCET systems, we consider a system where the coordinate R
in the set Q behaves in a special way. R is the coordinate for a
proton that will undergo a transition in a PCET reaction
mechanism (more generally, R may be a set of nuclear
coordinates that include other degrees of freedom critical for
the occurrence of the reaction). We now use the symbol Q to
denote the set of generalized coordinates of the heavy atoms
other than R. For simplicity, we use the harmonic
approximation and hence normal modes, so that the vibrational
wave functions belonging to the nth electronic state can be
factored as χn

p(R) χn(Q). We begin with this simple model to
further dissect and clarify key concepts that emerge from
theories of PCET.
Consider a complete set (or a nearly complete set, i.e., a set

that is large enough to provide a good approximation of the

system state at any time during the reaction) of electronically
diabatic wave functions:

ϕ χ χΨ =R Q q R Q q R Q( , , ) ( , , ) ( ) ( )n n n n
p

(5.36)

In eq 5.36, the electronic wave functions may be defined as
ϕn(R,Q,q) = ϕn(Rn,Qn,q), where (Rn,Qn) is the minimum point
of the pertinent free energy basin (this definition amounts to
the use of strictly diabatic electronic states) or ϕn may have a
weak dependence on the nuclear coordinates, thus being an
approximate diabatic function. We have ∇{R,Q} = ∇R + ∇Q, and,
since R and Q are orthogonal coordinates, ∇{R,Q}

2 = ∇R
2 + ∇Q

2.
Thus, eq 5.34 is
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In the electronically nonadiabatic limit (i.e., for Vnk → 0),
each diabatic surface is identical with an adiabatic one, except
for the small (vanishing, as Vnk shrinks) regions of the
conformational space where different diabatic states are
degenerate and the corresponding adiabatic states avoid the
crossing because of the nonadiabatic kinetic coupling terms.
This is seen from eq 5.37, which in the limit Vnk → 0 produces
the Schrödinger equation for the nuclear wave function within
the BO scheme.
If the large set of “bulk” nuclear coordinates (Q) can be

replaced by a single reactive coordinate, one obtains a two-
dimensional representation of the nuclear conformational
space, as illustrated in Figure 18, where the minima of the
PFESs correspond to reactants and products in their
equilibrium conformations. The two minima are separated by
a barrier, which is the activation barrier for the transition. The
minimum value of the barrier on the crossing seam of the two
PESs is a saddle point for the lower adiabatic PES, which is

Figure 17. Multiple passage at Qt, crossing of the reactant and product
PFESs in nonadiabatic charge transfer. If the electronic coupling
between the two diabatic states corresponds to a small Landau−Zener
parameter, the system lingers in the initial diabatic electronic state I,
rather than passing to the final state F at the first attempt. In fact, the
formulation of this multiple crossing between the I and F surfaces by
Landau and Zener gives rise to the expression for the electronic
transmission coefficient in eq 5.28, which is proportional to the square
coupling in the nonadiabatic limit, as in eq 5.26, and is unity in the
adiabatic limit, as in eq 5.29.

Figure 18. (a) Diabatic free energy surfaces before (I) and after (F)
ET plotted as functions of the proton (R) and collective nuclear (Q)
coordinates. If ΔR = RF − RI is larger than the proton position
uncertainty in its initial and final quantum states, ET is accompanied
by PT. Initial-, final-, and transition-state nuclear coordinates are
marked, similar to the one-dimensional case of Figure 16. A dashed
line describes the intersection of the two diabatic surfaces. (b)
Adiabatic ground state. In the nonadiabatic limit, this adiabatic state is
indistinguishable from the lower of the two diabatic free energy
surfaces on each side of the crossing seam. In the opposite adiabatic
regime, the adiabatic ground state significantly differs from the diabatic
surfaces and the motion of the system occurs only on the ground-state
free energy surface.
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essentially identical to one of the diabatic states around each
minimum. In a classical description of the nuclei, the reaction
path matches the direction of the gradient at each point of the
lower adiabatic PES. A curvilinear abscissa along the reaction
path defines the reaction coordinate, which is a function of R
and Q, and can be usefully expressed in terms of mass-weighted
coordinates (as a specific example, a straight-line reaction path
is obtained for crossing diabatic surfaces described by
paraboloids).168−172 This is also the trajectory in the R, Q
plane according to Ehrenfest’s theorem. Figure 16a gives the
PES (or PFES) profile along the reaction coordinate. Note that
the effective PES denoted as the initial one in Figure 18 is
indistinguishable from the lower adiabatic PES below the
crossing seam, while it is essentially identical to the higher
adiabatic PES above the seam (and not very close to the
crossing seam, up to a distance that depends on the value of the
electronic coupling between the two diabatic states). Similar
considerations apply to the other diabatic PES.
The possible transition dynamics between the two diabatic

states near the crossing seams can be addressed, e.g., by using
the Tully surface-hopping119 or fully quantum125 approaches
outlined above. Figures 16 and 18 represent, indeed, part of the
PES landscape or circumstances in which a two-state model is
sufficient to describe the relevant system dynamics. In general, a
larger set of adiabatic or diabatic states may be required to
describe the system. More complicated free energy landscapes
characterize real molecular systems over their full conforma-
tional space, with reaction saddle points typically located on the
shoulders of conical intersections.173−175 This geometry can be
understood by considering the intersection of adiabatic PESs
related to the dynamical Jahn−Teller effect.176
A typical PES profile for ET is illustrated in Figure 19b and is

related to the effective potential seen by the transferring
electron at two different nuclear coordinate positions: the
transition-state coordinate xt in Figure 19a and a nuclear
conformation x ̅ that favors the final electronic state, shown in
Figure 19c. ET can be described in terms of multielectron wave
functions differing by the localization of an electron charge or
by using a single-particle picture (see ref 135 and references
therein for quantitative analysis of the one-electron and many-
electron pictures of ET and their connections).141,177 The
effective potential for the transferring electron can be obtained

from a preliminary BO separation between the dynamics of the
core electrons and that of the reactive electron and the nuclear
degrees of freedom: the energy eigenvalue of the pertinent
Schrödinger equation depends parametrically on the coordinate
q of the transferring electron and the nuclear conformation x =
{R,Q}116 (indeed x is a reaction coordinate obtained from a
linear combination of R and Q in the one-dimensional picture
of Figure 19). This is the potential V(x,q) represented in Figure
19a,c. At x = xt, the electronic states localized in the two
potential wells are degenerate, so that the transition can occur
in the diabatic limit (Vnk → 0) by satisfying the Franck−
Condon principle and energy conservation. The nonzero
electronic coupling splits the electronic state levels of the
noninteracting donor and acceptor. At x = xt the splitting of the
adiabatic PESs in Figure 19b is 2Vnk. This is the energy
difference between the delocalized electronic states in Figure
19a. In the diabatic picture, the common energy of the two
localized levels is Ej(x) = ⟨ϕj(x)|V(x,q) + T̂q|ϕj(x)⟩ and
represents the effective potential for the motion of the nuclei at
xt in each of the electronic states localized near the donor and
acceptor.
The introduction of a “special” coordinate R, useful in

tackling multiple charge and/or atom transfer mechanisms,
brings intricacies to the dynamics, as well as new meaning and
significance for the one-dimensional PESs of Figures 16 and 19,
as was discussed by Dogonadze, Kuznetsov, and Levich, who
examined the possibility of a second adiabatic approximation
separating R and Q in the same spirit of the BO scheme178−180

(see below). In their approach, R was the coordinate for a
proton involved in hydronium ion neutralization (discharge) at
a metal surface179 or in PT in solution.180 The effective
potential energy in the standard BO equation for the nuclei
(namely, the electronic state energy as a function of the nuclear
coordinates, or electron term) was written as a power series of
the small deviations of the nuclear coordinates from
equilibrium, up to second-order terms. A separate coordinate
was assigned to the proton and the procedure was repeated,
thus introducing a second adiabatic approximation for the
proton with respect to slower degrees of freedom.
Kuznetsov and Ulstrup further developed these concepts181

by focusing directly on the energy terms contributing to the
electronic or electron−proton PESs and averaging these PESs

Figure 19. (a) Effective potential energy V(xt,q) (q is the reactive electron coordinate) for the electronic motion at the transition-state coordinate xt.
x is a reaction coordinate that depends on R and Q. The energy levels corresponding to the initial and final electron localizations are degenerate at xt
(see blue bars in the figure). Denoting the diabatic electronic states by |ϕI,F(x)⟩, which depend parametrically on x, E(xt) = EI(xt) = ⟨ϕI(xt)|V(xt,q) +
T̂q|ϕI(xt)⟩ = EF(xt). However, such levels are split by the tunnel effect, so that the resulting adiabatic energies are E± and the corresponding wave
functions are equally spread over the electron donor and acceptor. (b) The effective potential (free) energy profile for the motion of the nuclear
coordinate x is illustrated as in Figure 16. (c) An asymmetric effective potential energy V(x,̅q) for the electron motion at a nuclear coordinate x ̅ ≠ xt
with accordingly asymmetric electronic levels is shown. The additional splitting of such levels induced by the tunnel effect is negligible (note that the
electronic coupling is magnified in panel b). The black bars do not correspond to orbitals equally diffuse on the ET sites.
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over the electronic and vibrational states. This procedure was
accomplished in the diabatic electronic representation for the
case of electronically nonadiabatic PT. Instead, an adiabatic
electronic state representation was used in the electronically
adiabatic regime. In this regime (quantum mechanical)
averaging over the proton states to obtain electron−proton
free energy surfaces (or electron−proton terms180) is not
appropriate. In fact, the proton wave functions that correspond
to an adiabatic electronic state do not represent proton
localization in the reactant or product wells, but rather are
linear combinations of the localized proton vibrational
functions. Thus, proton state averaging is no longer suitable
in the electronically and vibrationally adiabatic case, where also
the PT reaction occurs adiabatically with respect to the
environment nuclear degrees, or in the electronically adiabatic
and vibrationally nonadiabatic case, where this averaging does
not lead to electron−proton free energy surfaces describing the
proton localizations before and after PT (but rather to their
mixtures; see the discussion of Figure 23). Thus, the two-
dimensional nuclear space of Figure 18b is maintained in the
partially and fully adiabatic regimes.
These previous studies were further developed to treat

different kinds of PCET mechanisms (e.g., see ref 182 and
references therein). Nevertheless, PCET theories and applica-
tions have been developed much further.182−186 We continue
our analysis of Schrödinger equation applications with the aim
of highlighting these developments.
We described the separation of electronic and nuclear

dynamics above, focusing mainly on electronically nonadiabatic
reactions. In Figure 18, the electron and proton motions are
assumed to depend on the rearrangements of the same nuclear
coordinate Q, as in Cukier’s treatment of PCET, for
example.116,187−190 In this kind of model, where the same
change in Q triggers both ET and PT events, if the (proton-
coupled) ET reaction is in the nonadiabatic regime, the
associated PT reaction is necessarily electronically nonadia-
batic,165,182,190−193 as discussed in the following section.
However, in many circumstances, electronically adiabatic PT
may be coupled to nonadiabatic ET in the PCET reaction. This
may be the case for well-separated electron donor and acceptor
linked by a H-bonded interface that is involved in the PT.194 In
this case, the electronic charge distributions corresponding to
the initial and final proton states are strongly coupled. In other
words, due to the short PT distance, the electronic charge
distribution can respond quickly to the proton motion.
It is worth stressing that the definition of electronically

adiabatic or nonadiabatic PT is more general than its
application to simultaneous ET and PT processes. In fact,
this definition rests directly on the BO adiabatic approximation,
and hence, it also applies when the electron charge rearrange-
ment following the PT reaction is not classified as ET because it
does not amount to distinct localizations of some excess
electronic charge (see also the extended interpretation of the
Dogonadze−Kuznetsov−Levich model in section 9). The
electronic adiabaticity/nonadiabaticity criteria for the proton
transition have been described195 for simultaneous (or
concerted) electron−proton transfer (also referred to as EPT
in the literature4,196 and in this review) and hydrogen atom
transfer (HAT),195,197 using an approximate description of the
proton tunneling via Gamow’s formulation198 (with the WKB
approximation199−202), a convenient definition of a “tunneling
velocity” and the related “tunneling time” for the proton, and
the Landau−Zener formalism159 (see section 7). The

synchronized electron and proton transitions can also involve
the same donor and different acceptors or different donors and
a common acceptor, which defines the multiple-site electron−
proton transfer (MS-EPT) and the concept of PCET
pathways.4 In a free energy landscape such as that of Figure
18, the change in R between two minima is a measure of the
change in proton localization, while the change in Q reflects the
rearrangement of the nuclei in response to the double charge
transfer.
In general, the ET reaction occurs between donor and

acceptor groups that are different from the ones involved in the
PT event. The reaction may be concerted or stepwise (but the
two transitions are nonetheless coupled, so that one induces the
other, when PCET is at play), as is the case for many PCET
mechanisms involving enzymes4,203−208 and transition-metal
complexes.4,209−213

PCET reactions can fall into three different regimes of
adiabatic or nonadiabatic behavior if, in evaluating the
adiabaticity of the electronic state evolution, one considers
the motion of the transferring proton and of the other nuclear
degrees of freedom separately. These regimes are electronically
adiabatic PT and ET, electronically nonadiabatic PT and ET,
and electronically adiabatic PT and electronically nonadiabatic
ET.184,191,194 The electronically nonadiabatic or adiabatic
character of the PT reaction refers to the relative time scales
of the electron and proton dynamics, while the nonadiabatic or
adiabatic behavior of the electronic motion is established with
respect to all of the nuclear modes, therefore including the
transferring proton.
Locally, the electronic motion is always much faster than the

motion of the proton and of any other nuclear degree of
freedom. In particular, this consideration applies to the
electronic charge rearrangement that accompanies any pure
PT or HAT event. However, when EPT occurs, the electronic
charge rearrangement coupled to the PT involves (by the
definition of ET) distinguishable (i.e., well-separated) initial
and final electronic charge distributions. Thus, depending on
the structure of the system (and, in particular, depending on
the electron donor−acceptor distance), the PT is electronically
adiabatic or nonadiabatic. With these considerations, one can
understand why (electronically) adiabatic ET implies electroni-
cally adiabatic PT (overall, an electronically adiabatic double-
charge transfer reaction) for both the stepwise and concerted
electron−proton transfer reactions. Consider the four diabatic
electronic states involved in a PCET reaction:116,214,215

− ··· −

− ··· −

− ··· −

− ··· −

− +

− +

+ −

+ −

D D H A A (1a)

D D H A A (1b)

D D H A A (2a)

D D H A A (2b)

e p p e

e p p e

e p p e

e p p e (5.38)

where a and b denote the initial and final states of the PT
process, 1 and 2 denote the ET states, and Dp (De) and Ap (Ae)
denote the proton (electron) donor and acceptor, respectively.
The possible charge-transfer processes connecting these states
are shown in Figure 20. Pure PT occurs over short distances
where the electron charge rearrangement between the initial
and final states is adiabatic. Thus, if ET/PT (PT/ET) takes
place, the proton transfer step PT1 (PT2) is electronically
adiabatic. Since we are considering adiabatic ET (hence, the
ETa or ETb step is also adiabatic by hypothesis), the full
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reaction is electronically adiabatic. Next consider the case in
which EPT is the operational mechanism. The adiabatic
behavior of the ET reaction is defined, according to the BO
approximation, with respect to the dynamics of all nuclear
degrees of freedom, hence also with respect to the proton
transfer.195 Thus, in the EPT mechanism with adiabatic ET, the
PT process occurs on an adiabatic electronic state, i.e., it is
electronically adiabatic.
If the proton motion is sufficiently fast compared to the other

nuclear degrees of freedom, the double-adiabatic approximation
applies, which means that the PT proceeds adiabatically
(adiabatic PT165−167 or vibrationally adiabatic PT182,191).
Otherwise, nonadiabatic or vibrationally nonadiabatic PT is at
play. These concepts are embodied in eqs 5.36 and 5.37. The
discussion in the next section analyzes and extends the
modeling concepts underlying eqs 5.36 and 5.37.

5.3. Adiabatic and Nonadiabatic PCET Interpreted in the
Context of the Schrödinger Equation and the
Born−Oppenheimer (Adiabatic) Approximation

In this section we analyze the coupled evolution of the reactive
electron, the reactive proton, and the environment reaction
coordinate(s) Q of a PCET system. The analysis uses a
common theoretical framework for the coupling of electronic
and nuclear dynamics that leads to adiabatic or nonadiabatic
behaviors in ET, PT, and PCET. This perspective combines
theoretical features from previous separate studies of these
charge transfer reactions.
5.3.1. Quantum-State Dynamics of PCET Systems and

the Underlying Potential (Free) Energy Surfaces. Our
analysis begins with the definition of a general form for the
quantum state of a PCET system and its quantum equations of
motion. Because PCET reactions are common with long-range
(nonadiabatic) ET coupled to electronically adiabatic
PT,191,214,215 we first expand the system wave function over a
set of orthogonal diabatic electronic and vibrational wave
functions:
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In the last expression of eq 5.39a, the time-dependent
expansion coefficients were incorporated in ξn(Q,t) = cn(t)
χn(Q). One may also use strictly diabatic electronic wave
functions, with the two nuclear coordinates fixed at their
equilibrium or average values in the respective PES basins (or,
indeed, effective PES or PFES basins, following the analysis of
Appendix A), denoted by Rn and Qn. Appendix A shows how
the free energy surface that corresponds to each electron−
proton−Q quantum state (using the coordinate representation
for Q) is defined, following a thermal average over the system
energies that result from different conformations of the other
(classical) environmental coordinates. (Alternatively, consider
the approaches in ref 216 or 217 or the free energy matrix
approach by Soudackov and Hammes-Schiffer to study PCET
and other multiple-charge transfer systems;214 see section 12.)
If Q in eq 5.39a is the set of all nuclear coordinates, and these
coordinates are treated quantum mechanically, the system state
in eq 5.39a and its evolution are associated with a PES
landscape. In this fully quantum case, using a free energy (that
is, a PFES) landscape requires application of statistical quantum
mechanics, but one expects that electronic wave functions
centered at the minimum points of the free energy basins are
still part of an appropriate diabatic basis set to be used to
describe the system.
At any nuclear configuration (R,Q) sufficiently far from the

PFES intersections, there is always a diabatic electronic wave
function that is indistinguishable from one zeroth-order
adiabatic state, as obtained in the BO separation scheme by
neglecting the adiabatic electronic wave function dependence
on the small displacements of the nuclei from their equilibrium
positions in the given PFES basin. Transitions between
different electronic states can occur near the avoided crossing
of the adiabatic surfaces. The wave function of the system in a
basis of strictly diabatic electronic states is
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Considering the parametric dependence of the electronic wave
function on the nuclear coordinates underlying each BO basis
function, the expression for the total wave function can be
interpreted as a linear combination of electronic wave functions
with coefficients given by the associated vibrational functions.
The evolution of the wave function is described by the

following coupled equations of motion for the R and Q
vibrational functions associated with the different electronic
states involved:

Figure 20. Possible realizations of a PCET mechanism (eq 5.38). The
overall reaction is described by one of the following mechanisms: ET
in the initial proton state a (ETa) followed by PT in the final electronic
state 2 (PT2) (overall, an ET/PT reaction); PT in the initial electronic
state 1 (PT1) followed by ET in the final proton state b (ETb), namely,
a PT/ET reaction; simultaneous EPT to different or identical charge
donor and acceptor (therefore, in this diagram HAT is included as a
special case of EPT, although the acronym EPT is often used to
denote distinguishable redox partners for ET and PT). On the whole,
PCET can occur: as ETa, where the process is coupled to the next
occurrence of PT; as ETb, where ET is triggered by the preceding PT;
in conjunction with PT in an EPT or HAT reaction.
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The Qn → Qk = Qn + ΔQnk transition, with n ≠ k, induces an
ET event. PT also occurs if Rn and Rk = Rn + ΔRnk are
significantly different, namely, if the same ΔQnk triggers both
ET and PT.
While the harmonic approximation and normal modes are

used here (in particular, in eqs 5.39a and 5.39b, two terms with
differently localized proton vibrational functions describe the
proton state before and after a PT reaction), the interaction of
the reactive proton with the Q modes is built into the total
wave function in two ways: (a) χn

p belongs to the electronic
state ϕn, and Rn = ⟨χn

p|R̂|χn
p⟩ arises from the potential field near

the bottom of the nth basin; (b) the frequency of the normal
mode associated with the motion of the proton and the related
amplitude (e.g., as measured by the rms deviation from the
mean value Rn of the proton position operator R̂121) depend on
the interaction of the reactive proton with all nuclei. In fact, the
vibrational frequency of the proton mode is obtained by
diagonalizing the potential energy of interaction of all nuclei.218

Thus, for a transition between two PFES basins characterized
by ΔQnk and the related change in electronic charge localization
(both expressed by a transition between two different terms of
Ψ in eqs 5.39a and 5.39b), the properties of the whole system
determine how the change ΔRnk in the proton coordinate
compares with the uncertainties δRn = (⟨χn

p|R̂2|χn
p⟩ − ⟨χn

p|
R̂|χn

p⟩2)1/2 and δRk of the proton position in its initial and final
quantum states, namely, whether the localizations of the initial
and final proton wave functions are sufficiently different to
correspond to a PT process or not.
Equations 5.39a and 5.39b can be used to establish a more

general PCET framework by also including wave functions
ϕnχn

pχn and ϕkχk
pχk (with n ≠ k) such that χn

p and χk
p describe

different proton localizations and are thus connected by a PT
reaction, while ϕn and ϕk do not describe well-separated spatial
distributions of the electron charge (i.e., ET), but rather differ
by the electronic charge rearrangement that would accompany
the PT. That is, one can use the same expression for Ψ to
describe situations where ΔQnk causes ΔRnk > δRn, δRk, namely,
PT, and not ET. However, since PT occurs over short distances
and the electronic coupling at short distances is usually large,
the PT is electronically adiabatic. While, in principle, the
diabatic wave functions ϕn and ϕk can still be used as electronic
basis functions in the description of the PT reaction, it is useful
to obtain an adiabatic subset of electronic wave functions by
rotation of ϕn and ϕk and to use the adiabatic subset in the
expression of the total wave function. If PT occurs with the
electron in the adiabatic ground state, here denoted |ϕnk

ad⟩ (the
subscripts indicate that this is the adiabatic ground state in a
two-state model limited to ϕn and ϕk), it is sufficient to replace

ϕn and ϕk by ϕnk
ad in eqs 5.39a and 5.39b. For this pure PT

event, accompanied by adiabatic rearrangement of electronic
charge, ϕnk

ad corresponds to a single diabatic state with respect to
ET. That is, the reaction occurs in a single basin of a landscape
such as that shown in Figure 18b. ϕnk

ad is present in one or two
terms of Ψ depending on the vibrationally adiabatic/non-
adiabatic nature of PT (see Figures 21 and 22). For

vibrationally adiabatic PT, the proton wave functions χn
p and

χk
p are obtained by application of a second BO adiabatic
approximation to the R−Q subsystem (see section 5.2), and
only one of them (which amounts to one term in Ψ) is
involved in the electronically and vibrationally adiabatic PT
reaction. The proton wave functions χn

p and χk
p are delocalized

between Rn and Rk as shown in Figure 22b, but their amplitudes
have a single maximum (at Rn ≅ Rn) in the limiting case of
extremely strong interaction between the proton donor and
acceptor (see Figure 21b), as would be expected for hydrogen
bonds shorter than ∼2.5 Å. In this case, it is not meaningful to
speak of PT, because the proton is delocalized between its
donor and acceptor,219 and again, a fortiori, a single term,
ϕnχn

pχn, appears in the expansion of Ψ. For vibrationally
nonadiabatic PT, χn

p and χk
p are localized wave functions, as in

Figure 22a, and are obtained from linear combinations of the
adiabatic vibrational functions. Two terms appear in the
expansion of Ψ in eqs 5.39a and 5.39b to describe this
electronically adiabatic and vibrationally nonadiabatic PT event.
Note that Figures 21 and 22a,b represent slices, along the R
coordinate and at Qt, through an effective potential energy
landscape of the kind shown in Figure 18.
The electron−proton wave functions (ϕnχn

p) can, in principle,
be obtained by applying the BO approximation to separate the
Schrödinger equations for the {q,R} and Q coordinates, without
invoking a further BO approximation to describe the evolution
of the q and R coordinates. The nonadiabatic couplings
between the R and Q dynamics are in fact included by
Hammes-Schiffer and co-workers (see below and section 12),
thus obtaining a more accurate representation of the electron−
proton wave functions involved in a PCET reaction and of the
corresponding free energy surfaces (or electron−proton terms;
see Figure 22c).194,220

For PCET reactions with electronically nonadiabatic ET and
electronically adiabatic PT, two sets of diabatic electronic states
are sufficient to describe the overall PCET reaction mechanism
(the two diabatic electronic states and the proton in the various
possible vibrational levels).194

Figure 21. Schematic depiction of the effective potential energies for
the proton motion and associated vibrational levels in (a) electroni-
cally adiabatic and vibrationally nonadiabatic or (b) electronically and
vibrationally adiabatic PT (coupled to ET in the PCET context). A
surface with a single minimum is formed at very short proton donor−
acceptor distances (such as X ≲ 2.5 Å). For example, TyrZ in PSII has
a very strong hydrogen bond with His190, with a bond length at the
upper bound of the range considered here. A single minimum may
arise for extremely strongly interacting molecules, with very short
hydrogen bonds.219
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The electron−proton PFESs shown in Figure 22c,d, which
are obtained from the prescription by Hammes-Schiffer and co-
workers,214,221 are functions of two solvent (or, more generally,
nuclear collective) coordinates, denoted ze and zp in Figure 22c.
In fact, two different collective solvent coordinates describe the
nuclear bath effects on ET and PT according to the PCET
theory by Hammes-Schiffer and co-workers.191,194,214 The
PFES profile in Figure 22d is obtained along the reaction
path connecting the minima of the two paraboloids in Figure
22c. This path represents the trajectory of the solvent
coordinates for a classical description of the nuclear environ-
ment, but it is only the most probable reaction path among a
family of quantum trajectories that would emerge from a
stochastic interpretation of the quantum mechanical dynamics
described in eq 5.40.
Insights into different effective potential energy surfaces and

profiles such as those illustrated in Figures 21 and 22 and the
connections among such profiles are obtained from further
analysis of eqs 5.39 and 5.40. Understanding of the physical
meaning of these equations is also gained by using a density
matrix approach and by comparing orthogonal and non-
orthogonal electronic diabatic representations (see Appendix
B). Here, we continue the analysis in terms of the orthogonal
electronic diabatic states underlying eq 5.40 and in the full
quantum mechanical perspective. The discussion is formulated
in terms of PESs, but the analysis in Appendix A can be used
for interpretation in terms of effective PESs or PFESs.
Averaging eq 5.40 over the proton state for each n leads to a

description of how the system dynamics depends on the Q
mode, i.e., ultimately, on the probability densities that are

associated with the different possible states of the reactive
solvent mode Q:
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In this time-dependent Schrödinger equation, the explicit
dependence of the electron transfer matrix element on nuclear
coordinates is neglected (Condon approximation159), Snk

p =
⟨χn

p|χk
p⟩, and the electron−proton term E̅n

p(Q) (namely, the Q-
dependent average energy of the reactive electron−proton
subsystem) is

∫ χ χ̅ = +E Q R E R Q R R T( ) ( ) ( , ) ( ) dn n n n n
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(5.41b)
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is the average kinetic energy in state χn
p(R). The electron−

proton terms are the PESs for the calculation of the nuclear
wave functions χn sufficiently far from avoided crossings, where
χn is indistinguishable from the vibrational wave function χn

ad

that satisfies the time-independent Schrödinger equation
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2
2 p ad ad

(5.42)

Figure 22. (a) Diabatic PESs for the initial and final ET states and vibrational wave functions φD
(I) (blue) and φA

(II) (red; notice that II = F in the
notation of this review) for the phenoxyl−phenol system. The reaction is electronically nonadiabatic (see also section 12), so the vibronic coupling is
the product of the electronic coupling and ⟨φD

(I)|φA
(II)⟩. (b) Adiabatic ground-state PES and pertinent proton vibrational functions for the benzyl−

toluene system. The reaction is electronically adiabatic, and thus the vibronic coupling is half the splitting between the energies of the symmetric
(cyan) and antisymmetric (magenta) vibrational states of the proton. The excited proton vibrational state is shifted up by 0.8 kcal/mol for a better
visualization. Panels a and b reprinted from ref 197. Copyright 2006 American Chemical Society. (c) Two-dimensional diabatic electron−proton free
energy surfaces for a PCET reaction connecting the vibronic states μ and ν as functions of two collective solvent coordinates: one strictly related to
the occurrence of ET (ze) and the other one associated with PT (zp). The equilibrium coordinates in the initial and final states are marked, and the
reaction free energy ΔGμν° and reorganization energy λμν are indicated. Panel c reprinted from ref 221. Copyright 2006 American Chemical Society.
(d) Free energy profile along the reaction coordinate represented by the dashed line in the nuclear coordinate plane of panel c. Qualitative proton
PESs and pertinent ground-state proton vibrational functions are shown in correspondence to the reactant minimum, transition state, and product
minimum. Panel d reprinted from ref 215. Copyright 2008 American Chemical Society.
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which can also be obtained from a double-adiabatic
approximation without the assumption that proton and other
nuclear potentials are harmonic (see also section 9).
In the vibronically nonadiabatic regime, transitions among

electron−proton states are determined by their vibronic
couplings, which, in the PCET context, are defined197 as the
Hamiltonian matrix elements between reactant and product
electron−proton vibrational wave functions. In the electroni-
cally nonadiabatic regime, with the Condon approximation, the
vibronic coupling between two electron−proton diabatic states
is well approximated by the product of the electronic coupling
and the proton Franck−Condon factor. In biological systems,

the nonadiabatic nature of an ET transition with small
electronic coupling Vnk is, often, a consequence of distant and
thus weakly interacting electron donors and acceptors with a
large tunneling barrier protein intervening. Regarding the
proton, instead, the large proton mass makes long-distance
proton tunneling improbable. In fact, hydride and hydrogen
atom transfers typically occur over distances of less than 3 Å,
and often ET and PT involve different donor and acceptor
groups.
When the same solvent coordinate Q couples to both

electron and proton transitions, the nonadiabatic character of
ET causes electronically nonadiabatic PT and, overall, vibroni-

Figure 23. Analogue of Figure 19 for nonadiabatic EPT. The vibronic free energy surfaces are indicated in the central panel as functions of the
collective coordinate Q. Panels a and c represent proton effective PESs (hence, they are drawn along the proton coordinate R) for Q = Qt and Q = Q̅
≠ Qt, respectively. In the first case, EI,F(R,Qt) = ⟨ϕI,F(R,Qt)|V(R̂,Qt,q ̂) + T̂q|ϕI,F(R,Qt)⟩ and the vibrational energies are, in both wells, ⟨χI

a|EI(R,Qt)|χI
a⟩

+ TI
a = E̅I

a(Qt) = E̅F
b(Qt). The two minima in panel a need not be equally deep if states a and b are not both ground vibrational states (cf. Figure 44).

Figure 24. (a) Typical (free) energy profile for ET or PCET along a reaction coordinate x (see the main text) and (b) its magnification near the
transition-state coordinate (origin of the abscissa), using the diabatic energy difference Δ12(x) as the reaction coordinate.121,216,222 Both diabatic
(dashed lines) and adiabatic (solid lines) curves are illustrated. Panel a qualitatively represents a case of electronically adiabatic reaction under the
two-state approximation. However, the diabatic states ϕ1 and ϕ2 can still be used as a basis, and their connection with the electronic adiabatic states
ϕ12
ad and ϕ̃12

ad is summarized in the inset, where H0 is the channel Hamiltonian and V is a constant (Condon approximation) interaction component of
the Hamiltonian. The dependence of H0 on x can be formulated in terms of Δ12. ϕ12

ad and ϕ̃12
ad are eigenfunctions of the electronic Hamiltonian for

each Δ12.
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cally nonadiabatic electron−proton transfer. This is because the
nonadiabatic regime of ET implies (a) absence of correlation, in
eq 5.41, between the vibrational functions χn that belong to
different electronic states sufficiently far from the intersections
among electron−proton PESs and (b) small transition
probabilities near these intersections that are determined by
the small values of the vibronic couplings. This means that the
motion along the solvent coordinate is not limited to the
ground-state vibronic adiabatic surface of Figure 23b. While eq
5.40 allows one to speak of (electronically) nonadiabatic ET,
the combined effect of Vnk and Snk

p on the couplings of eq 5.41
does not allow one to define a “nonadiabatic” or “vibrationally
nonadiabatic” PT. This is in contrast with the case of pure PT
between localized proton vibrational states along the Q
coordinate. Hence, one can only speak of vibronically
nonadiabatic EPT: this is appropriate when electronically
nonadiabatic PT takes place,182 because the nonadiabaticity of
the electronic dynamics coupled with PT implies the presence
of the electronic coupling Vnk in the transition matrix element.
5.3.2. Investigating Coupled Electronic−Nuclear Dy-

namics and Deviations from the Adiabatic Approxima-
tion in PCET Systems via a Simple Model. Adiabatic
electron−proton PESs are also shown in Figure 23b. To
construct mixed electron/proton vibrational adiabatic states, we
reconsider the form of eq 5.30 (or eq 5.32) and its solution in
terms of adiabatic electronic states and the corresponding
vibrational functions. To simplify the notation, and with focus
on the reactive electron−proton subsystem, x denotes the
overall set of nuclear coordinates {R,Q} or a reaction
coordinate obtained as a linear combination of R and Q (or
only R where the coupling of the electron and proton dynamics
is examined without including Q effects). Given a complete set
of electronic diabatic wave functions (ideally, an infinite set of
strictly diabatic wave functions128), diagonalization of the
electronic Hamiltonian H at each value of x gives adiabatic
electronic states that are solutions of

ϕ ϕ=α α αH x q E x x q( , ) ( ) ( , )ad ad ad
(5.43)

Equation 5.43 is the Schrödinger equation for the (reactive)
electron at fixed nuclear coordinates within the BO scheme.
Therefore, ϕα

ad is the electronic component of a BO product
wave function that approximates an eigenfunction of the total
Hamiltonian at x values for which the BO adiabatic
approximation is valid. In fact, these adiabatic states give Vαβ

= Eαδαβ, but correspond to (approximate) diagonalization of
the full Hamiltonian (eq 5.1) only for small nonadiabatic
kinetic coupling terms. We now (i) analyze and quantify, for
the simple model in Figure 24, features of the nonadiabatic
coupling between electronic states induced by the nuclear
motion that are important for understanding PCET (therefore,
the nonadiabatic coupling terms neglected in the BO
approximation will be evaluated in the analysis) and (ii) show
how mixed electron−proton states of interest in coupled ET−
PT reactions are derived from the analysis of point i.
If we assume (as in eq 5.7) that the BO product wave

function ϕα
ad(x,q) φα(x) (where φα(x) is the vibrational

component) is an approximation of an eigenfunction of the
total Hamiltonian , we have

ϕ φ ϕ φ

φ ϕ ϕ φ

ϕ φ

−ℏ ∇ + ∇ ·∇

+ ∇ +

=

α α α α

α α α α α

α α α

x q x x q x

x x q E x x q x

x q x

2
[ ( , ) ( ) 2 ( , ) ( )

( ) ( , )] ( ) ( , ) ( )

( , ) ( )

x x x

x

2
ad 2 ad

2 ad ad ad

ad
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Then, averaging over the electronic state, using the identity dαα
= 0 and eq 5.31, we find

φ φ−ℏ ∇ + + =α α α α α

⎡
⎣⎢

⎤
⎦⎥G x E x x x

2
( ) ( ) ( ) ( )x

2
2 ad ad ad

(5.45)

with (via eq 5.21)

∑= ℏ | |α
β α

αβ
≠

G x xd( )
2

( )ad
2

2

(5.46)

Gα
ad(x) + Eα

ad(x) is an ‘”effective potential” for nuclear motion
and contains the distortion of the electronic wave function due
to its coupling to nuclear motion. The off-diagonal electronic−
nuclear interaction terms of eq 5.44 are removed in eq 5.45 by
averaging over a single electronic adiabatic state. However,
these terms couple different adiabatic states. In fact, the scalar
multiplication of eq 5.44 on the left by a different electronic
adiabatic state, ϕβ

ad, shows that the condition

φ−ℏ ·∇ + =βα α αx G x xd[ ( ) ( )] ( ) 0x
2 ad

(5.47)

must be satisfied for any α and β so that the BO adiabatic states
are eigenfunctions of the full Hamiltonian and are thus
solutions of eq 5.44. Indeed, eq 5.47 is generally not satisfied
exactly even for two-state models. This is seen by using the
equations in the inset of Figure 24 with the strictly electronic
diabatic states ϕ1 and ϕ2. In this simple one-dimensional
model, eqs 5.18 and 5.31 lead to the nuclear kinetic
nonadiabatic coupling terms

λ θ λ= −
− Δ

=
− Δ +βαd x

x x
d

d x x
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x V
( )
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( ) 42 1 12 2 1

12
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and
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(5.49)

It is easily seen that substitution of eqs 5.48 and 5.49 into eq
5.47 does not lead to a physically meaningful (i.e., appropriately
localized and normalized) solution of eq 5.47 for the present
model, unless the nonadiabatic coupling vector and the
nonadiabatic coupling (or mixing126) term determined by the
nuclear kinetic energy (Gα

ad) in eq 5.47 are zero. Equations 5.48
and 5.49 show that the two nonadiabatic coupling terms tend
to zero with increasing distance of the nuclear coordinate from
its transition-state value (where Δ12 = 0), thus leading to the
expected adiabatic behavior sufficiently far from the avoided
crossing. Considering that the nonadiabatic coupling vector is a
Lorentzian function of the electronic coupling with width 2V12,
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the extension (in terms of x or Δ12, which depends linearly on x
due to the parabolic approximation for the PESs) of the region
with significant nuclear kinetic nonadiabatic coupling between
the BO states decreases with the magnitude of the electronic
coupling. Since the interaction V (see the Hamiltonian model
in the inset of Figure 24) was not treated perturbatively in the
above analysis, the model can also be used to see that, for
sufficiently large V12, a BO wave function behaves adiabatically
also around the transition-state coordinate xt, thus becoming a
good approximation for an eigenfunction of the full
Hamiltonian for all values of the nuclear coordinates.
Often, the validity of the adiabatic approximation is asserted

on the basis of the comparison between the minimum adiabatic
energy gap at x = xt (that is, 2V12 in the present model) and the
thermal energy (namely, kBT = 26 meV at room temperature).
Here, instead, we analyze the adiabatic approximation taking a
more general perspective (although the thermal energy remains
a useful unit of measurement; see the discussion below). That
is, we inspect the magnitudes of the nuclear kinetic non-
adiabatic coupling terms (eqs 5.48 and 5.49) that can lead to
the failure of the adiabatic approximation near an avoided
crossing, and we compare these terms with relevant features of
the BO adiabatic PESs (in particular, the minimum adiabatic
splitting value). Since, as said above, the reaction nuclear
coordinate x is the coordinate of the transferring proton, or
closely involves this coordinate, our perspective emphasizes the
interaction between electron and proton dynamics, which is of
special interest to the PCET framework.
Consider first that, at the transition-state coordinate xt, the

nonadiabatic coupling (in eV) determined by the nuclear
kinetic energy operator (eq 5.49) is

λ λ= ℏ
−

≅ ×
α

−⎛
⎝⎜

⎞
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t
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2

2 1
2

12

2 4

2
12

2

(5.50)

where x is a mass-weighted coordinate (hence, it is proportional
to the square root mass associated with the reactive nuclear
mode) and the dimensionless quantity f is the magnitude of the
effective displacement of the relevant nuclear coordinate x
expressed in angstroms. Since we are investigating the
conditions for electronic adiabaticity, the PESs in Figure 24
may represent the electronic charge distributions in the initial
and final proton states of a pure PT reaction or different
localizations of a reactive electron for HAT or EPT with short-
distance ET. Thus, we can take f in the range of 0.5−3 Å, which
leads to values of the numerical factor in the last expression of
eq 5.50 in the range of 6 × 10−5 to 2 × 10−3. For example, for f
= 1 and λ = 0.25 eV, an electronic coupling V12 ≈ 0.06 eV ≈
5kBT/2 is large enough to make Gα

ad(xt) ≈ 0.01 eV, i.e., less
than kBT/2. Indeed, for the x displacement considered, the
coupling is usually larger than 0.06 eV. Thus, in conclusion, the
minimum adiabatic energy splitting cannot be overcome by
thermal fluctuation, on the one hand, and is not appreciably
modified by Gα

ad, on the other hand.
To evaluate the effect of the nonadiabatic coupling vector on

the PES landscape, either in the semiclassical picture of eq 5.24
or in the present quantum mechanical picture, one needs to
compute

λℏ ̇ = ℏ ̇
−βαxd x
x

x x V
( )

2t
2 1 12 (5.51)

where x is a mass-weighted proton coordinate and x ̇ is a
velocity associated with x. Indeed, in this simple model one
may consider the proton as the “relative particle” of the
proton−solvent subsystem whose reduced mass is nearly
identical to the mass of the proton, while the whole subsystem
determines the reorganization energy.
We need to consider a model for x ̇ to evaluate the expression

in eq 5.51, and hence to investigate the relation between the
value of V12 and that of the nonadiabatic coupling in eq 5.51.
This relationship will be studied throughout the regime of
proton tunneling (i.e., for values of V12 such that the proton
vibrational levels are lower than the potential energy barrier in
Figure 24).
As in ref 195, we define a proton “tunneling velocity” x ̇ as it

appears in Bohm’s interpretation of quantum mechanics,223

namely, by using appropriate parameters for the present model:

ω̇ = − ℏx E2 act p (5.52)

In eq 5.52, the proton energy is approximated by its ground-
state value in one of the parabolic diabatic potentials of Figure
24a, and distortions of the potential at its minimum by V12 are
neglected. Using the equations in the inset of Figure 24 and
expressing both ℏωp and λ in electronvolts, we obtain

ω λ λℏ = ℏ = ℏ
−

≅k
x x f

2
0.09p

2 1 (5.53)

Equation 5.53 gives ℏωp ≈ 0.05 eV, so ωp ≈ 0.7 × 1014 s−1, for
the chosen values of f and λ. The other parameter (Eact) in the
expression of x ̇ is the activation energy. From the energy of the
lower adiabatic state
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(note that Eβ
ad differs from Eα

ad by the sign of the square root),
one obtains the energy barrier
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Insertion of eqs 5.52−5.55 into eq 5.51 gives
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The numerical factor 0.09/4f in the last line of eq 5.56 is used
with electronic couplings and reorganization energies in
electronvolts. The value of the nonadiabatic term in eq 5.56
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is ≤0.01 eV when V12 ≳ 0.05 eV, which is a condition well
satisfied for distances on the order of 1 Å. Therefore, the
minimum PES splitting is significantly larger than ℏx ̇dβα(xt),
and the effect of this nonadiabatic coupling on the PES
landscape of Figure 24 can be neglected, which means that the
BO adiabatic states are good approximations to the eigenstates
of the Hamiltonian .
The present analysis of ℏx ̇dβα and Gα

ad clarifies and quantifies
the electronically adiabatic nature of PT when the relevant
nuclear coordinate for the combined ET−PT reaction is the
proton displacement and is on the order of 1 Å. For a pure ET
reaction (also see the useful comparison, in the context of ET,
of the electronic and nonadiabatic couplings in ref 127), x in
Figure 24 may be a nuclear reaction coordinate characterized by
larger displacements (and thus larger f values) than the proton
coordinate in electron−proton transfer, but the relevant modes
usually have much smaller frequencies (e.g., ω ≈ 1011 s−1; see
section 9) than proton vibrational frequencies. Consequently,
according to eq 5.56, the electronic coupling threshold for
negligible ℏx ̇dβα(xt) values (i.e., for the onset of the adiabatic
regime) can be much smaller than the 0.05 eV value estimated
above. However, the V12 value decreases approximately
exponentially with the ET distance, and the above analysis
applied to typical biological ET systems leads to the
nonadiabatic regime. In general, charge transfer distances,
specifics of charge localization and orientation, coupled PT, and
relevant nuclear modes will determine the electronic diabatic or
adiabatic nature of the charge transfer. The above discussion
offers insight into the physics and the approximations
underlying the model system used by Georgievskii and
Stuchebrukhov195 to describe EPT reactions, but it also
provides a unified framework to describe different charge
transfer reactions (ET, PT, and EPT or the special case of
HAT). The following points that emerge from the above
discussion are relevant to describing and understanding PES
landscapes associated with ET, PT, and EPT reactions:
(i) Smaller V12 values produce a larger range of the proton−

solvent conformations on each side of the intersection between
the diabatic PESs where the nonadiabatic couplings are
negligible. This circumstance leads to a prolonged adiabatic
evolution of the charge transfer system over each diabatic PES,
where V12/Δ12 is negligible (e.g., see eq 5.54). However,
smaller V12 values also produce stronger nonadiabatic effects
close enough to the transition-state coordinate, where 2V12
becomes significantly larger than the diabatic energy difference
Δ12 and eqs 5.50 and 5.51 apply.
(ii) The minimum energy separation between the two

adiabatic surfaces increases with V12, and the effects of the
nonadiabatic couplings decrease. This means that the two BO
states become good approximations of the exact Hamiltonian
eigenstates. Instead, as shown by eq 5.54, the BO electronic
states can differ appreciably from the diabatic states even near
the PES minima when V12 is sufficiently large to ensure
electronic adiabaticity across the reaction coordinate range.
(iii) This simple two-state model also predicts increasing

adiabatic behavior as V12/λ grows, i.e., as the adiabatic splitting
increases and the energy barrier (∼λ/4) decreases. Even if V12
≫ kBT, so that the model leads to adiabatic ET, the diabatic
representation may still be convenient to use (e.g., to compute
energy barriers) as long as the electronic coupling is much less
than the reorganization energy.
5.3.3. Formulation and Representations of Electron−

Proton States. The above analysis sets conditions for the

adiabaticity of the electronic component of BO wave functions.
Now, we distinguish between the proton coordinate R and
another collective nuclear coordinate Q coupled to PCET and
construct mixed electron/proton vibrational adiabatic states
with a double-adiabatic separation scheme. Thus, either the PT
or the ET time scaleor bothcan cause nonadiabaticity of
the electron−proton states. Using eqs 5.44 and 5.45, a
procedure to obtain electron−proton wave functions and
PESs (typical ones are shown in Figure 23b) is as follows:
(i) The electronic Hamiltonian is diagonalized at every

{R,Q} (typically, on a 2D grid in the R, Q plane) to obtain a
basis of adiabatic electronic states. This can be done beginning
with a diabatic set, when it is available, thus providing the
electronic part of

ϕ φΨ =α α αR Q q R Q q R Q( , , ) ( , , ) ( , )ad ad
(5.57)

that satisfies

ϕ ϕ=α α αH R Q q E R Q R Q q( , , ) ( , ) ( , , )ad ad ad
(5.58)

at each fixed point {R,Q}, and the corresponding energy
eigenvalue.
(ii) Substitution into the Schrödinger equation Ψα

ad =

αΨα
ad, where = T̂{R,Q} + H, and averaging over the

electronic state lead to
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where

∫ ϕ ϕ= −ℏ ∇αα α αG R Q R Q q R Q q dq( , )
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2
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and Eα
ad(R,Q) are known from point i.

(iii) If the kth and nth diabatic states are involved in the
PCET reaction (see Figure 23), the effective potential Eα

ad(R,Q)
+ Gαα

ad (R,Q) for the motion of the proton−solvent system is
characterized by potential wells centered at Rk and Rn along the
R coordinate and at Qk and Qn along Q. Then analytical
solutions of eq 5.59 of the form

φ χ χ=α α αR Q R Q( , ) ( ) ( )p,ad ad
(5.61)

are possible, for example, by approximating the effective
potential as a double harmonic oscillator in the R and Q
coordinates.224

(iv) Substitution of eq 5.61 into eq 5.59 and averaging over
the proton state yield

χ χ−ℏ ∇ + ̅ + ̅ =α αα α α α

⎡
⎣⎢

⎤
⎦⎥E Q G Q Q Q

2
( ) ( ) ( ) ( )Q

2
2 p,ad p,ad ad ad

(5.62a)

where

χ χ̅ = ⟨ | | ⟩αα α αα αG Q G R Q( ) ( , )p,ad p,ad ad p,ad
(5.62b)

and

χ χ̅ = ⟨ | | ⟩ +α α α α αE Q E R Q T( ) ( , )p,ad p,ad ad p,ad p,ad
(5.62c)

with
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∫ χ χ= −ℏ * ∇α α αT R R R
2

( ) ( ) dR
p,ad

2
p,ad 2 p,ad

(5.62d)

Hence, E̅α
p,ad(Q) + G̅αα

p,ad(Q) is the electron−proton term. This
term is the “effective potential” for the solvent-state dynamics,
but it includes, in G̅αα

p,ad, the distortion of the electronic wave
function due to its coupling with the same solvent dynamics. In
turn, the effect of the Q motion on the electronic wave
functions is reflected in the corresponding proton vibrational
functions. Therefore, interdependence between the reactive
electron−proton subsystem and the solvent is embodied in eqs
5.62a−5.62d. Indeed, an infinite number of electron−proton
states result from each electronic state and the pertinent
manifold of proton vibration states.
The distance from an avoided crossing that causes ϕα

ad to
become indistinguishable from ϕk or ϕn (in the case of
nonadiabatic charge transitions) was characterized in eq 5.48
using the Lorentzian form of the nonadiabatic coupling vector
dβα. Equation 5.48 shows that the value of dβα depends on the
relative magnitudes of the energy difference between the
diabatic states (chosen as the reaction coordinate121) and the
electronic coupling. The fact that the ratio between Vkn and the
diabatic energy difference measures proximity to the non-
adiabatic regime144 can also be established from the rotation
angle θ (see the inset in Figure 24) connecting diabatic and
adiabatic basis sets as a function of the R and Q coordinates.
From the expression for the electronic adiabatic ground state
ϕkn
ad, we see that ϕkn

ad ≅ ϕn if Vkn/Δkn ≪ 1 (θ ≅ 0; Ek > En) or ϕkn
ad

≅ ϕk if −Vkn/Δkn ≪ 1 (θ ≅ 0; Ek < En). Thus, for sufficiently
small Vkn, one can use the piecewise approximation

ϕ
ϕ
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E E

E E
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( )kn
k k n

n k n

ad
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and eq 5.42 is valid within each diabatic energy range. Equation
5.63 provides a simple, consistent conversion between the
diabatic and adiabatic pictures of ET in the nonadiabatic limit,
where the small electronic couplings between the diabatic
electronic states cause decoupling of the different states of the
proton−solvent subsystem in eq 5.40 and of the Q mode in eq
5.41a. However, while small Vkn values represent a sufficient
condition for vibronically nonadiabatic behavior (i.e., ulti-
mately, VknSkn

p ≪ kBT), the small overlap between reactant and
product proton vibrational wave functions is often the cause of
this behavior in the time evolution of eq 5.41.215 In fact, the
distance dependence of the vibronic couplings VknSkn

p is
determined by the overlaps Skn

p .197,225

Detailed discussion of analytical and computational ap-
proaches to obtain mixed electron/proton vibrational adiabatic
states is found in the literature.214,226,227 Here we note that the
dimensional reduction from the {R,Q} to the {Q} conforma-
tional space in going from eq 5.40 to eq 5.41 (or from eq 5.59
to eq 5.62) does not imply a double-adiabatic approximation or
the selection of a reaction path in the R, Q plane. In fact, the
above procedure treats R and Q on an equal footing up to the
solution of eq 5.59 (such as, e.g., in eq 5.61). Then, eq 5.62
arises from averaging eq 5.59 over the proton quantum state
(i.e., overall, over the electron−proton state for which eq 5.40
expresses the rate of population change), so that only the
solvent degree of freedom remains described in terms of a
probability density. However, while this averaging does not
mean application of the double-adiabatic approximation in the
general context of eqs 5.40 and 5.41, it leads to the same result

where the separation of the R and Q variables is allowed by the
harmonic and Condon approximations (see, e.g., section 9 and
ref 180), as in eqs 5.59−5.62.
Within the standard adiabatic approximation, the effective

potential En(R,Q) in eq 5.40 or Eα
ad(R,Q) + Gαα

ad (R,Q) in eq 5.59
provides the effective potential energy for the proton motion
(along the R axis) at any given solvent conformation Q, as
exemplified in Figure 23a. Comparing parts a and b of Figure
23 provides a link between the behavior of the system around
the diabatic crossing of Figure 23b and the overlap of the
localized reactant and product proton vibrational states, since
the latter is determined by the dominant range of distances
between the proton donor and acceptor allowed by the effective
potential in Figure 23a (let us note that Figure 23a is a profile
of a PES landscape such as that in Figure 18, orthogonal to the
Q axis). This comparison is similar in spirit to that in Figure 19
for ET,7 but it also presents some important differences that
merit further discussion.
In the diabatic representation or the diabatic approximation

of eq 5.63, the electron−proton terms in Figure 23b cross at Q
= Qt, where the potential energy for the motion of the solvent is
E̅n
p(Qt) and the localization of the reactive subsystem in the kth

or nth potential well of Figure 23a corresponds to the same
energy. In fact, the potential energy of each well is given by the
average electronic energy Ej(R,Qt) = ⟨ϕj(R,Qt)|V(R̂,Qt,q ̂) + T̂q|
ϕj(R,Qt)⟩ (j = k, n), and the proton vibrational energies in both
wells are ⟨χj

p|Ej(R,Qt)|χj
p⟩ + Tj

p = E̅j
p(Qt).

In reference to the electronically adiabatic surfaces in Figure
23b, their splitting at Qt is not neglected, and eqs 5.62a−5.62d
are thus used. The minimum splitting is E̅β

p,ad(Qt) − E̅α
p,ad(Qt) +

G̅ββ
p,ad(Qt) − G̅αα

p,ad(Qt), where the derivatives with respect to Q in
the diagonal interaction terms G̅αα

p,ad(Qt) and G̅ββ
p,ad(Qt) are taken

at Q = Qt and β marks the upper adiabatic electronic state and
the corresponding electron−proton energy eigenvalue.
G̅ββ
p,ad(Qt) − G̅αα

p,ad(Qt) is zero for a model such as that shown
in Figure 24 with θ(R,Q). Thus, averaging Eα

ad(R,Q) − ℏ2∇R
2/2

and Eβ
ad(R,Q) − ℏ2∇R

2/2 over the respective proton wave
functions gives

∫

∫

χ χ

χ χ
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(5.64)

If pure ET occurs, χβ
p,ad(R) = χα

p,ad(R). Thus, Tβ
p,ad = Tα

p,ad and the
minima of the PFESs in Figure 18a (assumed to be
approximately elliptic paraboloids) lie at the same R coordinate.
As such, the locus of PFES intersection, Δkn(R,Qt) = 0, is
perpendicular to the Q axis and occurs for Q = Qt. Thus, eq
5.64 reduces to

̅ − ̅ = | |β αE Q E Q V( ) ( ) 2 kn
p,ad

t
p,ad

t (5.65)

(where the Condon approximation with respect to R was used).
Figure 23c is obtained at the solvent coordinate Q̅, for which

the adiabatic lower and upper curves are each indistinguishable
from a diabatic curve in one PES basin. In this case, Ek(R,Q̅)
and En(R,Q̅) are the left and right potential wells for proton
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motion, and E̅β
p,ad(Q̅) − E̅α

p,ad(Q̅) ≅ E̅k
p(Q̅) − E̅n

p(Q̅). Note that
E̅β
p,ad(Q) − E̅α

p,ad(Q) is the energy difference between the
electron−proton terms at every Q, including the transition-state
region, for electronically adiabatic ET (and hence also for PT,
as discussed in section 5.2), where the nonadiabatic coupling
terms are negligible and thus only the lower adiabatic surface in
Figure 23, or the upper one following excitation, is at play.
The diabatic electron−proton terms in Figure 23b have been

related, in the above analysis, to the proton vibrational levels in
the electronic effective potential for the nuclear motion of
Figure 23a. Compared to the case of pure ET in Figure 19, the
focus in Figure 23a is on the proton coordinate R after
averaging over the (reactive) electronic degree of freedom.
However, this parallelism cannot be extended to the relation
between the minimum adiabatic PES gap and the level splitting.
In fact, PT takes place between the χk

p,ad(R) and χn
p,ad(R) proton

vibrational states that are localized in the two wells of Figure
23a (i.e., the localized vibrational functions φD

(I) and φA
(II) in the

notation of Figure 22a), but these are not the proton states
involved in the adiabatic electron−proton PESs of Figure 23b.
The latter are, instead, χα

p,ad, which is the vibrational component
of the ground-state adiabatic electron−proton wave function
ϕα
ad(R,Q,q)χα

p,ad(R) and is similar to the lower-energy linear
combination of χk

p,ad and χn
p,ad shown in Figure 22b, and χβ

p,ad,
which is the lowest vibrational function belonging to the upper
adiabatic electronic wave function ϕβ

ad.
Two electron−proton terms with the same electronic state,

ϕα
ad(R,Q,q) χα

p1,ad(R) and ϕα
ad(R,Q,q) χα

p2,ad(R) (here, p is also the
quantum number for the proton vibration; p1 and p2 are
oscillator quantum numbers), can be exploited to represent
nonadiabatic ET in the limit Vkn → 0 (where eq 5.63 is valid).
In fact, in this limit, the PES corresponding to ϕα

ad is
indistinguishable from the diabatic PESs near their minima,
and the minimum of the diabatic crossing seam is a good
approximation to the activation barrier (however, Vkn is never
exactly zero if ET can occur, and the computation of this
coupling requires knowledge of the excited adiabatic state or of
the corresponding diabatic states). In addition, linear
combinations of χα

p1,ad and χα
p2,ad yield the localized proton

wave functions for the electronic diabatic states. More
generally, ϕα

ad(R,Q,q) χα
p1,ad(R) and ϕα

ad(R,Q,q) χα
p2,ad(R) can be

used to describe electronically adiabatic PCET reactions. One
of these functions suffices to describe the vibrationally adiabatic
PT, while both are necessary to describe vibrationally
nonadiabatic PT in the adiabatic (proton vibrational)
representation. Thus, in the electronically adiabatic case, the
full analogue of Figure 19 is regained and the vibronic coupling
is half the splitting between the two vibrational state energies,
so that Figure 22a is the analogue of Figure 19a after averaging
over the quantum state of the electron and with reference to
the proton motion. In particular, PT on an electronically
adiabatic surface, without involvement of ET, was treated in
analogy with ET by Borgis and Hynes.228

While parts a and c of Figure 23 are obtained for specific
solvent coordinates, averaging eq 5.40 over solvent quantum
states leads to the R coordinate equations of motion that should
be used in models that include only the electron and proton
coordinates (e.g., in ref 195):

∑
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p
2
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(5.66a)

The Condon approximation was used to derive eq 5.66a, where
Snk = ⟨χn|χk⟩ and

∫ χ χ̅ = +E R Q E R Q Q Q T( ) ( ) ( , ) ( ) dn n n n n (5.66b)

with

∫ χ χ= −ℏ ∇T Q Q Q
2

( ) ( ) dn n Q n

2
2

(5.66c)

Moreover, in analogy with eq 5.42, when the kinetic
nonadiabatic coupling is negligible, χn

p(R) is nearly identical
to the wave function χn

p,ad(R) that satisfies the time-independent
Schrödinger equation

χ χ−ℏ ∇ + ̅ =
⎡
⎣⎢

⎤
⎦⎥E R R R

2
( ) ( ) ( )R n n n n

2
2 p,ad p,ad

(5.67)

The symmetry of eqs 5.41−5.42 and eqs 5.66−5.67 with
respect to Q and R arises from the Condon approximation. In
this approximation, Vnk does not depend appreciably on R and
Q, so ⟨χn

p|Vnk|χk
p⟩ = VnkSnk

p and ⟨χn|Vnk|χk⟩ = VnkSnk. If the
Condon approximation is invalid, the averages over the proton
and solvent states correspond to qualitatively different vibronic
couplings, because Vnk in general depends differently on R and
Q.
The electronic adiabatic states arise from the analogue of eqs

5.62a−5.62d:

χ χ−ℏ ∇ + ̅ + ̅ =α α α ααα

⎡
⎣⎢

⎤
⎦⎥E R G R R R

2
( ) ( ) ( ) ( )R

2
2 ad ad p,ad p,ad

(5.68a)

where

χ χ̅ = ⟨ | | ⟩αα α αα αG R G R Q( ) ( , )ad ad ad ad
(5.68b)

and

χ χ̅ = ⟨ | | ⟩ +α α α α αE R E R Q T( ) ( , )ad ad ad ad ad
(5.68c)

with

∫ χ χ= −ℏ * ∇α α αT Q Q Q
2

( ) ( ) dQ
ad

2
ad 2 ad

(5.68d)

Equations 5.41a−5.41c show that, for nonadiabatic ET and
coupling of PT and ET to the same displacement of the solvent
mode, the PCET reaction mechanism is vibronically non-
adiabatic. Equations 5.66 provides further information on the
reaction mechanism, since it indicates the electronic non-
adiabaticity of the PT. The ET and PT reactions may be
induced by the same Q change also in cases where the two
reactions involve different pathways (for example, a fluctuation
brings the electron donor and acceptor close enough to enable
ET, and the ET event triggers the coupled PT). However, in
general, one expects that ET and PT are coupled to different
changes in the nuclear coordinates. Thus, nonadiabatic ET can
be coupled to adiabatic PT, which amounts to inserting
electronic wave functions such as ϕnk

ad into the wave function
expansion of eq 5.39a or eq 5.39b (see the discussion at the
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beginning of this subsection). The overall change in the nuclear
environment corresponding to EPT can then be represented as
indicated in Figure 18, while the same kind of representation
may prove inadequate for PT/ET or ET/PT (see Figure 25a).

In PT/ET, PT1 and ETb involve changes in Q in the same
direction but of different magnitudes. For ET/PT, the change
in Q that induces ETa includes the Q displacement required for
PT1, but the PT takes place only after ET. This example
emphasizes that, in general, the theoretical modeling of PCET
reactions requires two different nuclear reaction coordinates for
ET and PT, as described by Borgis and Hynes165,192 or by
Hammes-Schiffer and co-workers191,194,214 (see Figure 25b).
These strategies enabled “natural” treatments of situations
where, even for vibronically nonadiabatic PCET, the PT
process can be electronically nonadiabatic, electronically
adiabatic, or intermediate.182,184,197,215 The above analysis also
holds, indeed, in the presence of two Q modes (Qe for ET and
Qp for PT).
In the above analysis in terms of normal modes, Snk

p and Snk
are vibrational function overlaps, independent of the
coordinates, between quantum states for the R and Q modes.
However, eqs 5.40, 5.41, and 5.66 entangle the R and Q
dynamics, and thus the motions of the two degrees of freedom
are correlated. If Q can be described classically, then a typical
correlation between the R and Q motions is as follows: Q is an
internal coordinate related to the positions, or relative position,
of the charge donor and acceptor (e.g., see Figure 26), while
|χk
p⟩ and |χn

p(Q)⟩ are quantum oscillator proton states, and the
latter is centered at a position that depends on Q. In this
semiclassical view, the overlap between the two proton states
depends on Q, but this is consistent with the fully quantum
mechanical view of eqs 5.40, 5.41, and 5.66, where the
vibrational function overlaps are independent of the nuclear
coordinates.

The consistency of the two views is understood using the
double-adiabatic approximation in a fully quantum description
of the system. In this description, |χk

p⟩ is a proton vibrational
state belonging to the kth electronic state. The Q mode is
described by a wave packet. The |χn

p(Q)⟩ proton state is
obtained by application of the double-adiabatic approximation
and thus depends parametrically on Q. |χn

p(Q)⟩ is not, at all Q,
the vibrational proton state |χn

p⟩ belonging to the nth electronic
state when the latter is a strictly diabatic state computed at the
equilibrium nuclear coordinate Qn of the nth PES basin. The
wave function that corresponds to the state vector |χn

p(Q)⟩ is
χn
p(R,Q). That is, this proton wave function depends on R and
parametrically on Q. In particular, its values along the trajectory
⟨Q(t)⟩ of the wave packet are χn

p(R,Q(t)).
This example highlights the value of the double-adiabatic

approximation, where it can be applied, for a convenient
description and interpretation of reaction mechanisms. If the
two-state approximation holds with respect to the proton state,
the motion of the system can also be represented in terms of
|χk
p⟩ and |χn

p⟩, and clearly the coefficients of these proton states
in the system state evolve differently compared to the case
where |χn

p(Q)⟩ is used as one of the proton basis states.
As discussed above, free energy is generally represented as

indicated in Figure 18. Q usually represents a set of classical
degrees of freedom (e.g., the x and y coordinates in Figure 25).
The Landau−Zener approach154−157 and its extensions195 can
be used to describe the system behavior at avoided crossings.
The energy (or, as a result of thermal averaging, free energy)

parameters of interest are included in eqs 5.40, 5.41, and 5.66,
as they are determined by the coordinate dependencies of
En(R,Q), E̅n

p(Q), and E̅n(R), respectively. The reorganization
(free) energy and the reaction free energy play a crucial role in
determining the PCET mechanism, and the familiar relation-
ship between the activation energy and these two parame-
ters147,148,158 in the Marcus ET theory remains essentially valid
in all PCET rate expressions. In a multistate picture, each state
is characterized by specific values of the two free energy
parameters that account for the special role of the transferring
proton as compared to the other nuclear degrees of freedom184

(see below).
The PCET mechanism that takes place in a given system

and, in particular, the number of electron−proton distinguish-
able states in the reaction depend critically on the relative
heights of the activation barriers for the charge transfer
processes at play. For example, in ref 229, the Marcus theory
analysis of self-exchange reactions between high-spin iron 2,2′-
biimidazoline complexes shows that the free energy barriers for
the ETa and PT1 processes (Figure 20) are much higher than
for the concerted ET and PT. Thus, concerted ET and PT is
the reaction mechanism, rather than the sequential charge
transfer 1a → 2a → 2b or 1a → 1b → 2b.
This kind of analysis also emerges from representations of

the involved electronic states as functions of the proton
coordinate, such as in Figure 27, reported from ref 215. As
described in our analysis, although pure PT is expected to be

Figure 25. (a) Description of coupled PT and ET reactions using a
single solvent coordinate Q. The Q values for the states in Figure 20
are indicated. If the reaction mechanism is ET/PT, the change in Q
that induces the ETa process (ΔQ1a,2a) includes the Q displacement
required for the occurrence of PT1 (ΔQ1a,1b), but PT occurs following
ET. (b) The treatment of Soudackov and Hammes-Schiffer removes
the inconsistency in panel a by introducing two different solvent
coordinates, x and y, for PT and ET, respectively. Panel b reprinted
with permission from ref 191. Copyright 2000 American Institute of
Physics.

Figure 26. Schematic of a PT event (coupled to an ET reaction) where Qk is the initial nuclear coordinate (left), Qt is the transition-state coordinate
(center), Qn is the final coordinate (right), and ΔQkn = Qn − Qk. The overlap of the proton wave functions is a maximum at Qt.
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electronically adiabatic, one can still represent the related
electronic charge distributions using diabatic electronic wave
functions: this is also done in Figure 27a,b (blue curves) for the
1a → 1b and 2a → 2b proton transitions (see eq 5.38). Figure
27a shows the four diabatic states of eq 5.38 and Figure 20 and
the adiabatic states obtained by diagonalizing the electronic
Hamiltonian. The reactant (I) and product (II) electronic
states corresponding to the ET reaction are adiabatic with
respect to the PT process. These states are mixtures of states
1a, 1b and 2a, 2b, respectively, and are shown in Figure 27b,c.
Their diagonalization would lead to the two lowest adiabatic
states in Figure 27a. This figure corresponds to situations where
the reactant (product) electronic charge distribution strongly
favors proton binding to its donor (acceptor). In fact, the
minimum of PES 1a (2b) for the proton in the reactant
(product) electronic state is in the proximity of the proton
donor (acceptor) position. In the reactant electronic state, the
proton ground-state vibrational function is localized in 1a, with
negligible effects of the higher energy PES 1b. A change in
proton localization without concurrent ET leads to an
energetically unfavorable electronic charge distribution (let us
note that the 1a → 1b diabatic-state transition does not
correspond to ET, but to electronic charge rearrangement that
accompanies the PT reaction; see eq 5.38). Similar arguments
hold for 2b and 2a in the product electronic state. These far
proton localizations in the reactant and product electronic
states lead to their small overlap and correspondingly small
vibronic coupling. In other words, V12S1a,2b

p can even be
significantly smaller than the thermal energy because of the
small value of S1a,2b

p . That is, PCET occurs in the vibronically
nonadiabatic regime. For very large reaction free energies
between 1a and 1b and between 2a and 2b, PESs I and II
reduce to parabolas that describe EPT or HAT. Conversely, if

the 1a (2a) and 1b (2b) minima are similar in energy, all
diabatic states in eq 5.38 can be involved in the reaction
mechanism. Applying the analysis of this section to the
biochemical systems of Table 1, we predict the PCET regimes
tabulated in the last two columns of the table.

6. EXTENSION OF MARCUS THEORY TO PROTON
AND ATOM TRANSFER REACTIONS

The analysis performed in section 5 emphasized the links
among ET, PT, and PCET and made use of the Schrödinger
equations and BO approach to provide a unified view of these
charge transfer processes. The strong connections between ET
and PT have provided a natural framework to develop many PT
and PCET theories. In fact, Marcus extended his ET theory to
describe heavy particle transfer reactions, and many deliberately
generic features of this extension allow one to include emerging
aspects of PCET theories. The application of Marcus’ extended
theory to experimental interpretation is characterized by
successes and limitations, especially where proton tunneling
plays an important role. The analysis of the strong connections
between this theory and recent PCET theories may suggest
what complications introduced in the latter are critical to
describe experiments that cannot be interpreted using the
Marcus extended theory, thus leading to insights into the
physical underpinnings of these experiments. This analysis may
also help to characterize and classify PCET systems, enhancing
the predictive power of the PCET theories. The Marcus
extended theory of charge transfer is thus discussed here.
6.1. Extended Marcus Theory for Electron, Proton, and
Atom Transfer Reactions

Early applications and extensions of Marcus theory to proton
and atom transfer reactions were described by Sutin230,231 and
by Marcus.232 In fact, Marcus’ analysis begins with the ET
cross-relation in the weak-coupling limit.
Consider the self-exchange weak-overlap ET reactions

+ ⇌ + =nOx Red Red Ox ( 1, 2)n n n n (6.1)

and the cross-reaction

+ ⇌ +Ox Red Red Ox1 2 1 2 (6.2)

By assuming the following approximation for the reorganization
energy associated with the cross-reaction:232,233

λ λ λ
λ λ

= = =
+
212 21

11 22
(6.3)

the rate constants knn (n = 1, 2) and k12 for eqs 6.1 and 6.2 are
related by

≅k k k K f( )12 11 22 12 12
1/2

(6.4)

where

=K
k
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is the equilibrium constant for the ET cross-reaction. f12 is often
close to unity,7 and
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12
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Equations 6.4 and 6.6 hold for κel ≅ 1 and neglect the work
terms associated with forming the precursor and successor
complexes, except that their difference can be included in the

Figure 27. (a) Diabatic (1a, 1b, 2a, and 2b, in blue) and adiabatic
(red) electronic states as functions of the proton coordinate, drawn for
a reaction with nonadiabatic ET and electronically adiabatic PT. The
adiabatic states are obtained by diagonalizing the 4 × 4 Hamiltonian
matrix for the electron−proton subsystem (Hep in section 12). (b)
Neglecting the small electronic couplings between the 1a/2a and 1b/
2b states, diagonalization of the 2 × 2 blocks corresponding to the 1a/
1b and 2a/2b state pairs yields the electronic states represented by the
red curves. (c) The two lower electronic states in panel b are reported.
They are the initial and final diabatic ET states. Each of them is an
adiabatic electronic state for the PT reaction. The numbers “1” and “2”
correspond to I and F, respectively, in the notation of section 12.2.
Reprinted from ref 215. Copyright 2008 American Chemical Society.
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reaction free energy ΔGR° (see ref 7). Indeed, the rate
constants of the bimolecular reactions in solution need to be
inserted into eq 6.4 for comparison to experiments. These rate
constants include the work terms wr and wp that are required to
bring the reactants and products to the mean charge donor−
acceptor distance in the activated complex. In this perspective,
the ET cross-reaction rate is7,122,233−235

κ= −Δ *⎛
⎝⎜

⎞
⎠⎟k Z

G
k T

exp12 el
B (6.7)

In eq 6.7, the energy ratio in the exponent is written on a per
molecule basis, Z is a bimolecular collision frequency, and the
activation free energy is

λ
λ

Δ * = + +
Δ °⎛
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⎞
⎠⎟G w

G
4

1 Rr
2

(6.8a)

with

Δ ° = Δ ° + −G G w wR
p r

(6.8b)

In eq 6.8b, ΔG° is the “standard” free energy of reaction7,122,236
for separated reactants and products.237,238

Assuming that Z is approximated well by the geometric mean
of the homologous frequencies for the self-exchange reactions,
Z11 and Z22, and that eq 6.3 holds, eqs 6.4 and 6.6 are replaced
by239 (see also the Supporting Information)
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In eq 6.10, wnn = wnn
r = wnn

p (n = 1, 2) are the work terms for the
exchange reactions. If (i) these terms are sufficiently small, or
cancel, or are incorporated into the respective rate constants
and (ii) if the electronic transmission coefficients are
approximately unity, eqs 6.4 and 6.5 are recovered.
The cross-relation in eq 6.4 or eq 6.9 was conceived for

outer-sphere ET reactions. However, following Sutin,230 (i) eq
6.4 can be applied to adiabatic reactions where the electronic
coupling is sufficiently small to neglect the splitting between the
adiabatic free energy surfaces in computing the activation free
energy (in this regime, a given redox couple may be expected to
behave in a similar manner for all ET reactions in which it is
involved230) and (ii) eq 6.4 can be used to fit kinetic data for
inner-sphere ET reactions with atom transfer.230,231 These
conclusions, taken together with encouraging predictions of
Brønsted slopes for atom and proton transfer reactions,240 and
cues from a bond energy−bond order (BEBO) model used to
calculate the activation energies of gas-phase atom transfer
reactions, led Marcus to develop extensions of eq 5.29

applicable to “strong-overlap” reactions such as atom and
proton transfers and to strong-overlap ET.232

Extending the Marcus theory for ET between weakly
interacting redox partners to proton and atom transfer
reactions232 requires reconsideration of the assumptions leading
to the free energy factor in the Marcus rate expression. Mainly
Coulombic work is performed to bring reactants together,233

but the main contribution to the free energy barrier for ET is
provided by readjusting bond lengths and angles in the
reactants (i.e., inner-sphere contributions) and by the
reorientation of solvent molecules (outer-sphere contribution).
The vibrational motion of the ligands and the dielectric
relaxation of the solvent polarization through many degrees of
freedom, in the linear response regime, lead to the parabolic
PFESs that are described in Marcus’ ET theory and the related
dependence of the activation barrier ΔG* for ET on the
reorganization (free) energy λ and on the driving force (ΔGR°
or ΔG°). λ is the intrinsic (inner-sphere plus outer-sphere)
activation barrier; namely, it is the kinetic barrier in the absence
of a driving force.229 ΔGR°, or ΔG°, represents the
thermodynamic, or extrinsic,232 contribution to the reaction
barrier, which can be separated from the λ effect using the
cross-relation of eq 6.4 or eq 6.9 and the concept of the
Brønsted slope232,241 (see below).
Proton and atom transfer reactions involve bond breaking

and making, and hence degrees of freedom that essentially
contribute to the intrinsic activation barrier. If most of the
reorganization energy for these reactions arises from nuclear
modes not involved in bond rupture or formation, eqs 6.6−6.8
are expected also to describe these reactions.232 In this case, the
nuclear degrees of freedom involved in bond rupture−
formation give negligible contributions to the reaction
coordinate (as defined, e.g., in refs 168 and 169) along which
PFESs are plotted in Marcus theory. However, in the many
cases where the bond rupture and formation contribute
appreciably to the reaction coordinate,232 the potential (free)
energy landscape of the reaction differs significantly from the
typical one in the Marcus theory of charge transfer. A major
difference between the two cases is easily understood for gas-
phase atom transfer reactions:

+ → ··· ··· → +A B A ( A B A ) A BA1 2 1 2 1 2 (6.11)

Stretching one bond and compressing another leads to a
potential energy that, as a function of the reaction coordinate, is
initially a constant, experiences a maximum (similar to an
Eckart potential242), and finally reaches a plateau.232 This
significant difference from the potential landscape of two
parabolic wells can also arise for reactions in solution, thus
leading to the absence of an inverted free energy effect.243 In
these reactions, the Marcus expression for the adiabatic charge-
transfer rate requires extension before application to proton
and atom transfer reactions. This extension was described by
Marcus, writing the activation energy for the gas-phase reaction
as240,244

λ
λ

λΔ * ≡ Δ * = ̅ + Δ °
̅

|Δ °| ≤ ̅⎜ ⎟⎛
⎝

⎞
⎠E E

E
E

4
1 ( )12

2

(6.12a)

λΔ * = −Δ ° ≥ ̅E E0 ( ) (6.12b)

λΔ * = Δ ° Δ ° ≥ ̅E E E( ) (6.12c)

The potential energy difference ΔE° replaces the free energy
ΔGR° in gas-phase reactions, and λ ̅ is a “reorganization
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property” of the system that satisfies, and is defined by, the
additivity relationship

λ λ λ̅ = Δ * + Δ * =
̅ + ̅

E E
2 411 22

11 22
(6.13)

For atom transfer reactions in solution with a reaction
coordinate dominated by bond rupture and formation, the
analogue of eqs 6.12a−6.12c assumes the validity of the Marcus
rate expression as used to describe adiabatic ET for |ΔGR°| ≤ λ
and imposes the condition of an exclusively extrinsic free
energy barrier (i.e., λ = 0) outside of this range:232

λΔ * ≅ −Δ ° ≥G w G( )R
r

(6.14a)

λ
Δ * ≅ + Δ ° + − = Δ ° +
Δ ° ≥

G w G w w G w
G( )R

r p r p

(6.14b)

Thus, the general treatment of proton and atom transfer
reactions of Marcus amounts232 to (a) treatment of the nuclear
degrees of freedom involved in bond rupture−formation that
parallels the one leading to eqs 6.12a−6.12c and (b) treatment
of the remaining nuclear degrees of freedom by a method
similar to the one used to obtain eqs 6.7, 6.8a, and 6.8b with κel
≅ 1. However, Marcus also pointed out that the details of the
treatment in (b) are expected to be different from the case of
weak-overlap ET, where the reaction is expected to occur
within a relatively narrow range of the reaction coordinate near
Qt. In fact, in the case of strong-overlap ET or proton/atom
transfer, the changes in the charge distribution are expected to
occur more gradually.232

An empirical approach, distinct from eqs 6.12a−6.12c, begins
with the expression of the AnB (n = 1, 2) bond energy using the
BEBO method245 as −Vnbn

pn, where bn is the bond order, −Vn is
the bond energy when bn = 1, and pn is generally quite close to
unity. Assuming that the bond order b1 + b2 is unity during the
reaction and writing the potential energy for formation of the
complex from the initial configuration as

= − − +E V b V b Vf
p p

1 1 2 2 1
1 2

(6.15)

the activation energy for atom transfer is obtained as the
maximum value of Ef along the reaction path by setting dEf/db2
= 0. Thus, for a self-exchange reaction, the activation barrier
occurs at b1 = b2 = 1/2 with height

Δ * = = − =E E V p n( 1) ln 2 ( 1, 2)nn f n nmax
exchange

(6.16)

In terms of ΔEnn* (n = 1, 2), the energy of the complex
formation is232

= Δ ° =
Δ * + Δ *

E b E
E b b E b bln ln

ln 2f 2
11 1 1 22 2 2

(6.17)

Here ΔE° = V1 − V2. To compare this approach with the one
leading to eqs 6.12a−6.12c, Ef is expressed in terms of the
symmetric combination of exchange activation energies
appearing in eq 6.13, the ratio ΔE°/λ,̅ which measures the
extrinsic asymmetry, and εa = (ΔE11* − ΔE22* )/(ΔE11* + ΔE22* ),
which measures the intrinsic asymmetry. Under conditions of
small intrinsic and extrinsic asymmetry, maximization of Ef with
respect to b2, expansion of Ef about b2 − 1/2 = 0, and
truncation to first order lead to

λΔ * = ≅ ̅ + Δ °E E E
4

1
2f max (6.18)

The same result is obtained in the approach that directly
extends the Marcus outer-sphere ET theory, by expanding ΔE*
in eq 6.12a to first order in the extrinsic asymmetry parameter
ΔE°/λ ̅ for ΔE° sufficiently small compared to λ.̅ The same
result as in eq 6.18 is obtained by introducing the following
generalization of eq 6.17:

= Δ ° + Δ * + Δ * −E b E E g b E g b
1
2

[ ( ) (1 )]f 11 1 22 2 (6.19)

Here b is a degree-of-reaction parameter232 that ranges from
zero to unity along the reaction path. The above two models
can be derived as special cases of eq 6.19, which is maintained
in a generic form by Marcus. In fact, in ref 232, g1 and g2 are
defined as “any function” of b “normalized so that g(1/2) = 1”.
As a special case, it is noted232 that eq 6.19 yields eq 6.12a for
g1(b) = g2(b) = 4b(1 − b). Replacing the potential energies in
eq 6.19 by free energy analogues (an intuitive approach that is
corroborated by the fact that forward and reverse rate constants
satisfy microscopic reversibility232,246) leads to the activation
free energy for reactions in solution

Δ * = + Δ ° + Δ * −

+ Δ * − −

G b w w b G G w g b

G w g b

( , , ...)
1
2

[( ) ( )

( ) (1 )]

R
r r

11 11 1

2 22 2 (6.20a)

The activation barrier is obtained at the value bt for the
degree-of-reaction parameter that gives the transition state,
defined by

∂Δ *
∂

=
=

G
b

0
b bt (6.20b)

The following conclusions are drawn from the Marcus
formulation of electron, proton, and atom transfer reactions:
(i) If the reaction free energy is small enough compared to

the reorganization energy, eqs 6.7, 6.8 apply to both ET and
atom transfer, after inclusion of the relevant degrees of freedom
and evaluation of the appropriate free energy quantities.
(ii) As a consequence of point i, the cross-relation (eqs

6.4−6.6 or eqs 6.9−6.10) remains intact (moreover, it can also
be improved to account for steric and statistical effects232),
assisting with the interpretation of experimental data. Failure of
the cross-relation has also been observed and related to the
presence of significant contributions to the activation barrier
that are independent of the degree-of-reaction parameter.232

(iii) Marcus’ treatment allows interpretion and quantification
of the Brønsted slope241 as a measure of the proximity of the
activated complex to the products of the reaction,247 which
assists with interpreting atom transfer and PCET reaction data.
(iv) The cross-relation and the Brønsted coefficient within

the extended Marcus theory allow the investigation of intrinsic
reactions barriers and isotopic effects of wide experimental
relevance.
These four points guide the successful application of the

extended Marcus theory, which has broad relevance to
interpretation of charge transfer data, including multiple-site
concerted electron−proton transfer reaction data.248

6.2. Implications of the Extended Marcus Theory: Brønsted
Slope, Kinetic Isotope Effect, and Cross-Relation

For a homologous set of reactions with approximately equal
reorganization energies and work terms,230 the Brønsted241 (or
the Leffler247) slope
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β = ∂Δ * ∂Δ ° = ∂Δ * ∂Δ °G G G G/ / R (6.21)

correlates the reaction rate with equilibrium properties of the
systems,249 because of the relationship between ΔG° and the
equilibrium constant (see section 3 of the Supporting
Information). Equation 6.21 can be rewritten in terms of the
changes in ΔG* and ΔG° induced by structural variation:

δ βδΔ * = Δ °G G (6.22)

which shows how β reflects the fraction of change in the
reaction free energy that is observable as a change in the
activation barrier.247,250 Equations 6.20a and 6.20b imply that

β = bt (6.23)

which links the Brønsted coefficient to the degree-of-reaction
parameter b at Qt, and thus to the productlike character of the
activated complex. In particular, β is the order of the bond
being formed according to the BEBO model. In weak-overlap
reactions in solution, β is the contribution of the products to
the potential energy function that determines the distribution
of activated complex coordinates. Moreover, β has a similar
meaning in strong-overlap ET, proton, and HAT reactions (see
ref 232 and the discussion below). If eq 5.29 can be used, one
obtains

β
λ

= +
Δ °⎛

⎝⎜
⎞
⎠⎟

G1
2

1 R

(6.24)

Equation 6.24 is useful to interpret experimental data in many
contexts, including ET in metal complexes229,251 and
nucleophilic aromatic substitution reactions,252 hydride transfer
reactions,250 hydrogen atom transfer,229,253 PCET,248,251,254

multiple PCET,255 and protein folding transitions256 (where β
can differ significantly from bt, as more realistic models of the
free energy landscape may introduce PFESs different from the
simple translated parabolas of Marcus ET theory and with
significant anharmonicities).
For |ΔGR°| ≤ λ, eq 6.24 implies 0 < β < 1/2 in the case in

which ΔGR° < 0 and 1/2 < β < 1 for ΔGR° > 0. In the first case,
the activation barrier for the cross-reaction in eq 6.11 is lower
than that for the exchange reaction A1B + A1 → A1 + BA1. As
such, the forward reaction is faster than the backward one and,
as seen from the value of β or from inspection of the Marcus
parabolas, the transition-state coordinate Qt is closer to the
equilibrium geometry of the precursor complex. In the second
case, the forward reaction is slower and Qt is closer to the
equilibrium conformation of the products. These conclusions
agree with the predictions of the Bell−Evans−Polanyi
principle257 and of the Hammond postulate.258

Equations 6.23 and 6.24 hold if the reorganization energy is
constant for a reaction series, and β is a measure of the position
of Qt along the reaction path in this circumstance. Otherwise,
eq 6.24 is replaced by259

β
λ λ

λ= +
Δ °

+ +
Δ ° ∂

∂Δ °
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

G G
G

1
2

1 1
( )R R

R

2

2
(6.25)

where ∂λ/∂ΔGR° is used to describe the variation in the
intrinsic barrier that results from changing a reactant that
modifies ΔGR°. This derivative in eq 6.25 is a mathematical
idealization that represents a continuous change Y in the
reacting system that changes both ΔGR° and λ, so that the
changes are interdependent and ∂λ/∂ΔGR° = (∂λ/∂Y)/
(∂ΔGR°/∂Y). In such circumstances, unusual values of β can

result from simple application of eq 6.24. For example, eq 6.24
is inappropriate to describe the deprotonation of substituted
nitroalkanes260 or hydride transfer reactions.250

The activation free energies obtained in ref 250 from the
extended Marcus theory agree well with ab initio values
obtained at the MP2261,262 level of theory. In general, eqs 6.24
and 6.25 are applicable to reaction mechanisms where the free
energy landscape near the activated complex and along one (or
more) appropriate reaction coordinate(s) can be decomposed
into two parabolas (or paraboloids) with the same curvature.
Corrections to the equations for β are needed for ET reactions
in the condensed phase characterized by appreciable departure
from the linear response regime. The Q-model developed by
Matyushov and Voth263 produces nonparabolic free energy
surfaces for ET in a two-state system linearly coupled to a
classical, harmonic solvent mode with different force constants
in the initial and final ET states. This model can be used to
estimate deviations from the linear response regime on ET
reactions in solution.264 Given the significant connections
between Marcus ET theory and PCET theories, it would be
desirable to investigate how the Marcus-type PCET rate
constants may be reformulated in terms of the Q-model.
The β parameter in eq 6.24 can be used to describe the

kinetic isotope effect (KIE) in the Marcus framework. Consider
the two reactions

+ → +A H A A HA
k

1 2 1 2
H

(6.26a)

and

+ → +A D A A DA
k

1 2 1 2
D

(6.26b)

that involve hydrogen (H) and deuterium (D) transfer,
respectively. Assuming different intrinsic barriers λH and λD
for the two processes and negligible differences in reaction free
energy and work terms, the kinetic isotope effect is given by232
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(6.27)

where |ΔGR°| ≤ λH and the zero-point effects are included in
the intrinsic barriers. The different masses of H and D lead to
different vibrational frequencies for the respective chemical
bonds (and thus also to different zero-point energies). Using
isotope-dependent reorganization energies in Marcus-style
transfer rate expressions will be justified below (see sections
10−12).
The approximation in the second line of eq 6.27 neglects

second-order terms in λD − λH. Substitution of ΔGR°/λH with
its expression derived from eq 6.24 leads to the final form of the
rate ratio in eq 6.27. As a reaction series is spanned by chemical
substitution in A1 or A2, the plot of kH/kD vs pKH = (2.303
kBT)

−1ΔG° ≅ (2.303 kBT)
−1ΔGR° goes through a maximum

for β = 1/2 (where Qt is midway between the reactants and

Chemical Reviews Review

dx.doi.org/10.1021/cr4006654 | Chem. Rev. 2014, 114, 3381−34653417



products). The smaller the λH value, the sharper (and therefore
more discernible experimentally) the peak in the plot of kH/kD
vs pKH. Equation 6.27 is not applicable when the second term
on the right side of eq 6.25 (neglected in eq 6.24) is
appreciable. Moreover, limitations in the applicability of eq 6.27
arise when the reactants and products in eqs 6.26a and 6.26b
are not well-characterized by the simple parabolic potentials of
the Marcus electron transfer theory. Marcus showed that the
effects of this intrinsic barrier asymmetry can be corrected
approximately using the mean value of the reorganization
energies for the forward and backward reactions.265 The
applicability of the extended Marcus theory to the interpreta-
tion of experimental data is limited by the fact that nuclear
tunneling is not included in the theory. Nuclear/atomic
tunneling effects are discussed in the following sections,
where PCET theories are analyzed with the unified framework
of section 5, which can be of use in interpreting the growing
experimental data on PCET reaction mechanisms relevant to
biology, medicine, biochemistry, and molecular electronics.

7. BEYOND MARCUS THEORY: NUCLEAR TUNNELING
AND STRUCTURAL CONSTRAINTS ON PCET

Marcus theory (as developed for outer-sphere ET and extended
to other reactions characterized by strong charge/atom donor−
acceptor wave function overlap), and especially the Marcus
cross-relation, is used to interpret dissociative ET,266−269

P T , 2 5 4 , 2 7 0 − 2 7 5 H A T , 1 9 0 , 2 5 3 , 2 5 4 , 2 7 2 , 2 7 6 − 2 7 9

PCET,4,116,188−191,196,214,225,229,254,272,280 and hydride transfer
reactions.250,279,281 The success of the Marcus theory applied to
such diverse transfer processes lies in its simplicity, the
possibility for empirical adjustment of its key parameters,271

the generic character of part of the extended theory (e.g., see
the last term on the right side of eq 6.25), and the fact that
minor deficiencies of the theory may be not detectable.272,277

The remarkable success (no worse than for outer-sphere ET
processes in some cases272,279,282) of the cross-relation for
describing HAT has also been observed in very recent studies
and was related to the accuracy of the additivity postulate in eq
6.3 over a wide range of reaction and solvation con-
ditions.248,279 Yet the physical origins of additivity lie in the
weak interactions between the donor and acceptor at relatively
long ET distance. Here, the reorganization energy is an additive
property of the donor and acceptor. Partial justification of using
eq 6.3 to describe heavy-particle transfer and possible reasons
for its failure have been addressed by Marcus.232 However, the
broad validity of eq 6.3 presents an open theoretical question.
Moreover, for hydride transfer281,283 and SN2 reactions284,285

the validity of eq 6.3 is limited to a narrow set of reactants and
reaction mechanisms.
As emphasized by Mayer and co-workers,272 the successful

application of the Marcus cross-relation requires additional
theoretical-computational modeling of features specific to the
reaction system under study, in order to adequately fit the
physical parameters that appear in the cross-relation to the
experimental data for the reaction. Further modeling by Mayer
and co-workers is based on the following main differences
between ET and PT or HAT:279 (i) The precursor and
successor complexes of an ET reaction238 can be weakly
associated. Each complex’s structure is determined largely by
the electrostatic interaction between the reagents (described by
the work terms). Instead, HAT requires a more specifically
defined geometry of the two association complexes, with close
approach of the proton (or atom) donor and acceptor, as a

consequence of the larger mass for a tunneling proton or atom.
(ii) For PT or HAT reactions, large solvent effects arise not
only from the polarization of the solvent (which is generally
small for HAT), but also from the ability of the solvent
molecules to bond to the donor, thus making it unreactive. This
is the predominant solvent effect for HAT reactions, where
solvent polarization interacts weakly with the transferring
neutral species. Thus, successful modeling of a PT or HAT
reaction requires specific modeling of the donor desolvation
and precursor complex formation. A quantitative model for the
kinetic solvent effect (KSE) was developed by Litwinienko and
Ingold,286 using the H-bond empirical parameters of Abraham
et al.287−289 Warren and Mayer complemented the use of the
Marcus cross-relation with the KSE model to describe solvent
hydrogen-bonding effects on both the thermodynamics and
kinetics of HAT reactions.290 Their approach also predicts
HAT rate constants in one solvent by using the equilibrium
constant and self-exchange rate constants for the reaction in
other solvents.248,272,279,290

The success of the combined cross-relation−KSE approach
for describing HAT reactions arises from its ability to capture
and quantify the major features involved: the reaction free
energy, the intrinsic barriers, and the formation of the hydrogen
bond in the precursor complex. Factors not accounted for in
this approach can lead to significant deviations from the
predictions by the cross-relation for a number of HAT reactions
(for reactions involving transition-metal complexes, for
example).291,292 One such factor arises from structures of the
precursor and successor complexes that are associated with
considerable differences between the transition-state structures
for self-exchange and cross-reactions. These differences under-
mine the assumption that underlies the Marcus cross-relation.
Other important factors that weaken the validity of the cross-
relation in eqs 6.4−6.6 are steric effects, nonadiabatic effects,
and nuclear tunneling effects. Nuclear tunneling is not included
in the Marcus analysis and is a critical contributor to the failure
of the Marcus cross-relation for interpreting HAT reactions
that involve transition metals. Isotope effects are not captured
by the cross-relation−KSE approach, except for those described
by eq 6.27.272 Theoretical treatments of coupled ET−PT
reactions, and of HAT as a special case of EPT, that include
nuclear tunneling effects will be discussed in the sections below.
Understanding the reasons for the success of Marcus theory to
describe proton and atom transfer reaction kinetics in many
systems is still a fertile area for research.
The role of proton tunneling often defines a large difference

between pure ET and PCET reaction mechanisms. This
important difference was highlighted in the model for EPT of
Georgievskii and Stuchebrukhov.195 The EPT reaction is
described along the diabatic PESs for the proton motion. The
passage of the system from one PES to the other (see Figure
28) corresponds, simultaneously, to switching of the localized
electronic state and tunneling of the proton between vibrational
states localized in the two PESs. These vibrational states are
indistinguishable from the eigenstates of the separated V1 and
V2 potential wells in Figure 28 for proton levels sufficiently
deep inside the wells. The proton tunneling distinguishes this
EPT mechanism from pure ET assisted by a vibrational mode,
where the ET is accompanied by transitions between nuclear
vibrational states that do not correspond to different local-
izations for the nuclear mode. A useful step toward a
description of proton tunneling appropriate for use in PCET
theories appears in the simple PT model of ref 293, where a
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Landau−Zener strategy is used to establish the degree of
electronic adiabaticity for the PT process. A full extension of
the Landau−Zener approach for the interpretation of coupled
ET and PT was provided by Georgievskii and Stuchebru-
khov.195

The study of Georgievskii and Stuchebrukhov defines the
probability amplitude for finding the proton at a given position
(as in eq B1) and the electron in either diabatic state. This
probability amplitude is quantified by dividing the proton
coordinate range into four regions (Figure 28) and finding an
approximate solution for the probability amplitude in each
region. The procedure generates the initial and final localized
electron−proton states and their vibronic coupling WIF through
the related tunneling current.195,294 The resulting form ofWIF is

κ=W WIF IF
ad

(7.1)

In eq 7.1, WIF
ad is the (double) tunneling matrix element for the

electronically adiabatic reaction, where only the lower
electronic PES is involved. In this electronically adiabatic
limit, the proton tunneling matrix element (that is, WIF

ad) is
evaluated using standard methods.295,296 In particular, in the
WKB approximation,202 the vibronic coupling for the transition
between the proton vibrational ground states of the two wells
is195

∫
ω ω≅ ℏ

× −
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(7.2)

Here, ωD and ωA are the vibrational frequencies in the wells
corresponding to localization of the electron on its donor or
acceptor, RD and RA are the turning points for classical motion
with energy equal to the tunneling energy E (x rather than R
denotes the proton coordinate in the reported Figure 28), mp is
the proton mass, and V(R) is the lower adiabatic potential
energy. The κ factor in eq 7.1 is195

κ π=
−

Γ +
p

p p p
p

2
exp( ln )

( 1) (7.3)

where Γ is the Γ function and p is the proton adiabaticity
parameter

=
| |
ℏ|Δ |

p
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F v
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2
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VIF is the electronic coupling matrix element, ΔF is the
difference in slope of the PESs at the crossing point Rt (where
the potential energy is Vc), and vt is the “tunneling velocity” of
the proton at this point, defined consistently with Bohm’s
interpretation of quantum mechanics223 as

=
−

v
V E

m
2( )

t
c

p (7.5)

In the electronically adiabatic limit (p ≫ 1), Stirling’s
formula applied to eq 7.3 leads to κ = 1, which means that WIF
= WIF

ad. In the electronically nonadiabatic limit, p ≪ 1, eq 7.3
gives κ = (2πp)1/2 and substitution into eq 7.1 yields the
vibronic coupling in the form expected from the analysis of
section 5 (see, in particular, eq 5.41a), namely195

=W V SIF IF IF
p

(7.6)

SIF
p is the overlap between the initial and final proton wave
functions. The parameter p is like the Landau−Zener parameter
used in ET theory, and its interpretation follows along the same
lines. In fact, once a proton tunneling “velocity” is defined, p is
determined by the speed of the proton “motion” across the
region where the electron transition may occur with appreciable
probability (the electronic energy matching window). The
width of this region is estimated as

Δ =
Δ

R
V

Fe
IF

(7.7)

and the proton “tunneling time” is defined as

τ ∼
Δ

=
|Δ |

R
v

V
F vp

e

t

IF

t (7.8)

The Heisenberg uncertainty principle gives a time lapse for the
electronic state change as

τ ∼ ℏ
Ve

IF (7.9)

Thus, as in the context of ET,159 p is given by the ratio
τ
τ

=p p

e (7.10)

An application of this formalism appears in section 12. The
vibronic coupling depends on the mass of the heavy tunneling
particle (which may be deuterium or tritium as well)
throughout the range of electronically adiabatic-to-nonadiabatic
behavior for a given reaction. For the adiabatic limit, in the
WKB approximation, the coupling depends exponentially on
the square root of the heavy particle mass. The same kind of
dependence on the mass arises in the nonadiabatic limit. In this
regime, the vibronic coupling is given by eq 7.6, where SIF

p may
be computed as for two displaced harmonic oscillators with
frequency ωp and displacement R̅DA (i.e., the equilibrium
proton donor−acceptor distance):

Figure 28. Effective potential energy profiles for the proton motion in
the Georgievskii−Stuchebrukhov model of EPT. The marked regions
are as follows: DW = donor well. In this region, the BO approximation
is used and the electronically adiabatic potential for proton motion is
approximated as harmonic. DB = donor barrier. This represents the
classically forbidden region on the left side of the PES crossing point
(i.e., xc in the notation of the reported figure) where the top of the
barrier is located. AB = acceptor barrier. AW = acceptor well.
Reprinted with permission from ref 195. Copyright 2000 American
Institute of Physics.
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where ωp ≈ 1/(mp)
1/2. These simple arguments indicate that,

whatever the degree of electronic adiabaticity, the WIF
dependence on the mass of the heavy particle is

≈ −W z mexp( )IF p (7.12)

where z depends on the electronic adiabaticity of the HAT or
PCET reaction. The mass dependence in eq 7.12 leads to a
kinetic isotope effect that is absent in eq 6.27 and that may be
the major contribution to the effect, especially at low
temperatures, where tunneling through the reaction barrier
may dominate thermal activation.
Considering the large difference between the proton (or

atom) and electron masses, and the exponential decay of SIF
p

with increasing mass, eq 7.11 expresses the importance of
achieving appropriate (compressed) proton donor−acceptor
distances to favor tunneling, which is a common motif in many
enzymes, for example. Useful information on the relationship
between structure, structural fluctuations, and functionality was
provided in recent studies of Klinman297 that suggest the
following model for proton-coupled enzyme catalysis. Increas-
ing the temperature to enter the range where a thermophilic
enzyme functions will similarly increase the overall flexibility of
the protein, and thus its exploration of conformational space
(preorganization). Conformational change is needed to attain
catalytically relevant, closely packed active sites. These packed
geometries will be characterized by suitable donor−acceptor
distances for the relevant charge-transfer reactions and
structural rigidity that reduces the local conformational
sampling to the most convenient conformations, thus reducing
accordingly the reorganization energy. The data in ref 297
support this inverse relationship between protein flexibility and
active-site compression.
Connections between charge transfer and interconversion

among locally stable conformations of the reactive system have
been studied theoretically by Hoffman and Ratner in the
context of long-range intramolecular ET.298 They found that
the concerted change of conformation and electronic state is
always characterized by higher activation energies than the
sequential mechanism where either the conformational change
or the ET occurs first. Thus, the sequential mechanism is
favored and brings about reaction gating. This model does not
rely on a specific expression for the ET rate constant. The
extension of the model to other charge-transfer reactions allows
one to draw connections with the catalytic reaction model in ref
297, because the conformational rearrangements leading to
conformations that favor ET can be interpreted as preorganiza-
tion.
The preference for sequential over concerted mechanisms

does not apply more generally to cases where the two processes
are both charge transfer reactions. In these cases, the two
reactions are reciprocally affected by the electrostatic
interaction between the transferring charges. Moreover, the
energetics of the nuclear rearrangements accompanying the two
processes are both classifiable as reorganization energies (while,
in the model of Hoffman and Ratner, one of the two processes
may be characterized as a preorganization). An example of
preference for the concerted mechanism in an ET−PT reaction
is shown in Figure 29. Self-exchange between high-spin iron
complexes of 2,2′-biimidazoline, namely, [FeII(H2bim)3]

2+ and
[FeIII(H2bim)3]

3+, was studied in ref 229 using dynamic NMR

line-broadening techniques. As shown in ref 299, the
[FeIII(Hbim)(H2bim)2](ClO4)2 complex, where one of the
biimidazoline ligands is deprotonated, oxidizes hydrocarbons
with weak C−H bonds via a mechanism that is best described
as hydrogen atom abstraction. Therefore, this complex can be
used to model the function of nonheme iron-containing
enzymes that mediate HAT.229 Biimidazoline ligands are used
in ref 229 as models for histidine residues that are often
involved in enzymatic PCET reactions.
Theoretical analysis of the experimental data, with the aim of

interpreting the reaction mechanism and differentiating
between HAT and coupled (but distinguished) ET and PT
events, indicates that both ET/PT (case b in Figure 29) and
PT/ET (case c) require overcoming a significantly higher
barrier than for the concerted mechanism (depicted in case a).
The experimental data do not reveal the timing of ET and PT,
but allow one to rule out the existence of the intermediate state
shown in the lower panel of Figure 29. HAT is assumed in ref
229 to be the operative concerted mechanism, while theoretical
analysis in ref 196 leads to a significant reorganization energy
for the concerted reaction, thus suggesting an EPT mechanism.
The example of Figure 29 also highlights the distinction

between concerted and sequential PCET mechanisms based on
the presence or absence of a stable intermediate. Although the
minimum in the sequential model of Figure 29 appears deep
enough to allow the detection of an intermediate, its rate of
formation is hindered by high flanking free energy barriers.

Figure 29. Mechanisms for electron−proton transfer in biomimetic
iron complexes investigated in ref 229. Reprinted from ref 229.
Copyright 2000 American Chemical Society.
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A great variety of PCET mechanisms arises from the
interplay of the relative time scales for transferring electrons
and protons and from the couplings among these degrees of
freedom.182 Understanding these diverse time scales and
processes requires the identification of the active chemical
components of a PCET system and investigation of the relevant
structural properties, such as the distances among the electron/
proton redox partners and the modulation of these distances by
nuclear motion. The kinetic mechanism is simpler when the
time scales for ET and PT processes are well separated, and the
analysis of this case is addressed in the next section.

8. PROTON-ACTIVATED ELECTRON TRANSFER: A
SPECIAL CASE OF SEPARABLE AND COUPLED PT
AND ET

PCET requires interdependence between the ET and PT
processes; the charge transfers can take place in a concerted or
sequential process.189 The theoretical description of the
coupling between PT and ET is simplified when a sequential
mechanism (PT/ET or ET/PT) is experimentally determined.
However, the kinetic complexities inherent in biological
systems often hinder appreciation of the operative reaction
mechanism and thus its theoretical analysis. A special class of
PTET reactions is represented by proton-activated electron
transfer (PAET). This special class of PT/ET processes was
observed, and examined theoretically, in energy conversion
processes in the reaction centers of photosynthetic bacte-
ria,300,301 including the Q-cycle of the cytochrome bc1 complex,
where oxidation/reduction of quinones takes place.255,302 More
generally, biologically relevant long-range ET (which is
essential in respiration, photosynthesis, and metabolism)
requires protein binding, conformational change, and chemical
transformations that include PT to optimize interactions among
distant redox partners. Kinetic complexity is introduced by the
range of accessible geometries, which complicates the
mechanistic interpretation. In PAET, or in the opposite limit
of gated ET,303,304 kinetic complexity is introduced303,304 into
the kinetic scheme

+ ⇌ − −
′ ′

H IoooA B A B A B
k

k

k

k
ox red ox red red ox

d

d

obsd

obsd

(8.1)

(where diffusion is followed by the ET reaction between the A
and B species) via the more complicated kinetic model

In eq 8.2, a catalytic step yields an efficient ET complex. Of
relevance here are circumstances where PT is the catalytic
event, or is a crucial part of it (also see the discussion of a
similar kinetic model in ref 127, where the focus is on ET
reactions, so the reorganization from the inefficient precursor
complex C to the efficient ET complex I does not involve PT).
Although the PT and ET events are coupled, they are
kinetically separable when each PT step is much faster than
ET. If the proton configuration required for ET is unfavorable,
as reflected in an equilibrium constant KR = kR/kR′ ≪ 1, the
“electron transfer is convoluted with a weak occupancy of the
proton configuration needed for electron transfer”.255 In this
case, the kinetic equations under steady-state conditions (and
with a negligible rate for reverse ET) lead to305,306 kobsd =
KRkET. The combination of this result with the Brønsted
relationship241 and a Marcus-type expression for the ET

rate7,307 yields an expression for kobsd that allows comparison
with experimental data, identification of the free energy
contributions from the PT and ET processes, and the useful
interpretation of enzymatic mechanisms.255,302

We now sketch an alternative, simple derivation of such an
expression. For the reaction mechanism of eq 8.2, under steady-
state conditions and without considering the diffusion process
(characterized by the rate constants kd and k′d in eqs 8.1 and
8.2), C and F represent (using a language familiar from
molecular electronics149) constant source and drain for the
observed ET reaction starting from the inefficient precursor
complex C. The stationary flux J of electron charge per redox
couple can be expressed in terms of both kobsd and the rate kET
for the true ET step as

= =J P k P kC obsd I ET (8.3)

where the PC and PI are the occupation probabilities of states C
and I, respectivley, of the redox system. By applying detailed
balance and rewriting in terms of the concentrations [C] and
[I], one finds

=
′
= =K

k
k

P
P

[I]
[C]R

R

R

1

C (8.4)

By inserting eq 8.4 and the Marcus ET rate (without work
terms) into eq 8.3

υ λ
λ

= + = − Δ ° +

− −

k K k
G

k T

K K

log log log
( )

4

(p p )

obsd R ET

2

B

C I (8.5)

where υ is derived from the Marcus ET rate. Indeed, refs 255
and 302 use the generalization of the Marcus ET rate
expression provided by Hopfield,308 as parametrized by Dutton
and Moser,309−311 so that kobsd is given, in units of inverse
seconds, as

υ ι λ
λ

= − Δ ° + − −k
G

K Klog
( )

(p p )obsd

2

C I (8.6a)

with

υ
β

= − −r13
2.303

( 3.6)ET

(8.6b)

where r is the edge-to-edge distance between the protein ET
donor and acceptor, and βET is an average decay factor of the
squared electronic coupling. ı is numerically equal to 3.1, and
hence, it differs from 1/(4kBT) over the whole range from 0 °C
to room temperature. The difference between eqs 8.5 and 8.6 is
significant in two respects: eq 8.6, compared to eq 8.5, reflect a
partial correction for nuclear tunneling to the Marcus ET rate
and makes explicit the dependence of the ET rate constant on r.
When there are thermally populated nuclear frequencies ωn

with ℏωn ≥ kBT that are relevant to ET, a quantum (or at least
semiclassical) treatment152,308,312 of the nuclear modes is
important, although in some regimes the quantum expressions
of the ET rate preserve a near-Gaussian dependence on ΔG°,
similar to the Marcus expression. Indeed, the same Gaussian
free energy dependence as in Marcus theory was obtained by
Hopfield,308 but kBT was replaced by (1/2)λℏωcoth(ℏω/
2kBT), where ω is the effective frequency of the nuclear
oscillator.308 At high temperature, it is coth(ℏω/2kBT) ≅
2kBT/ℏω and the Marcus ET rate expression is recovered. At
low temperature (where the donor−acceptor energy fluctua-
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tions may become correlated, so the use of the Hopfield
formulation of the ET rate may be limited, although it correctly
predicts the transition to a temperature-independent tunneling
regime308,312,313), coth(ℏω/2kBT) ≅ 1 so that the expression
for the ET rate vs ΔG° is a Gaussian function with variance
essentially independent of T and approximately given by λℏω.
In this limit, the tunneling of nuclei is important and can give
rise to significant isotope effects. In general, the contribution of
quantum nuclear modes needs to be accounted for in the
evaluation of the reorganization energy, which can require an
improved treatment of the coupled PT and ET, especially
where the two events cannot be separated and the main role of
PT cannot be described by a probability distribution, as in the
derivation of eq 8.6. This point is explored in the sections
below.
The consideration of ET pathways and their interferen-

ces314,315 allows the interpretation of experiments where the
structural features crucial to ET or PCET matrix elements are
of interest. In this regard, an emblematic case is offered by
recent experiments involving mutations and kinetic studies on
the enzyme tyramine β-monooxygenase,316 where the aromatic
ring of the amino acid Tyr216 may mediate a long-range
interdomain ET process crucial to the enzymatic mechanism,317

and the Tyr-to-Ala mutation causes a drastic decrease in the
observed ET rate.316 In agreement with this observation, a
previous theoretical investigation of the corresponding ET step
in the related enzyme peptidylglycine α-hydroxylating mono-
oxygenase318 identified an efficient ET pathway through a
network of hydrogen and covalent bonds, and residues at the
enzyme active site, that is assisted by the formation of
structured water, with an expected increase in electron
tunneling efficiency compared to that of bulk water.319 In the
study of ref 318 it was assumed that the reorganization energy
was not affected by the mutations, but further analysis of a
possible connection between the water structuring and the
reorganization energy would be useful. In the theoretical study,
the hydrogen atoms were added by assigning the protonation
states of all ionizable groups. Future extension of this analysis to
include the possibility for PCET is important in light of recent
studies that propose a PCET mechanism for the process320 (the
mechanism proposed in ref 320 is based on a long-distance ET
step coupled to many short-distance PT steps, described as
hydrogen atom transfer along a chain of structured waters).
The discussion above highlights the fact that fruitful

exploration of ET and PCET mechanisms is possible using
modern theoretical methods.321−323 Such studies impact
biology,316,318,323−325 electrochemistry,326 and molecular elec-
tronics.327 In particular, opportunities exist to use the theory of
PCET reactions to identify the proton donors and acceptors, as
well as the timing and coupling of the PT and ET events.328−330

Moreover, the de novo design of bioinspired artificial catalytic
systems requires that structural and functional information
provided by the natural enzymes is augmented by “a practical
sense of structural and energetic engineering tolerances of the
mechanism”,331 exemplified by the recent design of peptide-
incorporated naphthoquinone amino acids that perform
reversible PCET.332

It is worth noting that PCET includes PAET as a special case.
More specifically, PAET is a type of PT/ET reaction (see
section 5), In fact, the occurrence of the ET is enabled by the
PT step; hence, the two events are coupled, even though the
separation in time scales does not lead to concerted electron
and proton charge redistributions. In general, kinetic and

thermodynamic investigations will establish the mechanisms at
play in the given system, as discussed further below.

9. DOGONADZE−KUZNETSOV−LEVICH (DKL) MODEL
OF PT/HAT AND CONNECTIONS WITH ET AND
PCET THEORIES

Dogonadze, Kuznetsov, and Levich have also developed a
theoretical description of PT reactions as an extension of their
previous theories of outer-sphere ET.178−180 Their theoretical
model was first applied to PT at electrodes and then to
homogeneous PT reactions such as

+ → +− −AH B A BH (9.1)

A significant feature of this model, adopted in subsequent
PCET theories, is a generalized use of the BO separation
scheme, in which adiabatic (or standard BO) and double-
adiabatic approximations are distinguished. This treatment
begins by considering the frequencies of the system: ω0
describes the motion of the medium dipoles, ωp describes the
frequency of the bound reactive proton in the initial and final
states, and ωe is the frequency of electron motion in the
reacting ions of eq 9.1. On the basis of the relative order of
magnitudes of these frequencies, that is, ω0 ≈ 1011 s−1 ≪ ωp ≈
1014 s−1 ≪ ωe ≈ 1015 s−1, two possible adiabatic separation
schemes are considered in the DKL model: (i) The electron
subsystem is separated from the slow subsystem composed of
the (reactive) proton and solvent. This is the standard adiabatic
approximation of the BO scheme. (ii) Aside from the standard
adiabatic approximation, the transferring proton also responds
instantaneously to the solvent, and a second adiabatic
approximation is applied for the proton dynamics.
In both approximations, the fluctuations of the solvent

polarization are required to surmount the activation barrier.
The interaction of the proton with the anion (see eq 9.2) is the
other factor that determines the transition probability. This
interaction appears as a perturbation in the Hamiltonian of the
system, which is written in the two equivalent forms

= +

= +

q q R Q q q R Q V q R

q q R Q V q R

( , , , ) ( , , , ) ( , )

( , , , ) ( , )
A B I

0
A B pB B

F
0

A B pA A (9.2)

by using the unperturbed (channel) Hamiltonians I
0 and F

0

for the system in the initial and final states, respectively. qA and
qB are the electron coordinates for ions A− and B−, respectively,
R is the proton coordinate, Q is a set of solvent normal
coordinates, and the perturbation terms VpB and VpA are the
energies of the proton−anion interactions in the two proton
states. I

0 includes the Hamiltonian of the solvent subsystem,
as well as the energies of the AH molecule and the B− ion in the
solvent. F

0 is defined similarly for the products. In the reaction
of eq 9.1, VpB determines the proton jump once the system is
near the transition coordinate. In fact, Fermi’s golden rule gives
a transition probability density per unit time

π ρ≡
ℏ
|⟨Ψ | |Ψ ⟩|V

2
IF F

0
pB I

0 2
F (9.3)

where ΨI
0 and ΨF

0 are unperturbed wave functions for the initial
and final states, which belong to the same energy eigenvalue,
and ρF is the final density of states, equal to 1/(ℏω0) in the
model.
The rate of PT is obtained by statistical averaging over initial

(reactant) states of the system and summing over final
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(product) states. Equation 9.3 indicates that the differences
between models i and ii arise from the strategies used to write
the wave functions, which reflect the two different levels of
approximation to the physical description of the system. Using
the standard adiabatic approximation, ΨI

0 and ΨF
0 in the DKL

model are written as

ϕ ϕ χΨ =q q R Q q R Q q Q R Q( , , , ) ( , , ) ( , ) ( , )I
0

A B A A B B A
(9.4a)

ϕ ϕ χΨ =q q R Q q Q q R Q R Q( , , , ) ( , ) ( , , ) ( , )F
0

A B A A B B B
(9.4b)

where ϕA(qA,R,Q)ϕB(qB,Q) and ϕA(qA,Q)ϕB(qB,R,Q) are the
electronic wave functions for the reactants and products,
respectively, and χA (χB) is the wave function for the slow
proton−solvent subsystem in the initial and final states,
respectively. The notation for the vibrational functions
emphasizes179,180 the dependence on the different proton
localizations before and after the transfer reaction. The initial
and final PESs in the DKL model are elliptic paraboloids in the
two-dimensional space of the proton coordinate and a
collective solvent coordinate (see Figure 18a). The reaction
path on the PESs is interpreted in the DKL assumption of
negligible solvent frequency dispersion.
Two assumptions simplify the computation of the PT rate in

the DKL model. The first is the Condon approximation,117,159

neglecting the dependence of the electronic couplings and
overlap integrals on the nuclear coordinates.333 The coupling
between initial and final electronic states induced by VpB is
computed at the R and Q values of maximum overlap integral
for the slow subsystem (Rt and Qt). The second simplifying
approximation is that both the proton and solvent are described
as harmonic oscillators, thus allowing one to write the (normal
mode) factored nuclear wave functions as

χ χ χ=R Q R Q( , ) ( ) ( )A,B A,B
p

A,B
solv

(9.5)

The PT matrix element is given by

≡ ⟨Ψ | |Ψ ⟩ =W V V S SIF
p,solv

F
0

pB I
0

IF IF
p

IF
solv

(9.6a)

with

∫ ϕ ϕ

ϕ ϕ

≡ * *
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∫ χ χ≡ *S R R dR( ) ( )IF
p

B
p

A
p

(9.6c)

∫ χ χ≡ *S Q Q dQ( ) ( )IF
solv

B
solv

A
solv

(9.6d)

The rate of PT is obtained by statistical averaging over initial
(reactant) states of the system and summing over final
(product) states.
The factored form of the proton coupling in eqs 9.6a−9.6d

leads to significant simplification in deriving the rate from eq
9.3 because the summations over the proton and solvent
vibrational states can be carried out separately. At room
temperature, ℏωp > kBT, so the quantum nature of the
transferring proton cannot be neglected despite approximation
i.334 The fact that ℏω0 ≪ kBT (high-temperature limit with
respect to the solvent), together with the vibrational mode

separation of eqs 9.6a−9.6d, validates the classical limit for the
solvent degrees of freedom and leads to the rate180,335
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In eq 9.7, θp is a (dimensionless) measure of the coupling
between the proton and the other degrees of freedom that is
responsible for the equilibrium distance R̅AB between the
proton donor and acceptor:

θ
ω

= − =
ℏ
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2p IF

p p p
AB
2

(9.8)

Here, mp is the proton mass. λ is the solvent reorganization
energy for the PT process:
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where Q̅kA and Q̅kB are the equilibrium generalized coordinates
of the solvent for the initial and final states. Finally, ΔE is the
energy difference between the minima of two PESs as in Figure
18a, with the value
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Here, εB(R̅B,Q̅B) and εA(Q̅B) are the energies of the solvated
molecule BH and ion A−, respectively, at the final equilibrium
geometry of the proton and solvent, and εA(R̅A,Q̅A) and εB(Q̅A)
are the respective quantities for AH and B−. The energy
quantities subtracted in eq 9.10 are introduced in refs 179 and
180 as potential energies, which appear in the Schrödinger
equations of the DKL treatment.179 They may be interpreted as
effective potential energies that include entropic contributions,
and hence as free energies. This interpretation has been used
consistently with the Schrödinger equation formalism in elegant
and more general approaches of Newton and co-workers (in
the context of ET)336 and of Hammes-Schiffer and co-workers
(in the context of PCET; see section 12).214,337 In these
approaches, the free energy surfaces that are involved in ET and
PCET are obtained as expectation values of an effective
Hamiltonian (see eq 12.11).
Returning to the analysis of the DKL treatment, another

approach to obtain the charge transfer rate in the above
theoretical framework uses the double-adiabatic approximation,
where the wave functions in eqs 9.4a and 9.4b are replaced by

ϕ ϕ χ χ
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ϕ ϕ χ χ

Ψ

=

q q R Q

q Q q R Q R Q Q

( , , , )

( , ) ( , , ) ( , ) ( )

F
0

A B

A A B B B
p

B
solv

(9.11b)
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The electronic components are parametric in both nuclear
coordinates, and the proton wave function also depends
parametrically on Q. To obtain the wave functions in eqs 9.11a
and 9.11b, the standard BO separation is used to calculate the
electronic wave functions, so R and Q are fixed in this
computation. Then Q is fixed to compute the proton wave
function in a second adiabatic approximation, where the
potential energy for the proton motion is provided by the
electronic energy eigenvalues. Finally, the Q wave functions for
each electron−proton state are computed. The electron−
proton energy eigenvalues as functions of Q (or electron−
proton terms) are one-dimensional PESs for the Q motion
(Figure 30). A procedure similar to that outlined above, but

without the harmonic approximation for the proton states and
the Condon approximation, gives the rate180
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where Pμ is the Boltzmann probability of the μth proton state in
the reactant electronic state (with associated vibrational energy
level εIμ

p ):
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ZI
p is the partition function, εFν

p is the proton vibrational energy
in the product electronic state, Wμν is the vibronic coupling
between initial and final electron−proton states, and ΔE is the
fraction of the energy difference between reactant and product
states that does not depend on the vibrational states. Analytical
expressions for Wμν and ΔE are provided in the theory.179,180

The same result as in eq 9.7 is recovered if the initial and final
proton states are again described as harmonic oscillators with
the same frequency and the Condon approximation is applied
(see also section 5.3).
In the DKL treatment180 it is noted that the sum in eq 9.7,

evaluated at the different values of ΔE, has a dominant
contribution that is usually provided by a value n ̅ of n such
that338
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Indeed, for a given ΔE value, eq 9.13 yields a real number n ̅
that corresponds to the maximum of the curve interpolating the
values of the terms in sum, so that it can be used to produce the
following approximation of the PT rate:
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where the Poisson distribution coefficient is
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and the activation energy is

λ ω
λ

ω
̅ =

+ Δ − ̅ℏ +
ℏ

| ̅| + ̅E n
E n

n n( )
( )

4 2
( )a

p
2

p

(9.14c)

The PT rate constant in the DKL model, especially in the form
of eq 9.14 resembles the Marcus ET rate constant. However,
for the PT reaction studied in the DKL model, the activation
energy is affected by changes in the proton vibrational state,
and the transmission coefficient depends on both the electronic
coupling and the overlap between the initial and final proton
states. As predicted by the Marcus extension of the outer-
sphere ET theory to proton and atom transfer reactions, the
difference between the forms of the ET and PT rates is minimal
for |ΔE| ≤ λ, and substitution of eq 9.13 into eq 9.14 gives the
activation energy
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Apart from the dependence of the energy quantities on the type
of charge transfer reaction, the DKL theoretical framework may
be applied to other charge-transfer reactions. To investigate this
point, we consider, for simplicity, the case |ΔE| ≤ λ. Since ℏωp
is larger than the thermal energy kBT, the terms in eq 9.7 with n
> 0 are negligible compared to those with n < 0. This is an
expression of the fact that a higher activation energy is
necessary for the occurrence of both PT and excitation of the
proton to a higher vibrational level of the accepting potential
well. As such, eq 9.7 can be rewritten, for many applications, in
the approximate form
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where the summation was extended to the n ≤ 0 terms in eq
9.7 (and the sign of the summation index was changed).
The electronic charge distributions corresponding to ϕA and

ϕB are not specified in eqs 9.4a and 9.4b, except that their
different dependences on R are included. If we assume that ϕA

Figure 30. Diabatic electron−proton PFESs as functions of the
classical nuclear coordinate Q. This one-dimensional landscape is
obtained from a two-dimensional landscape as in Figure 18a by using
the second BO approximation to obtain the proton vibrational states
corresponding to the reactant and product electronic states. Since PT
reactions are considered, the electronic states do not correspond to
distinct localizations of excess electron charge.
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and ϕB are characterized by distinct localizations of an excess
electron charge (namely, they are the diabatic states of an ET
reaction), eq 9.16 also describes concerted electron−proton
transfer and, more specifically, vibronically nonadiabatic PCET,
since perturbation theory is used in eq 9.3. Using eq 9.16 to
describe PCET, the reorganization energy is also determined by
the ET. Equation 9.16 assumes ℏωp ≫ kBT, so the proton is
initially in its ground vibrational state. In our extended
interpretation, eq 9.16 also accounts for the vibrational
excitations that may accompany339 an ET reaction. If the
different dependences on R of the reactant and product wave
functions in eqs 9.4a and 9.4b are interpreted as different
vibrational states, but do not correspond to PT (thus, eq 9.1 is
no longer the equation describing the reaction), the above
theoretical framework is, indeed, unchanged. In this case, eq
9.16 describes ET and is identical to a well-known ET rate
expression339−342 that appears as a special case for ω0 ≪ kBT/ℏ
≪ ωp in the theory of Jortner and co-workers.343 The
frequencies of proton vibration in the reactant and product
states are assumed to be equal in eq 9.16, although the
treatment can be extended to the case in which such
frequencies are different.
In both the PT and PCET interpretations of the above

theoretical model, note that θp
nexp(−θp)/n! is the overlap

between the initial and final proton wave functions, which are
represented by two displaced harmonic oscillators, one in the
ground vibrational state and the other in the state with
vibrational quantum number n.344 Thus, eq 9.16 can be recast
in the form
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with vibronic coupling

=W V Sn
nIF

0
IF 0

p
(9.17b)

This expression is similar to that obtained in the general
context of PCET by Cukier (for example, see eq 2.9 in ref 116)
and by Soudackov and Hammes-Schiffer, for cases where the
proton is initially in its vibrational ground state, since ℏωp ≫
kBT, and the reorganization energies associated with the
different transitions in eq 9.17a are dominated by a similar
solvent contribution.191,337 In this limit for λ and the classical
limit for the solvent modes, the effect of proton donor−
acceptor distance (X ≡ RAB) fluctuations on S0n

p can be included
in the rate expression of eq 9.16 or eq 9.17. X is one of the two
nuclear coordinates considered in the PT and HAT theory of
refs 165 and 192, where the other nuclear coordinate, S, is the
solvent coordinate responsible for the outer-sphere contribu-
tion to λ. The formalism of refs 165 and 192 was extended to
the theoretical investigation of PCET reactions (thus including
HAT as a special case) in recent studies of Hammes-Schiffer
and co-workers, where X was added to a set of two collective
nuclear coordinates337,345 (Q and S). Since S0n

p (similarly to the
coupling in pure nonadiabatic PT) decreases exponentially with
X
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the average of |S0n
p (X)|2 using the probability density of the X
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(M and ω are the mass and frequency of the oscillator) is
obtained from the integral346
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Using this average overlap rather than eq 9.18 in eq 9.17a, one
finds
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which can be obtained, for the conditions in the above model
(BO adiabatic approximation, initial and final proton vibrations
of equal frequency, and temperatures such that ω0 ≪ kBT/ℏ ≪
ωp), within the theoretical frameworks of Borgis and
Hynes165,192,193 and of Hammes-Schiffer and co-workers.337

The possibility of populating different initial vibronic states was
also included in these treatments,228,337,345 using a Boltzmann
distribution of the populations. Thermal averaging was also
performed by Kuznetsov and Ulstrup,181 with the main focus
on PT, concerted electron−proton transfer, and applications to
HAT in enzymatic reactions studied by Klinman and co-
workers.347−349 The rate formulated by Kuznetsov and Ulstrup
in refs 181 and 350 (see also ref 351) is
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(note that the Condon approximation is not assumed in ref
350) with352

ε εΔ ° = Δ ° + −μν ν μG G F
p

I
p

(9.23b)

where ΔG° corresponds to (and generalizes) the energy
difference ΔE of the DKL model. E(X) is the energy that
determines the probability density of the distance between the
proton donor and acceptor. E(X) may be the energy of the
classical X mode leading to eq 9.22 or a different expression
depending on the system coordinates related to X (Figure 26).
By appropriate expression of E(X), the PCET rate in eq 9.23
can include the effects of solvent modes, as in the studies of
Hammes-Schiffer’s group,184,337,345 and can be applied to gated
biological PT reactions.351,353−355 Reference 353 investigates,
e.g., the case of a proton relay in serine proteases, where a
conformationally mobile histidine allows the system to achieve
productive PT donor−acceptor distances. The convolution of
the charge transfer rate with the probability density for the
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charge donor−acceptor distance is also generically formulated
in the DKL model (see ref 180 and references therein).

10. BORGIS−HYNES (BH) THEORY FOR PT AND HAT

10.1. Dynamical Regimes of the BH Theory

More than 20 years ago, Borgis and Hynes devel-
oped165,192,193,228,356 a dynamical theory for the rate of PT
and HAT reactions in a partially adiabatic regime that is
characterized by an electronic coupling that is large compared
to kBT (electronically adiabatic regime of the reaction) and a
vibrational coupling small compared to kBT (vibronically
nonadiabatic regime), as may be found with malonaldehyde
and carboxylic acid dimers in polar condensed media. In this
regime, the reaction involves nuclear tunneling through an
electronically adiabatic potential barrier separating the reactant
and product potential wells (see section 5).
Along the solvent coordinate, the vibrationally nonadiabatic

PT can be described analogously to (pure) nonadiabatic ET,
with a corresponding definition of the effective vibrational
coupling as half the splitting between the vibrationally adiabatic
ground state and first-excited state energies (or, if one
generalizes, the two involved vibrational states), calculated for
the lowest electronic adiabatic state. The simultaneous
occurrence of ET and PT in HAT, and the equivalence of
vibrational and vibronic nonadiabaticity determined by the
adiabatic behavior of the electron,182 allowed the authors to
describe the transition without specifying whether the species
involved is a proton or a hydrogen atom. Moreover, since the
process is electronically adiabatic, in the case of proton transfer,
the electronic coordinate can be separated using the BO
adiabatic approximation and channel Hamiltonians for
reactants and products (with respect to the proton state) can
be defined in terms of the nuclear coordinates.165,193,228 The
proton dynamics is fast compared to the relevant intra-
molecular vibrations and solvent motions far from the avoided
crossing of the proton PESs, so the BO adiabatic approximation
is valid, and the analogue of eq 5.63 holds for the proton
vibrational wave functions in terms of the reactive nuclear
coordinates. For HAT, the reactant and product Hamiltonians
need to be constructed considering the electronic coordinate or
an overall description of the hydrogen atom.
In the BH theory, the coupling between the reactant and

product states for PT or HAT is defined from the minimum
splitting of the proton or hydrogen atom PESs, and only the
exponential decay of the coupling with the donor−acceptor
distance is explicitly modeled.192 The resulting formalism can
be applied to electronically adiabatic EPT. In this regard, a
recent study186 refers to the BH reaction rate constant
originally obtained for HAT as being an appropriate expression
to describe concerted PCET in the partially adiabatic regime
(as was defined above). However, EPT can be electronically
nonadiabatic in many cases, where, in fact, the electronically
adiabatic or nonadiabatic character of the reaction can be used
to distinguish between HAT and EPT.197,215 Even in these
cases, the formalism of BH theory holds for a rate expression
where the vibrational coupling is replaced by a vibronic
coupling between electron−proton states that need to be
computed consistently with the nonadiabatic electronic
behavior. However, the BH treatment focused on PT and
HAT reactions. The validity of a significant part of their
formalism in the general PCET context was appreciated later,
thanks to the contributions of Hammes-Schiffer and co-

workers, which included theoretical development for the
appropriate computation of free energies and couplings
involved in the PCET reaction rates (see section
12).225,337,345,357

10.2. Splitting and Coupling Fluctuations

In the electronically adiabatic, vibrationally (or vibronically182)
nonadiabatic case, the transition rate constant is proportional to
the square of the vibrational coupling, which depends
parametrically on (and thus is modulated by) the fluctuations
of the proton donor−acceptor distance X (intramolecular
vibration) and of a relevant collective solvent coordinate S.
Borgis and Hynes note that192 their theory makes the most
contact with the DKL theory179,180,358 and with the studies of
Ulstrup and co-workers.350 The BH theory, however, differs
from these other treatments in its dynamical approach, the
treatment of the quantum and dynamical character of the X
coordinate, and the simultaneous consideration of the X and S
coordinates.
As in the BH analysis, the transferring species, either a

proton or hydrogen atom, is denoted here by H. The relevant
nuclear coordinates are depicted in Figure 31 and the

corresponding free energy landscapes in Figure 32. The
harmonic approximation is assumed for the X and S degrees
of freedom. The X and S coordinates are characterized by
masses M and MS and by frequencies ω and ωS, respectively.
The reaction free energies or asymmetries along the X and S
coordinates are denoted by ΔEX and ΔES, respectively, and the
coordinate shifts between the corresponding free energy
minima are ΔX and ΔS, which correspond to reorganization
free energies λX = (1/2)Mω2ΔX2 and λS = (1/2)MSωS

2ΔS2.
The BH analysis is first restricted to cases in which only the

reactant and product ground H vibrational states are involved
in the reaction. In the nonadiabatic limit (the analogue of eq
5.63 with reference to the H coordinate), the splitting between
the H levels in reactants and products, as a function of the
coordinate changes δX and δS about the equilibrium positions
for the reactant state, is given by

Figure 31. Schematic representation of the system and interactions in
the Borgis and Hynes model for HAT and PT. Dp and Ap are the
proton (or H atom) donor and acceptor, respectively. R is the
coordinate of the H species (cyan circle), and X is the H donor−
acceptor distance. S is the solvent coordinate, and qs denotes the
coordinate set of the “infinitely” fast solvent electrons. In the
continuum model, the solvent electronic polarization is assumed to
be in equilibrium with the charge distribution of the reaction system at
all times. The interactions between the components of the solute and
the solvent are depicted as double-headed arrows. X vibrations are
affected by the stochastic interactions with the solvent, which include
short-range (collisional) and electrostatic components. In turn, the
Dp−Ap coupling is affected (indirect mechanism). Dp, Ap, and H
directly interact with the solvent (direct mechanism).
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(mass-weighted coordinates are not used here) where

Δ ° = Δ ° + Δ °G G GX S (10.1b)

is the total free energy of reaction depicted in Figure 32c. The
other terms in eq 10.1a are obtained using Δ21 = −Δ12 in
Figure 24 rewritten in terms of X and S. The evaluation of Δ12
at the reactant X and S coordinates yields λX and λS, while
differentiation of Δ12 and expression of ΔX and ΔS in terms of
λX and λS lead to the last two terms in eq 10.1a.
Borgis and Hynes note that two different types of X

fluctuations can affect the H level coupling and, as a
consequence, the transition rate: (i) coupling fluctuations that
strongly modulate the width and height of the transfer barrier
and hence the tunneling probability per unit time (for atom
tunneling in the solid state, Trakhtenberg and co-workers
showed that these fluctuations are thermal intermolecular
vibrations that can substantially increase the transition
probability by reducing the tunneling length, with particular
relevance to the low-temperature regime359); (ii) splitting
fluctuations that, as the fluctuations of the S coordinate,
modulate the symmetry of the double-well potential on which
H moves. A single X coordinate is considered by the authors to
simplify their model.192,193 In Figure 33, we show how a single
intramolecular vibrational mode X can give rise to both kinds of
fluctuations. In Figure 33, where S is fixed, the equilibrium
nuclear conformation after the H transfer corresponds to a
larger distance between the H donor and acceptor (as in Figure
32b if X is similarly defined). Thus, beginning at the
equilibrium value of X for the initial H location (X = XI), a
fluctuation that increases the H donor−acceptor distance by δX
brings the system closer to the product-state nuclear
conformation, where the equilibrium X value is XF = XI +
ΔX. Moreover, the energy separation between the H localized
states approaches zero as X reaches the PT transition state
value for the given S value (see the blue PES for H motion in
the lower panel of Figure 33). The increase in X also causes the
the tunneling barrier to grow, thus reducing the proton
coupling and slowing the nonadiabatic rate (cf. black and blue
PESs in Figure 33). The PES for X = XF (not shown in the
figure) is characterized by an even larger tunneling barrier and

lower minimum for R = RF. A negative δX brings the system
farther from the transition coordinate, in the reactant basin (to

Figure 32. Free energy landscapes for the Borgis−Hynes theory of PT and HAT. (a) Free energy profile for the transferring H species along the
solvent coordinate S. The pertinent free energy of reaction or asymmetry ΔGS° and reorganization energy λS are shown. The H double wells at
different S values are also depicted. In the model, the activation barrier along the H coordinate (R) is significantly higher than the S-dependent
reaction free energy (the asymmetry is magnified in the PESs for the R coordinate of panel a). (b) Free energy profile along the intramolecular
coordinate X defining the H donor−acceptor distance. The X dependence of the potential double wells for the H dynamics may be represented as
the S dependence in panel a. (c) Full free energy landscape as a function of S and X (cf. Figure 1 in ref 192).

Figure 33. Schematic representation of the dual effect of the proton/
hydrogen atom donor−acceptor distance (X) fluctuations on the H
coupling and thus on the transition rate. The solvent coordinate S is
fixed. The proton coordinate R is measured from the midpoint of the
donor and acceptor (namely, from the vertical dashed line in the upper
panel, which corresponds to the zero of the R axis in the lower panel
and to the top of the H transition barrier for H self-exchange). The
initial and final H equilibrium positions at a given X change linearly
with X, neglecting the initial and final hydrogen bond length changes
with X. Before (after) the PT reaction, the H wave function is localized
around an equilibrium position RI (RF) that corresponds to the
equilibrium value XI (XF = XI + ΔX) of the H donor−acceptor
distance. The equilibrium positions of the system in the {X,R} plane
before and after the H transfer are marked as black and gray squares. A
fluctuation δX > 0 leads to the transition state for PT at the given S
(splitting fluctuation yielding the H symmetric PES in blue). The same
δX increases the tunneling barrier compared to the PES for H at X =
XI (see PES in black), thus acting as a coupling fluctuation. δX < 0
(smaller distance between the proton donor and acceptor) decreases
the tunneling barrier on the proton-state side, which increases in
energy compared to the reactant state, therefore inhibiting the
transition to the final proton state while ⟨X⟩ = XI (red PES). In this
figure, the X splitting effect is magnified (cf. Figure 34).
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the left starting from XI in Figure 32b), with an increase in the
energy of the reactants but an even larger increase in the energy
of the products. Thus, the decrease in X lowers the tunnel
barrier from the side of the product and increases the reaction
free energy in favor of the reactants.
The splitting effect of the X displacement was magnified in

Figure 33 for visibility. The main effect of X fluctuations is,
indeed, the modulation of the H tunneling barrier (see Figure
34), which causes an exponential dependence of the H coupling

on the X coordinate value. The fluctuations explore only
relatively large X values in the studied nonadiabatic regime.
Assuming parabolic diabatic PESs for the R coordinate, and
using an approximation such as in eq 5.63 for the ground-state
adiabatic PES, the tunneling barrier height has a quadratic
dependence on the separation X between the PES minima,
while the effects of the X splitting fluctuations are neglected in
Figure 34. In the BH model, the asymmetry in the potential
double well for the H motion induced by the solvent
fluctuations is also weak compared to the potential barrier
height for the H transfer reaction.165 Therefore, the H coupling
is approximately independent of the S value. This Condon
approximation with respect to the S coordinate reflects the high
H tunneling barrier that is assumed in the (vibrationally)
nonadiabatic limit considered. The ΔGX° and ΔGS° asymme-
tries can, however, play significant roles in the dynamics of the
X and S coordinates, as shown in Figures 32a,b (and in the
landscape of Figure 32c), where the reaction free energy is a
significant fraction of the reorganization energy. The different
significance of the PES asymmetry in the PESs for R and for X
and S is understood from the large difference in the typical
vibrational frequencies of the respective motions and from eq
5.53, which relates these frequencies to PES curvatures.
The parabolic (harmonic) approximation for the H diabatic

PESs does not accurately describe the top of the tunneling
barrier. However, the main conclusions drawn above on the X
coupling and splitting fluctuations do not depend on the
precise shape of the barrier top. For example, near the top of
the H tunnel barrier, one may assume a potential energy of the
Eckart form360 with parameters dependent on X (see Figure
35):
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The potential for the H dynamics differs significantly from
this form near the two minima, where the Eckart potential is
appropriate for gas-phase proton or atom transfer reactions.232

Indeed, the Eckart potential was used to model the potential

barrier for proton transfer reactions (e.g., see ref 361 and
references therein), although the form described here includes a
parametric dependence on the X coordinate. In the potential of
eq 10.2, X/2 measures the Eckart barrier width. A comparison
with a harmonic double well shows that A is a measure of the
reaction (free) energy and B may be related to the
reorganization energy. The Eckart potential energy has a
maximum only if B > A, with a value of (A + B)2/(4B). Thus,
the potential barrier height increases with B and becomes
nearly independent of A (A is determined by the X splitting
fluctuations) for sufficiently large B/A. The modulation of the
barrier height by X fluctuations may also be described via this
potential model. To this end, appropriate choices of A(X) and
B(X) can increase the flexibility of the model in eq 10.2.
As discussed above, the coupling fluctuations of X influence

WIF exponentially.
193 This is seen by estimating the electron−

proton potential energy surfaces225,362 or using a WKB
analysis.193,202,363 The WKB approximation at the transition-
state coordinates Xt and St gives

364,365
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where ωH is the vibrational frequency in each potential well (or,
more generally, the geometric average of the frequencies in two
wells with different curvatures193,366,367), mH is the mass of the
tunneling particle, E is the energy of the two H levels, V is the
barrier potential, and −a and a are the classical turning points
in the two wells (corresponding to the energy E). A small
fluctuation δX of the donor from its equilibrium position, where
WIF = W̅IF, can be described using an expansion of the
exponent to first order in δX, giving
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αIF is in the range of 25−35 Å−1, to be compared with an order
of magnitude of 1 Å for ET, and the approximation holds for
moderately to weakly hydrogen-bonded H transfer systems
(e.g., for X larger than ∼2.7 Å in OH···O systems).192,368 For
example, as shown by Table 1, proton donor−acceptor
distances in this regime may be found in PSII (with a distance
of about 2.7 Å between the oxygen on the phenol of TyrD and
the nitrogen on the imidazole of H189), in the BLUF domain
(see Tyr8 entry in Table 1), and in RNR and photolyase from

Figure 34. Double-well potential for the H species, at the equilibrium
value of X (δX = 0) and after a contraction of the H donor−acceptor
distance (δX < 0). The tunneling barrier is reduced by the X
fluctuation. The effect on the lowest vibrational levels in the two wells
is also shown qualitatively.

Figure 35. Representation of the Eckart-type potential V(R;X) in eq
10.2 as a function of the proton coordinate R for fixed proton donor−
acceptor distance X and the B/A values indicated on the curves.
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E. coli (see entries for Trp48 and Trp 306 in Table 1). The
much larger value of the vibronic coupling distance decay factor
compared to the decay factor for an ET matrix element explains
the failure of the Condon approximation for the H coupling in
the presence of X fluctuations. However, as a consequence of
the BO separation of R and the nuclear X and S coordinates
invoked in the BH model, WIF depends parametrically on X in
the expression of the H transfer rate. Furthermore, the X
vibration can have classical or quantum mechanical behavior
even at room temperature, while S is treated classically.
The large value of αIF amounts to a large change in the

coupling for very small changes in X. Thus, while the splitting
effect of the X fluctuations may have a secondary or negligible
role in overcoming the activation barrier, their effect on the
coupling strongly influences the reaction dynamics near the top
of the barrier. In contrast, the fluctuations of the S coordinate
have little (neglected in the BH model) influence on the
vibronic coupling and a large effect on the activation barrier.
10.3. Reaction Rate Constant

Using the time-correlation function formalism369,370 and the
definition of a negative time-ordered exponential,371,372 Borgis
and Hynes wrote the H transfer rate as
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with the time correlation function
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When X is treated quantum mechanically, WIF(t) and ΔH(τ)
are Heisenberg operators for the H coupling and the diabatic
energy gap, respectively. The brackets indicate a thermody-
namic average taken over the reactant states. The negative time-
ordered exponential exp(−) is defined so that the nth term of its
power series expansion is372
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with τn > τn−1 > ... > τ1 throughout each integration interval. We
note that eq 10.5 express the rate as the zero-frequency value of

the spectral density of the time autocorrelation function JIF(t),
which is not noted in the original study. Equation 10.5 allows,
in principle, the calculation of the rate based on MD
simulations for model reaction systems. However, direct
computation of the rapidly oscillating integral in eq 10.5 is
challenging. This problem is tackled by inserting eqs 10.1 and
10.4 into eq 10.5 and using the second-order cumulant
expansion,373 which leads to193
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We used the time autocorrelation functions

δ δ= ⟨ ⟩C t X X t( ) (0) ( )X (10.8a)

δ δ= ⟨ ⟩C t S S t( ) (0) ( )S (10.8b)

Figure 36. (a) Time evolution of the flux correlation JIF (denoted as J in the reported figures) for αIF = 29 Å−1 and different solvent reorganization
energies: λS = 2 kcal/mol (solid line), 8 kcal/mol (dashed line), and 16 kcal/mol (dashed−dotted line). The other model parameters appear in ref
193 (see Figure 20 therein). (b) Time evolution of JIF for two different values of the X−R coupling parameter αIF: αIF = 29 Å−1 (solid line) and αIF =
0 (dashed line). A nonzero αIF enhances JIF damping, with a significant effect on the reaction rate (see eqs 10.5a and 10.5b). Reprinted with
permission from ref 193. Copyright 1993 Elsevier.
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for the X and S fluctuations. It was assumed that ⟨δX(t)⟩ = 0,
and that the solvent-induced X dependence of ΔH (see eqs
10.1 and 10.5) may be neglected. Moreover, the second-order
cumulant expansion was applied to both the static and time-
dependent averages involved in eq 10.5 (after insertion of eqs
10.1 and 10.4) under the assumption that the X and ΔH
fluctuations are nearly independent Gaussian processes. With
these assumptions

α δ α⟨ ⟩ = ̅ ⟨ − ⟩ ≅ ̅W W X W Cexp( 2 ) exp[2 (0)]XIF
2

IF
2

IF IF
2

IF
2

(10.9)

The solvent affects the H transfer rate via two mechanisms:
(i) electrostatic interaction with the H transfer system (H
species, donor, and acceptor), which appears as a modulation of
the free energy of reaction (direct mechanism); (ii) damping of
the X vibrational motion that modulates WIF (indirect
mechanism). In fact, the potential for the X oscillator includes
an anharmonic term cubic in δX. The model for the X
vibrational motion was adapted from prior theoretical models
of molecular vibrations in liquids374−376 and allows X to execute
anharmonic vibrations modulated by a stochastic solvent
potential.
MD simulations indicate that the time autocorrelation

function JIF(t) vanishes in a few hundredths of a picosecond
(see Figure 36), a short time scale compared to that of the
solvent response. To explore the relative importance of the
direct and indirect mechanisms by which the solvent influences
the rate, Borgis and Hynes carried out MD simulations with

interactions among the subsystems selectively turned off. As
shown in Figure 37, switching off solute−solvent interactions
makes JIF(t) a periodic function with a recurrence time
determined by the X vibrational motion (see Figure 37a).
The period of the signal is larger than the fundamental
frequency of the X harmonic motion because of vibrational
anharmonicity. The periodicity of JIF(t) produces divergence of
k in eq 10.5. In fact, this limit does not represent a rate process
but rather coherent tunneling back and forth with an oscillating
value of the coupling WIF.
By turning on the dephasing of the X vibrational motion due

to the short-range (collisional) interactions with the surround-
ing solvent molecules, JIF(t) loses coherence on the picosecond
time scale (see Figure 37b), but has a finite asymptotic value
that prevents the definition of a rate k. In our view of k as the
zero-frequency value of the spectral density of JIF(t) (see eq
10.5), the nonzero asymptotic JIF value reflects the fact that
introducing only the oscillator dephasing damps the con-
structive interference responsible for the signal in Figure 37a,
but does not remove the zero-frequency coherent component
of the reaction. That is, since direct electrostatic interactions
between the solvent and the reactive subsystem are switched
off, the processes of approaching and leaving the transition
region due to solvent fluctuations are not enabled, and the
asymptotic JIF value reflects the nonzero average value of a
Rabi-type oscillating transition probability per unit time. The
large oscillations in Figure 37a do not appear in Figure 37b,

Figure 37. Time evolution of JIF (denoted as J). (a) Free vibration for a gas-phase solute with an X anharmonic mode. (b) Evolution of JIF after
inclusion of solvent collisional dephasing of the X vibration. The electrostatic interactions with the solvent are not included. (c) All solvent effects are
considered. The solvent reorganization energy is extremely small, λS = 0.05 kcal/mol, yet JIF damping is obtained. Reprinted with permission from ref
193. Copyright 1993 Elsevier.
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because of the damping of the large X fluctuations and
consequent effects on the transition rate.
Including the direct interaction mechanism responsible for

the free energy barrier, total incoherence is achieved after the
first peak of JIF(t), as shown in Figures 36 and 37c. The reaction
rate can thus be obtained by integration of JIF(t), as in eq 10.5a.
On the femtosecond time scale of JIF(t) decay, shown in

Figure 37c, the dynamics of the solvent fluctuations (for which
the MD simulation gives a correlation decay time of ∼0.1
ps165) and their effects on the X vibration can be ignored. In
this approximation, omitting X damping leads to the time
evolution of CX for an undamped quantum harmonic oscillator:

δ ω ω ω= ⟨ ⟩ + ℏC t X t k T t( ) [cos i tanh( /2 ) sin ]X
2

B
(10.10a)

δ
ω

ω⟨ ⟩ = ℏ ℏ⎛
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M k T2
coth

2
2

B (10.10b)

Considering only static fluctuations means that the reaction
rate arises from an incoherent superposition of H tunneling
events associated with an ensemble of double-well potentials
that correspond to a statically distributed free energy
asymmetry between reactants and products. In other words,
this approximation reflects a quasi-static rearrangement of the
solvent by means of local fluctuations occurring over an
“infinitesimal” time interval. Thus, the exponential decay factor
at time t due to solvent fluctuations in the expression of the
rate, under stationary thermodynamic conditions, is propor-
tional to

∫ ∫ ∫ ∫τ τ τ τ τ τ′ ′ ≅ ′ =
τ
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(10.11)

Substitution of eqs 10.10 and 10.11 into eq 10.7 yields165

∫
ω

=
⟨ ⟩
ℏ

Σ
−∞

∞
k

W
t td exp[ ( )]IF

IF
2

2 IF (10.12a)
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In eq 10.13, λα, known as the “coupling reorganization energy”,
links the vibronic coupling decay constant to the mass of the
vibrating donor−acceptor system. A large mass (inertia)
produces a small value of λα. Large αIF values imply strong
sensitivity of WIF to the donor−acceptor separation, which
means large dependence of the tunneling barrier on X,193

corresponding to large λα. The r and s parameters characterize

the influence of the solvent on the rate constant; p and q
characterize the splitting and coupling features of the X
vibration.
The oscillatory nature of the integrand in eq 10.12 lends

itself to application of the stationary-phase approximation, thus
giving the rate165,192,193

ω
π
τ

τ≅
⟨ ⟩
ℏ |Σ″ |

Σ | |k
W 2

( )
exp ( )IF

IF
2

2
IF s

IF s
(10.14)

where τs is the saddle point of ΣIF in the complex plane defined
by the condition ΣIF′(τs) = 0. This expression produces
excellent agreement with the numerical integration of eq 10.7.
Equations 10.12−10.14 are the main results of BH theory.
These equations correspond to the high-temperature (classical)
solvent limit. Moreover, eqs 10.9 and 10.10b allow one to write
the average squared coupling as193,228
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Reference 193 shows that eqs 10.12a, 10.12b, 10.13, and
10.14 account for the possibility of different initial vibrational
states. In this case, however, the spatial decay factor for the
coupling generally depends on the initial, μ, and final, ν, states
of H, so that different parameters αμν and the corresponding
coupling reorganization energies (λα)μν appear in kIF. In
addition, one may need to specify a different reaction free
energy ΔGμν° for each μ, ν pair of vibrational (or vibronic,
depending on the nature of H) states. Thus, kIF is written in the
more general form

∑=
μ

μ μk P k vIF
(10.16)

where the μ → ν rates kμν are calculated using one of eq 10.7,
10.12, or 10.14, with I = μ, F = ν, and Pμ is the Boltzmann
occupation of the μth H vibrational or vibronic state of the
reactant species. In the nonadiabatic limit under consideration,
all of the appreciably populated H levels are deep enough in the
potential wells that they may see approximately the same
potential barrier. For example, the simple model of eq 10.4
indicates that this approximation is valid when V ≫ Eμ for all
relevant proton levels. When this condition is valid, eqs 10.7,
10.12a, 10.12b, 10.13, and 10.14 can be used, but the ensemble
averaging over the reactant states now includes different H
vibrational states and their statistical weights. The above
formalism, in conjunction with eq 10.16, was demonstrated by
Hammes-Schiffer and co-workers to be valid in the more
general context of vibronically nonadiabatic EPT.337,345 They
also addressed the computation of the PCET rate parameters in
this wider context, where, in contrast to the HAT reaction, the
ET and PT processes generally follow different pathways.
Borgis and Hynes also developed a Landau−Zener

formulation for PT rate constants, ranging from the weak to
the strong proton coupling regime and examining the case of
strong coupling of the PT solute to a polar solvent. In the
diabatic limit, by introducing the possibility that the proton is in
different initial states with Boltzmann populations Pμ, the PT
rate is written as in eq 10.16. The authors provide a general
expression for the PT matrix element in terms of Laguerre
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polynomials, yet the same coupling decay constant is used for
all couplings Wμν.

228 Note also that eq 10.16, with substitution
of eq 10.12, or 10.14, and eq 10.15 yields eq 9.22 as a special
case.

10.4. Analytical Rate Constant Expressions in Limiting
Regimes

Analytical results for the transition rate were also obtained in
several significant limiting regimes. In the high-temperature
and/or low-frequency regime with respect to the X mode, ℏω/
kBT ≪ 1, the rate is192,193,228
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with Λ = λS + λX + λα. In the second expression we used λX and
λα defined in the BH model. The third expression was obtained
by Hammes-Schiffer and co-workers184,197,337,345 for the sum
terms in eq 10.16, under the same conditions of temperature
and frequency, using a different coupling decay constant (and
hence a different λα) for each term in the sum and expressing
the vibronic coupling and the other physical quantities that are
involved in more general terms suitable for nonadiabatic EPT.
In eq 10.17, the cross-term containing (λαλX)

1/2 remains
finite in the classical limit ℏ → 0 because of the expression for
λα. This is a consequence of the dynamical correlation between
the X coupling and splitting fluctuations, and can be related to
the discussion of Figure 33. Application of eq 10.17 to Figure
33 (where S is fixed) establishes that the motion along R (i.e., at
fixed nuclear coordinates) is affected by λα, the motion along X
depends on λX, and the motion along oblique lines, such as the
dashed ones (which is related to rotation over the R, X plane),
is also influenced by (λαλX)

1/2. The cross-term (λαλX)
1/2

precludes factoring the rate expression into separate contribu-
tions from the two kinds of fluctuations. Regarding eq 10.17,
Borgis and Hynes say,193 “Note the key feature that the
apparent “activation energy” in the exponent in k is governed
by the solvent and the Q-vibration; it is not directly related to
the barrier height for the proton, since the proton coordinate is
not the reaction coordinate.” (Q is X in our notation.) Note,
however, that αIF appears in this effective activation energy. It is
not a function of R, but it does depend on the barrier height
(see the expression of αIF resulting from eq 10.4 or the related

expression in ref 193, where the barrier top is described as an
inverted parabola).
As noted by Borgis and Hynes,193,228 the non-Arrhenius

dependence on the temperature, which arises from the average
squared coupling (see eq 10.15), is weak for realistic choices of
the physical parameters involved in the rate. Thus, an Arrhenius
behavior of the rate constant is obtained for all practical
purposes, despite the quantum mechanical nature of the
tunneling.
Another significant limiting regime is the opposite of the

above, i.e., the low-temperature and/or high-frequency limit
defined by ℏω/kBT ≫ 1. Different cases result from the relative
values of the r and s parameters given in eq 10.13. Two such
cases have special physical relevance and arise for the
conditions λS > |ΔG°| and λS < |ΔG°|. The first condition
corresponds to strong solvation by a highly polar solvent, which
establishes a solvent reorganization energy exceeding the
difference in the free energy between the initial and final
equilibrium states of the H transfer reaction. The second one is
satisfied in the (opposite) weak solvation regime. In the first
case, eq 10.14 leads to the following approximate expression for
the rate:165,192,193

π
λ

λ
λ

=
⟨ ⟩
ℏ

−
Δ ° +⎡

⎣⎢
⎤
⎦⎥k

k T
W G

k T
exp

( )
4S

S

S
IF

B

IF
2

0
2

B (10.18a)

with

λ λ
ω

⟨ ⟩ = ̅
−
ℏ

α⎡
⎣⎢

⎤
⎦⎥W W( ) exp

( )
t

X
IF

2
0 IF

2

(10.18b)

where

α̅ = ̅ − ΔW W X( ) exp( )tIF
2

IF
2

IF (10.18c)

The average of the squared coupling is taken over the ground
state of the X vibrational mode. In fact, excitation of the X
mode is forbidden at temperatures such that kBT ≪ ℏω and
under the condition |ΔG°| < λS . (W̅IF

2)t is defined by eq 10.18c
as the value of the squared H coupling at the crossing point Xt

= ΔX/2 of the diabatic curves in Figure 32b for the symmetric
case. The Condon approximation with respect to X would
amount, instead, to replacing ⟨WIF

2⟩0 with (W̅IF
2)t, which is

generally inappropriate, as discussed above. Equation 10.18a is
formally identical to the expression for the pure ET rate
constant, after relaxation of the Condon approximation.333

Moreover, eq 10.18a yields the Marcus and DKL results, except
for the additional explicit expression of the coupling reported in
eqs 10.18b and 10.18c. As in the DKL model, the thermal
energy kBT is significantly smaller than ℏω, but much larger
than the energy quantum for the solvent motion.
In the limit of weak solvation, λS < |ΔG°|165,192,193

ω
ω

ω

λ λ

=
⟨ ⟩
ℏ |Δ |

|Δ |
ℏ

×
+
|Δ |

Δ ° <α
ω

<

<

<

|Δ |
ℏ

<

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

k
W h

G
G

G
G

exp

( )
( 0)X

G

IF
IF

2
0

2

2

(10.19a)

Chemical Reviews Review

dx.doi.org/10.1021/cr4006654 | Chem. Rev. 2014, 114, 3381−34653432



ω
ω

ω

λ λ

=
⟨ ⟩
ℏ |Δ |

|Δ |
ℏ

×
−
|Δ |

− Δ ° Δ ° >α
ω

>

>

>

|Δ |
ℏ

>

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

⎛
⎝⎜

⎞
⎠⎟

k
W h

G
G

G
G

k T
G

exp

( )
exp ( 0)X

G

IF
IF

2
0

2

2

B

(10.19b)

where |ΔG<| = ΔG° + λS and |ΔG>| = ΔG° − λS. The activation
barriers in eqs 10.18a and 10.19 are in agreement with those
predicted by Marcus for PT and HAT reactions (cf. eqs 6.12
and 6.14, and also eq 9.15), although only the similarity
between eq 10.18a and the Marcus ET rate has been stressed
generally in the previous literature.184,193

Rate constants very similar to those above were elaborated by
Suaŕez and Silbey377 with reference to hydrogen tunneling in
condensed media on the basis of a spin-boson Hamiltonian for
the HAT system.378

Borgis and Hynes also elaborated an expression for the PT
rate constant in the fully (electronically and vibrationally)
adiabatic regime, for ℏω/kBT ≫ 1:
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expS
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This rate expression was obtained by Borgis and Hynes228 as a
limiting case of a theoretical treatment encompassing the PT
vibrationally nonadiabatic and adiabatic regimes. Equation
10.20 also holds for EPT under the same conditions.186 As in
eq 5.29, ωS is an effective frequency for solvent motion, and the
activation free energy barrier ΔGact is given by the difference
between the values of the ground vibronic level at its maximum
and minimum with respect to the solvent collective coordinate
(or set of solvent coordinates) S. For ℏω < kBT, the prefactor is
more complicated and depends on ω228 in a manner consistent
with many-body transition-state theory in the frictionless
limit.379−385 This theory can be used, in general, to obtain
the rates of transition between the minima corresponding to
the four diabatic states of Figure 20,116,214 and another special
case is represented by eq 5.29 for adiabatic ET.

11. CUKIER THEORY OF PCET
In the extended Marcus theory described in section 6, a proton
or atom transfer reaction amounts to a bond rupture and
formation along internal coordinates (bond distances) that
define inner-sphere solute modes of reorganization as in the
framework of pure ET. This perspective was adopted in
Cukier’s treatment of PCET reactions,187 which also includes a
description of the proton−solvent interaction that is similar to
the description of electron−solvent interaction.116,188
Cukier’s first description of PCET187,386 reactions was based

on the breakdown of the Condon approximation for the
electronic coupling with respect to the motion of the
transferring protons. The model was motivated by experiments
on photoinduced intramolecular ET at nearly fixed distance (in
a range typical of nonadiabatic ET) mediated by a hydrogen-
bonded interface and characterized by a distinct isotope effect
upon deuteration of the proton interface.387 The first proposed
model assumed that the ET matrix element, VIF(R), depended
on the proton configuration at the interface, as measured by a
coordinate, or a set of coordinates, R. Fermi’s golden rule gives
a PCET rate that is proportional to |VIF(R)|

2 in the
electronically nonadiabatic regime. Thus, the failure of the

Condon approximation provides the mechanism for the
influence of PT at the hydrogen-bonded interface on the
long-distance ET . The effects of the R coordinate on the
reorganization energy are not included. The model can lead to
isotope effects and temperature dependence of the PCET rate
constant beyond those expected for conventional ET. The
topology of the class of PCET reaction systems motivating this
model is illustrated in Figure 38.

The model Hamiltonian of Cukier includes a standard spin-
boson representation of ET reactions, and its matrix is
expressed, in terms of mass-weighted nuclear coordinates and
the Pauli matrices σ̂x and σ̂z (the identity matrix is implicitly
assumed for the diagonal terms), as187,388
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In eq 11.1, VIF(R) = V0 exp(−γ|R|) is the ET matrix element,
characterized by a decay constant γ and a maximum value of V0
for the symmetric (transition-state) configuration of the
proton(s) described by R = 0.388 Hp(R) = T̂p(R) + Vp(R) is
the Hamiltonian associated with the proton, which includes its
kinetic energy and the effective proton potential Vp(R). The
latter is a double-well potential that corresponds to a hydrogen-
bonded proton localized on one or the other side of the PT
interface. Qj, Pj, Ωj, and gj are the mass-weighted coordinate, the
corresponding momentum, the (angular) frequency and the
coupling with the tunneling electron of the jth solvent mode
(i.e., an atomic coordinate in a discrete solvent model or a
mode of the solvent polarization in a continuum
model116,159,389). The shifts gj/Ωj

2 result from the polaron
transformation149 and the translation operators employed.121

Nonzero matrix elements of σ̂z physically reflect expansion of
the solvent polarization around the minima of the electronic
diabatic surfaces corresponding to the initial (I) and final (F)
electronic states. ΔG° is the free energy of reaction. Writing the
PCET rate using Fermi’s golden rule, assuming the limit of
classical solvent, and a Boltzmann population Pk of the kth
proton state in the initial electronic state, Cukier obtained the
PCET rate187,189
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where the vibronic coupling (its modulus needs to be used, in
general, for complex wave functions) for the initial and final

Figure 38. Representative molecular structure for application of the
model in eq 11.1 (cf. Figure 1 in ref 187). A dicarboxylic acid dimer
forms the PT interface. Substituents act as the photoexcited electron
donor (De*) and electron acceptor (Ae).
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proton states k and n,390 with vibrational energies εk and εn,
respectively, is

= ⟨ | | ⟩W R k V R n( ) ( )kn IF (11.3)

and the reorganization energy is given, in terms of the solvent
frequencies and couplings to the electron donor and acceptor,
as149,343
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Comparing the DKL rate of eq 9.16 with the contribution to
the rate in eq 11.2 from the terms that involve the initial proton
ground vibrational state, one sees that the differences arise from
the fact that the Condon approximation is not used in eq 11.2
for the electronic coupling VIF and the fact that the harmonic
approximation is not assumed a priori for the proton wave
functions.
As noted by Cukier,116 the PCET mechanism resulting from

the Hamiltonian of eq 11.1 and leading to the rate constant in
eq 11.2 applies to cases where the hydrogen-bonded interface is
symmetric with respect to the initial and final proton or
hydrogen atom localizations. As such, the change in R does not
cause significant rearrangement of the interfacial charge
distribution (for example, this is expected after hydrogen
interchange in the double H-bonded interface of Figure 38 or
of compound 2 in Figure 39). This feature also justifies the
approximation of the reorganization energy with the solvent
contribution λS.
PCET mechanisms often involve asymmetric hydrogen-

bonded interfaces. Examples are reported in Figures 39 and 40.
In compounds 1 and 3 of Figure 39, photoexcitation of the
Ru(bpy) (bpy =2,2′-bipyridine) electron donor initiates ET to
the dinitrobenzene acceptor, which can result in PT at the
asymmetrically hydrogen-bonded interface accompanied by
large charge redistribution (see the lower panel of Figure 39). A
similar PCET motif is envisaged for the Re and Ru complexes
in Figure 40, where ET/PT or EPT is active depending on the
hydroquinone concentration.

Cukier notes that the sequential ET and PT processes are
coupled in the ET/PT mechanism because the effective
potential energy for the proton motion is more favorable for
PT after the ET event; then separate solvent fluctuations
establish resonance conditions for ET and PT.116 Kinetically,
ET/PT represents a rate-limited reaction mechanism, since the
overall rate constant is approximated by (kET

−1 + kPT
−1)−1 and

is thus limited by the slower of the two transfer steps. EPT has
the kinetic advantage of not being a rate-limited reaction but
also has the kinetic disadvantage that a long tunneling path is
required for occurrence of a single tunnel event in the two-
dimensional space of electron and proton coordinates. Whether
ET/PT or EPT is the favored reaction mechanism can be
assessed theoretically by the computation of two kinds of
quantities: the coupling matrix elements and the free energies

Figure 39. Representative PCET systems relevant to Cukier’s theory. Photoinduced ET takes place from Ru(bpy)2 to dinitrobenzene. Systems 1 and
3 experience significant charge rearrangement upon PT because of donor−acceptor asymmetry, which implies localization of the proton charge in
different environments before and after PCET. The change in charge distribution is sketched in the reaction scheme reported below the compounds.
Minor charge rearrangement is expected for PT in 2 following proton interchange, due to the symmetry of the interface. Reprinted from ref 116.
Copyright 1995 American Chemical Society.

Figure 40. Excited-state PCET systems where the protonatable moiety
is the (a) 4,4′-bipyridine or (b) pyridylbenzimidazole ligand. Panel a
reprinted from ref 213. Copyright 2013 American Chemical Society.
Panel b reprinted with permission from ref 391. Copyright 2011
Wiley-VCH Verlag GmbH & Co. KGaA.
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pertaining to solvation of the reactants and products. The latter
are the driving force and the reorganization energy contribu-
tions to the activation free energy, which depend on the
coupling of the solvent polarization to both transferring species.
In this regard, Cukier’s model assumes that the PT process is
driven by solvent polarization fluctuations in a manner similar
to that of solvent coupling to pure ET processes.116

This is the chemical-physical context for most of Cukier’s
contribution to PCET theory, focusing on the electronically
and vibrationally nonadiabatic PCET regime (e.g., this is the
PCET regime expected for the reactions characterized in Table
1 that involve D2-Tyr160, Trp48, and Trp306). The electroni-
cally nonadiabatic character of the reaction arises from the
distance between the electron donor and acceptor in several
PCET systems with a PT interface. The vibrational non-
adiabaticity is typical of PT systems that involve intermediate-
to-weak hydrogen-bonded systems, which can arise, for
example, in rigid intramolecular PT systems, where proton
donor−acceptor distances that allow vibrationally adiabatic PT
are precluded.116,392

Cukier devised two different approaches to construct the
reaction rate constant, which are described in section 11.1 and
allow predictions regarding the dominance of the ET/PT or
EPT reaction channel.

11.1. Double-Adiabatic and Two-Dimensional Approaches

The first (double-adiabatic) approach described in this section
is related to the extended Marcus theory of PT and HAT,
reviewed in section 6, because the transferring proton’s
coordinate is treated as an inner-sphere solute mode. The
approach is also related to the DKL model interpreted as an
EPT model (see section 9).
In Cukier’s PCET model, the reactive electron is coupled to

a classical solvent polarization mode and to a quantum internal
coordinate describing the reactive proton. Cukier noted that
the PCET rate constant can be given the same formal
expression as the ET rate constant for an electron coupled to
two harmonic nuclear modes. In the coupled ET−PT reaction,
the internal nuclear coordinate (i.e., the proton) experiences a
double-well potential (e.g., in hydrogen-bonded interfaces).
Thus, the energies and wave functions of the transferring
proton differ from those of a harmonic nuclear mode. In the
diabatic representation appropriate for proton levels signifi-
cantly below the top of the proton tunneling barrier, harmonic
wave functions can be used to describe the localized proton
vibrations in each potential well. However, proton wave
functions with different peak positions appear in the
quantitative description of the reaction rate constant. Moreover,
linear combinations of such wave functions are needed to
describe proton states of energy near the top of the tunnel
barrier. Yet, if the use of the proton state in constructing the
PCET rate follows the same formalism as the use of the internal
harmonic mode in constructing the ET rate, the PCET and ET
rates have the same formal dependence on the electronic and
nuclear modes. In this case, the two rates differ only in the
physical meaning and quantitative values of the free energies
and nuclear wave function overlaps included in the rates, since
these physical parameters correspond to ET in one case and to
ET−PT in the other case. This observation is at the heart of
Cukier’s approach and matches, in spirit, our “ET interpreta-
tion” of the DKL rate constant based on the generic character
of the DKL reactant and product states (in the original DKL
model, PT or HAT is studied, and thus, the initial and final

electronic states do not represent donor and acceptor localized
electronic states). Thus, the ET theory and the DKL theory for
PT are connected in a complementary way with Cukier’s
double-adiabatic approach. Compared to the DKL formalism,
Cukier’s treatment includes different possible initial states for
the proton and uses different methods to arrive at an expression
for the rate constant.
Cukier’s analysis begins by considering four coordinates: q

(reactive electron), R (reactive proton), Q (solvent mode), and
qi (core electrons). The BO scheme separates the qi degrees of
freedom from the other coordinates and thus removes them
from explicit analysis.389 The reduction to a one-electron
picture arises from assuming that only the ground multielectron
state of the qi degrees of freedom is populated during the PCET
reaction. BO separation of the q coordinate is then used to
obtain the initial and final electronic states (from which the
electronic coupling VIF is obtained) and the corresponding
energy levels as functions of the nuclear coordinates, which are
the diabatic PESs VI(R,Q) and VF(R,Q) for the nuclear motion.
VI and VF are used to construct the model Hamiltonian in the
diabatic representation:393
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The quantities that refer to the single collective solvent mode
involved are defined in eq 11.1 with j = Q. In contrast to the
Hamiltonian of eq 11.1, the Condon approximation is used for
the electronic coupling. In the Hamiltonian model of eq 11.5
the solvent mode is coupled to both the q and R coordinates.
The Hamiltonians HI(R) = T̂I

R + V̅I(R) and HF(R) = T̂F
R +

V̅F(R) express direct coupling between the electron and proton
dynamics, because the PES for the proton motion depends on
the electronic state in these Hamiltonians. The combination of
solvent−proton, solvent−electron, and electron−proton cou-
plings embodied in eq 11.5 allows a more intimate connection
to be established between ET and PT than the Hamiltonian
model of eq 11.1. In the latter, (i) the same double-well
potential Vp(R) corresponds to the initial and final electronic
states and (ii) the coupling of electron and proton dynamics is
limited to the influence of the R value on the electronic
coupling VIF.
In light of the analysis of section 5.3, the effective potential

energies for the proton dynamics in the initial and final
electronic states, V̅I(R) and V̅F(R), may be interpreted as (i) the
averages of the diabatic PESs V̅I(R,Q) and V̅F(R,Q) over the Q
conformation, (ii) the values of these PESs at the reactant and
product equilibrium Q values, or (iii) proton PESs that do not
depend directly on Q, i.e., are determined only by the electronic
state. The proton PESs V̅I(R) and V̅F(R) are referred to as
“bond potentials” by Cukier, because they describe the bound
proton through the entire R range, for the corresponding
electronic states. If the bond potentials are characterized by a
large asymmetry (see Figure 41) and depend weakly on the
localization of the transferring electron (namely, the dashed
and solid lines in Figure 41 are very similar), then no PT
occurs: the proton vibrates approximately around the same
position in the initial and final ET states. Conversely, very
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different V̅I(R) and V̅F(R) indicate strong coupling of the
electron and proton states, as shown in Figure 41.
Based on the above Hamiltonian, and applying standard

manipulations of ET theory,149,343 the PCET rate constant is
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where

= ⟨ | ⟩μW V k nv IF 1 F (11.6b)

The quantum numbers μ = {I,k} and ν = {F,n} are used to
distinguish the initial and final proton states, as well as the
overall vibronic states. The rate constant is formally similar to
that in eq 11.2. However, the rate reflects the critical differences
between the Hamiltonians of eqs 11.1 and 11.5. On the one
hand, the ET matrix element does not depend on R in eq 11.6.
On the other hand, the passage from Hp(R) to {V̅I(R),V̅F(R)}
leads to different sets of proton vibrational states that
correspond to V̅I(R) and V̅F(R) (|kI⟩ and |nF⟩, respectively).
The harmonic approximation need not be used for the

vibrational states in eq 11.6, where, in fact, the initial and final
proton energy levels are generically denoted by εμ and εν,
respectively. Nevertheless, in the derivation of kPCET, it is
assumed that the R and Q Franck−Condon overlaps can be
factored.116 Note that eq 11.6 reduces to eq 9.17, obtained
within the DKL model, in the harmonic approximation for the
vibrational motion of the proton in its initial and final localized
states and considering that the proton frequency satisfies the
condition ℏωp > kBT, so that only the proton vibrational
ground state is initially populated. In fact
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The effective potential energy curves in Figure 41 can have
up to four minima for given initial and final proton states.
Denoting the latter by a and b, respectively, one arrives at the
picture in Figure 20 (with state I = state 1 and state F = state
2). The PESs VI(R,Q) and VF(R,Q) can be used to evaluate the
rate of the proton-coupled ET in eq 11.6 and the PT rate
constants kab

I,F for a fixed electron state. As noted in ref 116, this
can be done by invoking the double-adiabatic approximation, as
proposed in the DKL model.178−180 Solving the Schrödinger
equation for proton motion at fixed Q yields the four diabatic
states in Figure 20 in the form of BO electron−proton wave
functions (see section 5.3), ψjn(q,R,Q) = ϕj(q;R,Q)χn

p(R;Q),394

and the respective effective potentials in the BO approach,
Va,b
I,F(Q), which determine the dynamics of the solvent

polarization. The proton wave functions can be used to
compute PT matrix elements. The PESs Va,b

I (Q) or Va,b
F (Q)

yield the reaction free energy and reorganization energy for
pure PT while the system is in the I or F electronic state. These
PESs can be approximated as harmonic polarization surfaces
with origins specific to the electron−proton states, thus leading
to PT rate constants kab

I and kab
F that have the standard one-

mode golden rule form.
In summary, the double-adiabatic separation scheme

provides electronic couplings and free energy parameters
required to compute the PCET and the PT rate constants for
each state of the transferring electron. As noted by Cukier,116

eq 11.6 describes either PCET or pure ET, depending on the
proton displacement that accompanies ET.395 If ET occurs first,
the PT process that follows the ET event depends on the final
electronic state. However, the concerted nature of the reaction
is better captured by a method that treats the electron and
proton on an equal footing, rather than a method based on
double-adiabatic separation, which creates a privileged role for
the first separated electronic degree of freedom. This
consideration motivated Cukier’s two-dimensional formulation,
where the PCET mechanism is described with a two-
dimensional PES that is parametric in the solvent coordi-
nate:116

γ= + − + +V q R Q V q V R qR c qQ c RQ( , , ) ( ) ( )e p e p

(11.8)

Ve is the effective PES for the isolated transferring electron. Ve
is a symmetric double-well potential, with minima at −q0 and q0
for the I and F electronic states, respectively. Similarly, Vp is a
symmetric potential for the isolated PT system, with minima at
−R0 and R0 for the a and b proton states, respectively. The
electron−proton coupling γ determines the effects of one
reaction on the other one. γ is the electron−proton coupling
strength. In Cukier’s perspective,116 where ET/PT and EPT are
the two processes of interest, the γ term in eq 11.8 describes the
change in electronic structure associated with the ET reaction
that favors the PT event (ET/PT mechanism; see Figure 41) or
the coupling of the ET and PT events (concerted reaction
mechanism). Whether the γ coupling promotes PT following
ET or EPT also depends on the solvation energetics. The ce

Figure 41. Proton PESs that may represent VI(R,Q) and VF(R,Q) or
V̅I(R) and V̅F(R). A strong dependence on the electronic state is
illustrated. Before ET (i.e., in electronic state I), the initial proton
localization, which is centered on −R0, is strongly favored compared to
its localization after tunneling, i.e., around R0. The opposite case
occurs following ET. Thus, PT is thermodynamically favored to occur
after ET. Note that the depicted PESs are qualitatively similar to those
in Figure 2 of ref 116 and are comparable with those in Figure 27c.
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(cp) term provides the coupling of the electron (proton) charge
with the solvent polarization.
In this two-dimensional perspective, the transferring electron

and proton are treated in the same fashion, “as quantum objects
in a two-dimensional tunneling space”,188 with one coordinate
that describes the electron tunneling and another that describes
proton tunneling. All of the quantities needed to describe ET,
PT, ET/PT, and EPT are obtained from the model PES in eq
11.8. For example, when the proton is at its initial equilibrium
position −R0, the ET reaction requires solvent fluctuations to a
transition-state coordinate Qta where −γqR + ceqQ = 0, i.e., Qta
= −γR0/ce. At the position (−q0,−R0,Qta), we have ∂V(q,R,Q)
∂q = 0. Thus, the reactive electron is at a local minimum of the
potential energy surface, and the potential double well along q
(which is obtained as a profile of the PES in eq 11.8 or is a
PFES resulting from a thermodynamic average) is symmetric
with respect to the initial and final diabatic electron states, with
V(−q0,−R0,Qta) = V(q0,−R0,Qta) = Ve(q0) + Vp(−R0) + γR0

2cp/ce
(see Figure 42). Using the language of section 5, the solution of
the electronic Schrödinger equation (which amounts to using
the BO adiabatic separation) for R = −R0
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yields the minimum electronic energy level splitting in Figure
42b and consequently the ET matrix element as |Vs(−R0,Qt) −
Va(−R0,Qt)|/2. Then use of eq 5.63 in the nonadiabatic ET
regime studied by Cukier gives the diabatic PESs VI,F(R,Q) for
the nuclear motion. These PESs (or the corresponding PFESs)
can be represented as in Figure 18a. The free energy of reaction
and the reorganization energy for the pure ET process (and
hence the ET activation energy) are obtained after evaluation of
VI,F(R,Q) at Qt and at the equilibrium polarizations of the
solvent in the initial (QI0) and final (QF0) diabatic electronic
states, while the proton is in its initial state. The procedure
outlined produces the parameters needed to evaluate the rate
constant for the ETa step in the scheme of Figure 20. For a PT/
ET reaction mechanism, one can similarly treat the ETb process
in Figure 20, with the proton in its final state. The PT/ET
reaction is not considered in Cukier’s treatment, because he
focused on photoinduced reactions.188

The same considerations apply to the computation of the PT
rate, after interchange of the roles of the electron and the
proton. Moreover, a two-dimensional Schrödinger equation can
be solved, at fixed Q, thus applying the BO adiabatic separation
to the reactive electron−proton subsystem to obtain the
electron−proton states and energies relevant to the EPT
reaction.

Considering the different time scales for electron and proton
motion, the symmetry with respect to the electron and proton
is broken in Cukier’s treatment, producing a substantial
simplification. This is accomplished by assuming a parametric
dependence of the electronic state on the proton coordinate,
which produces the “zigzag” reaction path in Figure 43. The

proton moves (electronically) adiabatically, with the electron in
its initial localized state, to the transition-state coordinate Rt for
electron tunneling. At R = Rt, the electronic dynamics is
governed by a symmetric double-well potential and the electron
tunneling occurs with a transition probability proportional to
the square of the electronic coupling between the I and F states.
The proton relaxes to its final state after ET. Using the model
PES in eq 11.8, the transition-state coordinates of the proton,
Rt, and the solvent, Qt, are related by116

γ=Q R c/t t e (11.10)

Equation 11.10 provides a constraint on the transition-state
nuclear coordinates. Another relationship between Rt and Qt is
obtained by applying the principle of energy conservation to
the overall reaction. Assuming, for simplicity, that the cp
coupling term can be neglected in the tunneling analysis
(even if it is not neglected in calculating the activation
energy),116 one obtains V(−q0,−Rt,Qt) − V(q0,Rt,Qt) =
−2ceq0Qt. Then, if the initial and final potential wells
experienced by the transferring proton are approximately
harmonic, the conservation of energy gives −2ceq0Qt + ℏωp/2
= (n + 1/2)ℏωp (see Figure 44), that is

ω
= −

ℏ
Q

n

c q2t
p

e 0 (11.11)

Equations 11.10 and 11.11 exemplify the determination of Rt
and Qt with the above approximations. The actual evaluation of
Rt and Qt requires a model for the coupling of the electron to
the solvent (ce). Moreover, despite the above simplification, cp
also needs, in general, to be estimated. ce and cp lead to different
Qt values for ET, PT, and EPT, since Qt depends on the

Figure 42. Effective potential energies (free energies) for the electronic motion at the initial equilibrium (QI), transition-state (Qt), and final
equilibrium (QF) solvent configurations, when the proton is in the initial state (with average position −R0). The electronic coupling VIF is also
indicated (cf. Figure 3 in ref 116).

Figure 43. Pathway for two-dimensional tunneling in Cukier’s model
for electron−proton transfer reactions. Once the proton is in a
position that symmetrizes the effective potential wells for the
electronic motion (straight arrow in the left lower corner), the
electron tunneling can occur (wavy arrow). Then the proton relaxes to
its final position (after Figure 4 in ref 116).
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molecular charge distributions in the initial and final states of
the electron and proton. A continuum electrostatic model was
used by Cukier to evaluate the solvation energetics, as described
in the next section.
Cukier argued that, if the cp coupling is not neglected in the

tunneling analysis, each proton level in Figure 44 carries an
intrinsic dependence on Q, although “this additional Q
dependence should be slight” 116 in asymmetric double-well
effective potentials for the proton motion such as those in
Figure 44. The term cpRQ arises from a second-order expansion
of the interaction between the solvent and the reactive solute.
The magnitude of this coupling was accurately estimated in the
DKL model for PT reactions, using the dielectric continuum
approximation for the solvent and taking into account the large
difference between typical proton and solvent vibrational
frequencies.179 By applying the DKL analysis to the present
context, one can see that the coupling cpRQ can be neglected
for nuclear displacements around the equilibrium coordinates
of each diabatic electronic PES involved in the Cukier model,
which supports the Cukier argument reported above.
The picture that emerges from Figures 43 and 44 allows

evaluation of the vibronic coupling for the concerted PCET
reaction in the fully (electronically and vibrationally) non-
adiabatic regime. The necessary initial and final proton wave
functions are obtained for the one-dimensional effective
potentials of Figure 44. With the above approximations, these
wave functions do not depend on Qt, which in the vibrationally
nonadiabatic limit determines only the shift of one potential
well with respect to the other one. Regarding the electronic
component of the vibronic coupling (i.e., the electronic
coupling VIF), the zigzag reaction path of Figure 43 indicates
that VIF should be computed at the transition state from the
potential Ve(q), as for pure ET. Using these ingredients, the
vibronic coupling in Cukier’s “two-dimensional method” is
given again by eq 11.6b. Cukier also provided an analytical
derivation of eq 11.6b that is based on the BO separation of the
electron and proton motion and follows a methodology
developed to treat vibration-assisted proton tunneling.396−398

In the analogy used to apply this methodology, the proton and
the low-frequency vibrational mode are replaced by an electron
and a proton, respectively. Once this correspondence is
established, the procedure developed for vibration-assisted
tunneling can be applied, even if the initial and final states of
the low-frequency mode do not correspond to a tunneling

event, while in the PCET context both the electron and the
proton tunnel. Using the golden rule formulation of the PCET
rate constant and eq 11.6b, kPCET is expressed by eq 11.6a, as in
the double-adiabatic approach. Thus, the two-dimensional
approach is reduced to the double-adiabatic method by using
eq 11.6b.116,188

11.2. Reorganization and Solvation Free Energy in ET, PT,
and EPT

The free energy parameters in eqs 11.6 and 11.7 are computed
using continuum electrostatic models. The reaction free energy
ΔG° contains electronic structure (ΔEel) and solvation
(ΔGsolv) contributions. ΔEel arises from the difference in
electronic structure of the gas-phase solute system in the initial
and final electronic states. ΔGsolv is the difference in solvation
free energy between the reactant and product states resulting
from the coupling of the transferring electron and proton to the
solvent or, in more general terms, to the environment of the
reaction. ΔGsolv depends on the proton coordinate and on the
solvent polarization field, whose fluctuations are critical for
reaching the transition state. The polarization correlation
functions and the dielectric permittivity describe the nuclear
configurational fluctuations in a continuum approximation. In
ET reactions, the donor-to-acceptor electron motion is slow
compared to the solvent electron motion159 and very fast with
respect to nuclear polarization. This distinction in time scales
distinguishes between “inertialess” polarization, approximately
identified with the electronic polarization (resulting from the
electronic motion in response to the external solute field), and
“inertial” polarization, i.e., the nuclear polarization (accom-
panied by the electronic polarization induced by the nuclear
motion). Aside from possible refinement of this distinction,399

its application to PCET may be subtle because the time scale of
the proton motion, compared to that of the electron motion, is
closer to the time scale range of the solvent dynamics.159

However, the described distinction between inertial and
intertialess polarization can still be a good approximation in
many cases (e.g., for solvent and proton frequencies in the DKL
model) and can support Cukier’s model, where proton and
electron motion are similarly (even though not identically)
coupled to the solvent dynamics. However, the significance of
treating the fast solvent electronic polarization quantum
mechanically to compute the correct activation free energies
and transition states was described in earlier studies of ET
systems (Gehlen et al.,400 Kim and Hynes401), and such
approaches are relevant to PCET reactions as well.
The Hamiltonian leading to the rate constant in eq 11.6 does

not include the displacement of the solvent equilibrium
position in response to the proton position R. This
approximation implies asymmetry in the treatment of the
electron and proton couplings to the solvent (which also affects
the application of the energy conservation principle to the
charge transfer mechanism). However, Cukier showed that this
approximation can be relaxed, while still obtaining the PCET
rate constant in the form of eq 11.6, by suitably incorporating
the proton−solvent coupling in the rate free energy
parameters.188 Here, we summarize the conclusions of Cukier,
referring to the original study for details.188 Using the
pioneering polaron theory of Pekar,402,403 Marcus ET
theory,147,148 and subsequent developments,217,401,404−409

Cukier obtained the following expression for the initial diabatic
free energy as a function of the proton coordinate and solvent
polarization:

Figure 44. PESs and proton levels at the transition-state solvent
configuration Qt for different electronic states: the initial state, with
average electronic coordinate −q0, and the final one, with average
electron coordinate q0. The two lowest proton vibrational levels that
allow energy conservation, given by −2ceq0Qt + ℏωp/2 = (n
+ 1/2)ℏωp, are marked in blue (after Figure 5 of ref 116).
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where the equilibrium orientational polarization field corre-
sponds to the electric displacement field DI= (4π/cp)Pin,I
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is the equilibrium (Born) solvation energy for the solute with
the proton at R and the electron on the donor. HI

g is the
diagonal element of the gas-phase solute Hamiltonian Hg with
respect to the initial localized electronic state:
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EI
el includes the electronic kinetic energy and, for a potential

energy as in eq 5.4, the part of the potential energy that is
independent of the proton coordinate. Although EI,F

el depend on
R (through the parametric dependence of the electronic state),
this R dependence is neglected.
Simplification is achieved by assuming that ΔEel = EF

el − EI
el is

not sensitive to the proton state, so that ΔEel does not depend
on whether ET occurs as part of an ET/PT or concerted ET−
PT reaction mechanism. Analogous expressions hold for the
free energy surface corresponding to the final electronic state.
In eq 11.12,cp is the Pekar factor

ε ε= −∞
− −cp

1
s

1
(11.13)

where εs and ε∞ are the static and optical dielectric constants,
respectively. DI

2 is the R-dependent squared modulus of the
electric displacement field D(r) in the solvent in the initial
electronic state. Pin(r) is the inertial (orientational) polarization
field, and Pin,I

eq (r;R) is its equilibrium value with the proton at R
and the transferring electron in its initial localized state. In the
first term of eq 11.12a, the proton is treated as a quantum
particle, and a functional dependence of the free energy on the
proton wave function appears. In the other two terms of eq
11.12a, the electron and proton squared wave functions are
inserted as “static” clouds of negative and positive charge
surrounding the positions q and R, respectively

∑ϕ δ= − −
α

α αq e q r f( ) ( )I
2 I

(11.14)

∑χ δ= −
β

β βR e R r f R( ) ( ) ( ) ( )k
p 2 I
I

(11.15)

(where e is the magnitude of the electron charge), and
analogous expressions are used for the final electronic state.
The fraction fα

I of electron charge located at rα does not depend
on q. This expresses the fact that the localized electronic wave
function is insensitive to changes in the nuclear coordinates.
The fraction fβ

I of proton charge at rβ depends on the position
R. This is an expression of the fact that, as the proton moves
along the hydrogen bond, the polarization changes accordingly
and affects the proton charge distribution. Using, in eq 11.15,
charge sites at fixed positions with charges that depend on the
proton location is a convenient way to produce the proton−
solvent coupling.116 As a consequence of the fβ

I dependence on
R, the electric displacement field generated by the proton

depends on R. This causes an explicit dependence of the
diabatic free energy surfaces on the proton position R. Since, in
the model, the electron and the proton behave as external
(prescribed) sources of electrostatic fields and the dielectric
image effects related to the presence of solute−solvent
interfaces are neglected, the electronic polarization and the
orientational polarization are longitudinal fields.159,405 More-
over, the orientational polarization shows a parametric
dependence on R, owing to the large difference between the
typical frequencies of the proton motion and the dynamics of
the solvent inertial polarization.
The last term in eq 11.12a represents the fluctuations of the

orientational polarization away from its equilibrium value
(which depends on the electronic state and on R) that can drive
the system to the transition state. Ultimately, the diabatic free
energy surfaces have a functional dependence on the solvent
polarization and on the proton wave function (gas-phase term),
as well as an explicit dependence on R, which is a consequence
of the approximation made in treating the proton as a given
charge distribution coupled to the solvent polarization (thus
precluding the self-consistent determination of its wave
function and the polarization driving the charge transfer).
This approximation can be good, and it allows evaluation of the
effects of solvation on the effective PESs for the proton motion
in each electronic state. The solvated PESs contain the gas-
phase potential energy, VI

g(R), and the equilibrium solvation
free energy, GI

solv(R), so the proton wave functions and energies
required to obtain the rate constants (e.g., see eq 11.6, where
the proton wave functions determine the Franck−Condon
factors and the proton energy levels influence the activation
energy) are derived from the Schrödinger equation

χ ε χ̂ + + =T V R G R R R[ ( ) ( )] ( ) ( )R k k kI
g

I
solv p

I
p

I I (11.16)

and the corresponding Schrödinger equation for the final
electronic state. The dependence of the equilibrium inertial
polarization field, and therefore of the electric displacement
field, on the proton coordinate, as well as the Q-dependent
electronic solvation, affects the proton vibrational states
obtained from eq 11.16 through GI

solv(R). This solvation
“effective potential” introduces the intrinsic dependence of the
proton levels in Figure 44 on a solvent reaction coordinate Q.
Such a coordinate is not introduced in ref 188 but can be
elicited from eq 11.12. Without resorting to derivations
developed in the context of ET,217 one may consider that, as
for pure ET216,222,410 (see also section 5.3), the energy gap
between diabatic free energy surfaces in eq 11.12 measures the
departure from the transition-state coordinate for the PCET
reaction. Hence, a reaction coordinate Q may be defined as the
part of the diabatic free energy difference that depends on the
fluctuating polarization field Pin(r) and thus changes during the
reaction, leading to the transition-state coordinate Qt:

217,222

∫= − − ·Q R Rr D r D r P rd [ ( ; ) ( ; )] ( )F b I a in (11.17)

where the initial and final localized proton states are
characterized by coordinate values Ra and Rb, respectively. In
particular, at Qt we have Pin,I

eq = Pin,F
eq , which gives GI = GF. In the

EPT reaction mechanism, the same solvent coordinate
fluctuation enables both proton and electron tunneling. Thus,
eq 11.17 defines the reaction coordinate. However, for other
concerted reaction mechanisms, the proton and electron
pathways are generally different, and the overall solvent
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fluctuations may be better characterized in terms of
components directly associated with the ET and PT events.
Moreover, the two-dimensional mechanism illustrated in Figure
43, while describing concerted tunneling, still generates distinct
one-dimensional paths for electron and proton tunneling.
These considerations indicate that, in general, it is useful to
define more than one reaction coordinate. This issue is tackled
in the next section.
In addition to the proton quantities derived from eq 11.16,

the other two ingredients that need to be inserted into eqs
11.6a and 11.6b are obtained from eq 11.12. The solvent
reorganization free energy for the PCET reaction is computed
as the change in GI between the equilibrium inertial
polarization fields corresponding to the initial and final solute
states, but with the solute in the initial state:
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The reaction free energy is given by

∫π ε
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While the equilibrium displacement of the solvent can change
appreciably as the center of the proton wave function moves
from Ra to Rb, if the proton remains in the left potential well of
Figure 44, and thus only ET occurs, the equilibrium
displacement of the solvent can be assumed independent of
the proton position around Ra. In this event, if the proton
degree of freedom can be treated as a quantum mechanical
normal mode of vibration, while Pin is a classical mode, only Ra
appears in the above equations and eq 11.6 reduces to a well-
known rate constant expression for nonadiabatic ET.186,343,389

After insertion of eqs 11.14, 11.15, 11.18, and 11.19 into eqs
11.6a and 11.6b, evaluating the rate constant requires quantum
chemical investigation of the gas-phase contribution in eq 11.12
and a specific model to compute the solvation free energy of
the reactive system, as a function of the proton coordinate, for
each diabatic electronic state. The latter is in the focus of
Cukier’s analysis116,188,189 and is defined by an ellipsoid of
revolution with four charge sites shown in Figure 45, with
particular relevance to PCET systems such as those of Figures
39 and 40.
In Figure 45, points 1 and 4 are the centers of the electron

donor and acceptor and are taken at a distance d = 15 Å. The
electron donor and acceptor are modeled as spheres of radius rs
of 3−4 Å embedded in an ellipsoid with major (minor) axis a
(b) and interfocal distance R. The ellipsoid contains the donor
and acceptor groups (the ellipsoid and the spheres of radius rs
are tangent to each other). Points 2 and 3 mark the sites at the
PT interface used to describe the proton charge distribution
along the hydrogen bond involved in the reaction. Cukier
obtains ΔGsolv and λS from this continuum model by employing
expressions obtained by Kirkwood and Westheimer411,412 and
by Ehrenson, Brunschwig, and Sutin, respectively.413,414 Details
can be found in refs 116, 188, and 189.

The solvation energetics decreases with increasing ellipsoid
size due to overall weakening of the electrostatic interactions
with the solvent. Moreover, λS turns out to be smaller for PT
than for ET and PCET, which “reflects the dipole character of
the relatively close proton charge sites”.116 In fact, the proximity
of the proton donor and acceptor exposes the acceptor to the
polarization field induced by the donor. This suggests that the
solvent polarization before PT is already partly adjusted to the
charge distribution of the products, with less environmental
reorganization required by the PT reaction. The same
argument applies to the comparison between ET systems
with diverse donor−acceptor distances415 as expected from
Marcus’ expression for the reorganization energy.7

Evaluation of rate constants for concerted PCET is simplified
by the assumption that the proton−solvent interaction is
similar for proton quantum states localized in the same
potential well. This assumption is justified by the localization of
the proton wave functions on the length scales of the solutes
and allows use of the same set of charges in eq 11.15 for all
proton states localized around Ra and for those localized around
Rb.
Cukier’s analysis was applied to distinguish between ET/PT

and EPT mechanisms. In this regard, Cukier noted116 that, on
the one hand, EPT is disadvantaged compared to ET/PT by a
long tunnel path for the concerted ET−PT event and, on the
other hand, the concerted occurrence of ET and PT in the EPT
mechanism allows population of vibrational levels correspond-
ing to smaller activation energy compared to that of ET/PT.
For example, the ET/PT pathway is unlikely if the solvation
energetics brings about strongly endergonic ET, even if the PT
step is fast, since the overall rate constant (kET

−1 + kPT
−1)−1

would be limited by kET.
11.3. Generalization of the Theory and Connections
between PT, PCET, and HAT

Cukier’s theoretical treatment of PCET was later extended to
the electronically adiabatic and vibrationally nonadiabatic-to-
adiabatic regimes, using a Landau−Zener model.190 A
motivationand one of the main purposes of this
extensionwas to describe HAT, which is characterized by
(a) electron tunneling through relatively short distances, such
that electronic adiabaticity is expected throughout the reaction,
and (b) smaller charge rearrangement and weaker coupling to
the solvent medium than in ET, PT, and PCET reactions,
because of the neutrality of the transferring particle. The

Figure 45. Ellipsoidal model adopted by Cukier for evaluating the
reorganization and solvation free energies of the ET, PT, and EPT
processes. The electron donor and acceptor are modeled as spheres of
radius rs, centered at points 1 and 4, embedded in a solvent
continuum. The latter is described as an ellipsoid with major (minor)
axis a (b) and interfocal distance R (R denotes the proton coordinate
elsewhere in this review). The distance d between sites 1 and 4 is fixed
at 15 Å. The proton donor and acceptor are located at points 2 and 3,
3 Å apart. Reprinted from ref 116. Copyright 1995 American Chemical
Society.
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description of HAT rests on a previous treatment of PT ranging
from the nonadiabatic to the adiabatic regime.416 Cukier’s
analysis begins with nonadiabatic PT. It is assumed that the
electronic structure changes accompanying the PT event
significantly shift the proton stability, similarly to what is
represented in Figure 41 for cases where ET is also at play. The
electronic solvation helps proton stabilization at all values of the
solvent coordinate, thus contributing to creation of the PES
minima in Figure 46. This stabilization reduces the proton
coupling compared to that in the gas-phase solute and can also
lead to situations where the ground vibrational states in the
initial and final proton wells dominate the PT reaction.
The shape of the effective potential experienced by the

proton also depends strongly on the inertial polarization and, in
particular, on the value of coordinate (or set of coordinates) X
that describes the close nuclear framework of the reaction and
is often taken as the proton donor−acceptor distance.
Moreover, because of charge displacement accompanying the
X motion, the electronic solvation also significantly affects the
potential felt by the X degree of freedom. The proton or
hydrogen atom tunneling barrier, and hence the nonadiabatic
or adiabatic behavior of the transfer reaction, depends strongly
on the range explored by the non-Condon coordinate X. Thus,
X is a crucial quantity for theories that span from the
vibrationally nonadiabatic to the adiabatic regime. Typical
frequencies of X motion in the range of 200−250 cm−1 justify
its quantum mechanical treatment, but the comparable value of
kBT/ℏ implies that several states of the X mode contribute to
the PT rate, thus providing a number of channels for the
transfer.
On the basis of these considerations, and using the golden

rule, the rate constant for nonadiabatic PT is190,416
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where i (f) denotes the initial (final) localized proton state, k
(n) runs over the states |χk

X⟩ (|χn
X⟩) of the X degree of freedom

in the initial (final) proton state, ρk is the occupation
probability of state |χk

X⟩, Eik (Efn) is the energy eigenvalue
associated with |χk

X⟩ (|χn
X⟩), and Vif

p(X) is the proton coupling
that, exploiting the WKB approximation, is written as190,417
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The PT rate constant in the adiabatic limit, under the
assumption that only two proton states are involved, is
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Cukier arrived at an expression for the rate constant that is valid
from the nonadiabatic to the adiabatic regime, by exploiting the
Landau154,155−Zener156,157 formalism familiar in the context of
ET reactions190,416 and used later in the context of PT
reactions.356,418 The “PT Landau−Zener” parameter is
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where ωS is a characteristic solvent frequency,356,419 and the
rate constant is416
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The first factor in eq 11.24b may be compared with eq 5.28,
and the second interpolating factor is required to obtain the
correct limiting forms of eqs 11.20 and 11.22.
In the case of EPT or HAT, the ET event can be

accompanied by vibrational excitation. As a consequence,
analysis similar to that leading to eqs 11.20−11.22 provides a
rate constant with multiple summations: two sums on proton
states of eq 11.6 and two sums per each pair of proton states as
in eq 11.20 or 11.22. The rate expression reduces to a double
sum if the proton states involved in the process are again
restricted to a single pair, such as the ground diabatic proton
states whose linear combinations give the adiabatic states with
split levels, as in Figure 46. Then the analogue of eq 11.20 for
HAT is190
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where the values for the free energy parameters also include
transfer of an electron. Equations 11.20 and 11.25 have the
same structure. The similarity of kPT and kHAT is also preserved

Figure 46. Effective potential energies for the proton wave function at the initial equilibrium (Qi), transition-state (Qt), and final equilibrium (Qf)
solvent configurations. Vif

p is the proton coupling, which is half the splitting of the symmetric and antisymmetric adiabatic proton states resulting from
a double-adiabatic approximation (see ref 416 from which this figure is inspired).
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in the adiabatic limit, where the vibronic coupling does not
appear in the rate. This observation led Cukier to use a
Landau−Zener formalism to obtain, similarly to kPT, an
expression for kHAT that links the vibrationally nonadiabatic
and adiabatic regimes. Moreover, some physical features of
HAT reactions (similar hydrogen bond strengths, and hence
PESs, for the reactant and product states, minimal displacement
of the equilibrium values of X before and after the reaction, low
characteristic frequency of the X motion) allow kHAT to have a
simpler and clearer form than kPT. As a consequence of these
features, a small or negligible reorganization energy is
associated with the X degree of freedom. The final expression
of the HAT rate constant is190
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where P(X) is the thermally averaged X probability density, L =
H (protium) or D (deuterium), and Aif(X) is given by eq
11.24b with uif

kn defined by
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The notation in eq 11.26 emphasizes that only the rate constant
in brackets depends appreciably on X. The vibrational
adiabaticity of the HAT reaction, which depends on the value
of uif(X), determines the vibronic adiabaticity, while electronic
adiabaticity is assured by the short charge transfer distances.
kHAT
L depends critically on the decay of Sif

p with donor−acceptor
separation. The interplay between P(X) and the distance
dependence of Sif

p leads to a variety of isotope effects (see ref
190 for details).
Cukier’s treatment of HAT reactions is simplified by using

the approximation that only the ground diabatic proton states
are involved in the reaction. Moreover, the adiabaticity of the
electronic charge transition is assumed from the outset, thereby
neglecting to consider its dependence on the relative time
scales of ET and PT. We will see in the next section that such
assumptions are overcome in the theoretical framework of
Hammes-Schiffer and co-workers.

12. SOUDACKOV−HAMMES-SCHIFFER (SHS) THEORY
OF PCET

Hammes-Schiffer and co-workers presented a unified theoreti-
cal framework to describe sequential and concerted electron−
proton transfer reactions, including HAT as a special case of
simultaneous ET and PT between the same donor and acceptor
groups. In the SHS theory, Cukier’s treatment was extended
and generalized by introducing two collective solvent
coordinates corresponding to ET and PT, within the formalism
of the multistate continuum theory applied to multiple charge
transfer reactions.191,214,420 Dynamical effects of the solvent and
of the proton donor−acceptor distance were included in SHS
analysis225,337,345,421 using the formalism of Borgis and
Hynes192,165 in conjunction with expressions for the diabatic
free energy difference and the coupling appropriate for the
general context of PCET (where pairs of electron−proton
surfaces corresponding to different electronic states are
involved in the charge transitions).337 Hammes-Schiffer’s
work also led to a comprehensive classification of PCET
reactions182,215 in terms of time scales, couplings, and

theoretical methods that are applicable to the different PCET
regimes. This classification of PCET reactions is of great value,
because it can assist in directing theoretical-computational
simulations and the analysis of experimental data.
12.1. Regarding System Coordinates and Interactions:
Hamiltonians and Free Energies

The SHS treatment of PCET reactions is developed with
special attention to the definition and quantitative evaluation of
the relevant coordinates and their states. This approach
provides a route to address the complexities of the PCET
mechanisms that arise from the wide range of time scales and of
“special” degrees of freedom at play, compared to the case for
separate ET and PT. It is in this perspective that multistate
continuum models193,217,336,389,422 offer some important
advantages over atomistic models for PCET reactions: (a)
they enable a clear physical picture of the reaction mechanism
at low computational cost; (b) the solvent electronic
polarization can be consistently included in the model;401,423

(c) charge transfer reactions can be described in terms of an
arbitrary number of basis states. One cannot demand detailed
dynamical information from such models. This information is
provided at a much higher computational cost from QM/MM
approaches.262,322,424 Hammes-Schiffer and co-workers used a
multistate continuum theory336 in part of their theoretical
treatment of PCET by developing the formalism for direct
application.191,214,420 In the theory, the solvent is described as a
dielectric continuum and the solute is described using a
multistate valence bond (VB) model. The quantum mechanical
degrees of freedom corresponding to the transferring proton
and electron, and to the other active electrons in the ET and
PT subsystems, are treated explicitly. Active electron orbitals
are placed on the electron donor (ζDe

) and acceptor (ζAe
), on

the proton donor (ζDp
) and acceptor (ζAp

), and on the
transferring H species (ζH). In terms of the occupations of
these orbitals, the four VB states in eq 5.38 are described by the
following electronic wave functions214 (state 1 ≡ state I and
state 2 ≡ state F in the notation used here):

ϕ| ⟩ = − | ⟩α α β β α α β
† † † † † † †a a a a a a a
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2

( ) 0Ia D D H D H A Ae p p p p (12.1a)

ϕ| ⟩ = − | ⟩α α β α β β α
† † † † † † †a a a a a a a
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† † † † † † †a a a a a a a

1
2

( ) 0Fb A D D H A H Ae p p p p (12.1d)

where |0⟩ represents the vacuum state with respect to the
electron active space, α and β denote spin components (or
functions), and the usual creation operator notation is used. In
eq 12.1a, the first creation operator builds the excess electron
charge on the electron donor; the spin singlet represents the
two-electron bonding wave function for the proton donor, Dp,
and the attached proton; and the last two creation operators
generate the lone pair on the proton acceptor Ap in the initial
localized proton state. Equations 12.1b−12.1d are interpreted
in a similar manner.
The model of PCET in eqs 12.1b−12.1d can be further

reduced to two VB states, depending on the nature of the
reaction. This is the case for PCET reactions with electronically
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adiabatic PT (see section 5).191,194 Moreover, in many cases,
the electronic level separation in each diabatic electronic PES is
such that the two-state approximation applies to the ET
reaction. In contrast, manifolds of proton vibrational states are
often involved in a PCET reaction mechanism. Thus, in
general, each vertex in Figure 20 corresponds to a class of
localized electron−proton states. Ab initio methods can be used
to compute the electronic structure of the reactive solutes,
including the electronic orbitals in eq 12.1 (e.g., time-
dependent density functional theory has been used very
recently to investigate excited state PCET in base pairs from
damaged DNA425).
The off-diagonal (one-electron) densities arising from eq

12.1 are

ρ ρ ρ ρ ζ ζ

ρ ρ ζ ζ

= = = = −
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r r

r r
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e e
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(these quantities arise from the electron charge density, which
carries a minus sign; see eq 4 in ref 214). The nonzero terms in
eq 12.2 typically can be neglected due to the small overlap
between electronic wave functions localized on the donor and
acceptor. This simplifies the SHS analysis but also allows the
classical rate picture, where the four states (or classes of states)
represented by the vertices of the square in Figure 20 are
characterized by occupation probabilities and are kinetically
related by rate constants for the distinct transition routes in
Figure 20. The differences between the nonzero diagonal
densities ρIa,Ia, ρIb,Ib, ρFa,Fa, and ρFb,Fb give the changes in charge
distribution for the pertinent reactions, which are involved in
the definition of the reaction coordinates as seen in eq 11.17.
Two independent collective solvent coordinates, of the type
described in eq 11.17,217,222 are introduced in SHS theory:
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The second formulation of each reaction coordinate in eq 12.3
is obtained by inserting the expression for the electrostatic
potential field r( )in generated by the inertial polarization field
and then the vacuum electrostatic fields created by the charge
densities, i.e.

∫
ρ

= ′
′ −

| ′ − |
= =d J kD r r

r r r

r r
( )

( )( )
( I, F; a, b)Jk

Jk Jk,
3

(12.4)

While in Cukier’s model the electric displacement fields
depend on the proton position (i.e., in a quantum mechanical
description of the proton, on the center of its wave function
distribution), in the above equations they depend on the
proton state. Equations 12.3a (12.3b) define Qp (Qe) as the
difference in the interaction energies of the two VB states

involved in the PT (ET) reaction with the inertial polarization
of the solvation medium. Thus, the dynamical variables Qp and
Qe, which describe the evolution of the reactive system due to
solvent fluctuations, are defined with respect to the interaction
between the same initial solute charge density ρIa,Ia and Pin. In
the framework of the multistate continuum theory, such
definitions amount to elimination of the dynamical variable
corresponding to ρIa,Ia. Indeed, once Qp and Qe are introduced,
the dynamical variable corresponding to ρFb,Fb − ρIa,Ia, Qpe (the
analogue of eq 11.17 in SHS treatment), can be expressed in
terms of Qp and Qe and thus eliminated. In fact

ρ ρ ρ ρ ρ ρ

ρ ρ ρ ρ

− = − + −

= − + −
Fb,Fb Ia,Ia Fb,Fb Ib,Ib Ib,Ib Ia,Ia

Fa,Fa Ia,Ia Ib,Ib Ia,Ia (12.5)

(the last equality arises from the fact that ρFb,Fb − ρIb,Ib = ρFa,Fa
− ρIa,Ia according to eq 12.1); hence

∫
∫
∫

ρ ρ= + = −

= − − ·

≡ − Δ ·

Q Q Q r r r r

r D r D r P r

r D r P r

d [ ( ) ( )] ( )

d [ ( ) ( )] ( )

d ( ) ( )

pe p e Fb,Fb Ia,Ia in

Fb Ia in

EPT in (12.6)

In the classical rate picture arising from the assumption of
zero off-diagonal density matrix elements, eq 12.6 is understood
to arise from the fact that the EPT and ETa/PT2 or PT1/ETb
reactions illustrated in Figure 20 correspond to the same initial
and final states. The two independent solvent coordinates Qp
and Qe depend on the VB electronic structures determined by
different localization characteristics of the electron and proton,
but do not show an explicit (parametric) dependence on the
(instantaneous) proton position. Similarly, the reaction
coordinate of eq 11.17 involves only the average initial and
final proton positions Ra and Rb, which reflect the initial and
final proton-state localization. In both cases, the usually weak
dependence of the solvent collective coordinate(s) on local
proton displacements is neglected.
Introducing two solvent coordinates (for ET and PT) is an

important generalization compared to Cukier’s treatment. The
physical motivation for this choice is especially evident for
charge transfer reactions where ET and PT occur through
different pathways, with the solute−environment interactions at
least in part specific to each charge transition. This perspective
shows the largest departure from the simple consideration of
the proton degree of freedom as an inner-sphere mode and
places increased focus on the coupling between the proton and
solvent, with the response of the solvent to PT described by Qp.
As was shown in ab initio studies of intramolecular PT in the
hydroxyacetate, hydrogen oxalate, and glycolate anions,426 PT
not only causes local rearrangement of the electron density, but
can also be coupled significantly to the motion of other atoms.
The deformation of the substrate of the reactive system needed
to accommodate the proton displacement is associated with a
significant reorganization energy. This example from ref 426
indicates the importance of defining a solvent reactive
coordinate that is “dedicated” to PT in describing PCET
reactions and pertinent rate constants.
Qp, Qe and the electron and proton coordinates are

complemented with the intramolecular X coordinate, namely,
the Dp−Ap distance. X may be treated in different ways (see
below), and it is fixed for the moment. The various coordinates
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and interactions in the PCET reaction system are depicted in
Figure 47. An effective Hamiltonian for the system can be
written as337

ξ= ̂ + ̂ + ̂ +ξH T T T H R X( , , )R Xtot el (12.7)

where ξ is the set of solvent degrees of freedom, and the
electronic Hamiltonian, which depends parametrically on all
nuclear coordinates, is given by

ξ ξ= + + +∞H H R X V R X V V R X( , ) ( , ) ( ) ( , , )el gp ss s

(12.8)

In these equations, T̂Q denotes the kinetic energy operator for
the Q = R, X, ξ coordinate, Hgp is the gas-phase electronic
Hamiltonian of the solute, V∞ describes the interaction of
solute and solvent electronic degrees of freedom (qs in Figure
47; the BO adiabatic approximation is adopted for such
electrons), Vss describes the solvent−solvent interactions, and
Vs accounts for all interactions of the solute with the solvent
inertial degrees of freedom. Vs includes electrostatic and short-
range interactions, but the latter are neglected when a dielectric
continuum model of the solvent is used. The terms involved in
the Hamiltonian of eqs 12.7 and 12.8 can be evaluated by using
either a dielectric continuum or an explicit solvent model. In
both cases, the gas-phase solute energy and the interaction of
the solute with the electronic polarization of the solvent are
given, in the four-state VB basis, by the 4 × 4 matrix H0(R,X)
with matrix elements

ϕ ϕ= ⟨ | + | ⟩ =∞H V i jH( ) ( , Ia, Ib, Fa, Fb)ij i j0 gp (12.9)

Note that the time scale separation between the qs (solvent
electrons) and q (reactive electron) motions implies that the
solvent “electronic polarization field is always in equilibrium
with point-like solute electrons”.214 In other words, the wave
function for the solvent electrons has a parametric dependence
on the q coordinate, as established by the BO separation of qs
and q. In addition, by using a strict BO adiabatic
approximation114 (see section 5.1) for qs with respect to the
nuclear coordinates, the qs wave function is independent of
Pin(r). Ultimately, this implies the independence of V∞ on Qp

and Qe and the fact that the contributions to the free energy
from the matrix elements in eq 12.9 do not depend on the
continuum or molecular representation of the solvent and
related effective Hamiltonian used (see below) to compute the
free energy.
The free energy of the system for each VB state (i.e., the

diabatic free energies) may be written as a functional of the
solvent inertial polarization:214,336,427

= +

=

G R X R X

n

P P P([ ]; , ) [ ] ([ ]; , )

( Ia, Ib, Fa, Fb)
n nin in in

(12.10)

where is the self-energy of Pin(r) and n includes the
solute−solvent interaction and the energy of the gas-phase
solute. Gn defines a PFES for the nuclear motion. Gn can also be
written in terms of Qp and Qe.

214,428 Given the solute electronic
state |ϕn⟩, Gn is

214,337

ϕ ϕ= ⟨ | | ⟩

=

G Q Q R X Q Q R X

n

H( , , , ) ( , , , )

( Ia, Ib, Fa, Fb)

n n np e cont p e

(12.11)

where, in a solvent continuum model, the VB matrix yielding
the free energy is

= ̃ +

+

+

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

R X Q Q

R Q Q R X

Q

Q

Q Q

H

I H

( , , , )

( , , ) ( , )

0 0 0 0
0 0 0

0 0 0

0 0 0

cont p e

p e 0

p

e

p e (12.12)

and the adiabatic free energy surfaces are obtained by
diagonalizing Hcont. In eq 12.12, I is the identity matrix. The
function ̃ is the self-energy of the solvent inertial polarization
field as a function of the solvent reaction coordinates expressed
in eqs 12.3a and 12.3b. The initial solute−inertial polarization
interaction (free) energy is contained in ̃ . In fact, the
coordinate transformation inherent in the definitions of Qp and
Qe shifts the zero of the solute−Pin interaction free energy to its
initial value, and thus the ρIa,Ia−Pin interaction energy is
contained in the transformed term ̃ rather than in the last
term of eq 12.12 that describes the solute−Pin interaction.
Equation 12.11 represents a PFES (required for studying a
charge transfer problem429,430), and not just a PES, because the
free energy appears in the averaging procedure inherent in the
reduction of the many solvent degrees of freedom to the
polarization field Pin(r).

193,429 Hcont is a “Hamiltonian” in the
sense of the solution reaction path Hamiltonian (SRPH)
introduced by Lee and Hynes, which has the properties of a
Hamiltonian when the solvent dynamics is treated at a
nondissipative level.429,430 Moreover, both the VB matrix in
eq 12.12 and the SRPH follow closely in spirit the solution
Hamiltonian central to the empirical valence bond approach of
Warshel and co-workers,431,432 which is obtained as a sum of a
gas-phase solute empirical Hamiltonian and a diagonal matrix
whose elements are solution free energies. For the VB matrix in
eq 12.12, Hcont behaves as a VB electronic Hamiltonian that
provides the effective PESs for proton motion.191,337,433 This
results from the equivalence of free energy and potential energy

Figure 47. Schematic representation of the system and its interactions
in the SHS theory of PCET. De (Dp) and Ae (Ap) are the electron
(proton) donor and acceptor, respectively. Qe and Qp are the solvent
collective coordinates associated with ET and PT, respectively. ξ
denotes the overall set of solvent degrees of freedom. The energy
terms in eqs 12.7 and 12.8 and the nonadiabatic coupling matrices
d(ep) and G(ep) of eq 12.21 are depicted. The interactions between
solute and solvent components are denoted using double-headed
arrows.

Chemical Reviews Review

dx.doi.org/10.1021/cr4006654 | Chem. Rev. 2014, 114, 3381−34653444



differences along R, with the assumption that the R dependence
of the density differences in eqs 12.3a and 12.3b is weak, which
allows the R dependence of ̃ to be disregarded just as it is
disregarded for Qp and Qe.

433 In addition, ̃ is approximately
quadratic in Qp and Qe,

214,433 which leads to free energy
paraboloids as shown in Figure 22c. The analytical expression
for ̃ is214,336

∑

̃ = −

+ + +
=

−

R Q Q L R

S L R R S L RL

( , , )
1
2

( )

1
2

[ ( )][ ( )] [ ( )]
i j

i i ij j j

p e Ia,Ia

, Ib,Fa
Ia, t

1
Ia,

(12.13)

where (SIa,SFa) ≡ (Qp,Qe), L is the reorganization energy matrix
(a free energy matrix whose elements arise from the inertial
reorganization of the solvent), and Lt is the truncated
reorganization energy matrix that is obtained by eliminating
the rows and columns corresponding to the states Ia and Fb.
Equations 12.12 and 12.13 show that the input quantities
required by the theory are electronic structure quantities
needed to compute the elements of the VB Hamiltonian matrix
for the gas-phase solute and reorganization energy matrix
elements. Two contributions to the reorganization energy need
to be computed: the inertial reorganization energy involved in
̃ and the electronic reorganization energy that enters H0

through V∞.
The inner-sphere (solute) contribution to the reorganization

energy is not included in eq 12.12, but also needs to be
computed when solute nuclear coordinates other than R change
significantly during the reaction. The solute can even provide
the predominant contribution to the reorganization energy
when the reactive species are embedded in a molecular or solid
matrix (as is often the case in charge transfer through organic
molecular crystals434−436), while the outer-sphere (solvent)
reorganization energy usually dominates in solution (e.g., the X
degree of freedom is associated with a small reorganization
energy in the case of HAT, and this contribution can be
disregarded compared to contributions from the solvent).
The inner-sphere reorganization energy λij

0 for charge transfer
between two VB states i and j can be computed as follows: (i)
the geometry of the gas-phase solute is optimized for both
charge states; (ii) λij

0 for the i → j reaction is given by the
difference between the energies of the charge state j in the two
optimized geometries.214,435 This procedure neglects the effects
of the surrounding solvent on the optimized geometries.
Indeed, as noted in ref 214, the evaluation of λij

0 can be
performed in the framework of the multistate continuum
theory after introduction of one or more solute coordinates
(such as X) and parametrization of the gas-phase Hamiltonian
as a function of these coordinates.
In a molecular solvent description, the reactive coordinates

Qp and Qe are functions of solvent coordinates, rather than
functionals of a polarization field. Similarly to eq 12.3a (12.3b),
Qp (Qe) is defined as the change in solute−solvent interaction
free energy in the PT (ET) reaction. This interaction is given in
terms of the potential term Vs in eq 12.8, so that the solvent
reaction coordinates are433

ξ ϕ ϕ ϕ ϕ= ⟨ | | ⟩ − ⟨ | | ⟩Q V V( )p Ib s Ib Ia s Ia (12.14a)

ξ ϕ ϕ ϕ ϕ= ⟨ | | ⟩ − ⟨ | | ⟩Q V V( )e Fa s Fa Ia s Ia (12.14b)

Both electrostatic and short-range solute−solvent interactions
are included. The matrix that gives the free energy in the VB
diabatic representation is

ξ ξ ϕ ϕ

ξ

ξ

ξ ξ

= + ⟨ | | ⟩ +

+

+

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

R X V V R X

Q

Q

Q Q

H I H( , , ) [ ( ) ] ( , )

0 0 0 0

0 ( ) 0 0

0 0 ( ) 0

0 0 0 ( ) ( )

mol ss Ia s Ia 0

p

e

p e

(12.15)

The self-energy of the solvent is computed from the solvent−
solvent interaction term Vss in eq 12.8 plus the reference value
(the zero) of the solvent−solute interaction in the coordinate
transformation that defines Qp and Qe.
Equation 12.11 (or the analogue with Hmol) gives the free

energy for each electronic state as a function of the proton
coordinate, the intramolecular coordinate describing the proton
donor−acceptor distance, and the two solvent coordinates. The
combination of the free energy expression in eq 12.11 with a
quantum mechanical description of the reactive proton allows
computation of the mixed electron/proton states involved in
the PCET reaction mechanism as functions of the solvent
coordinates. One thus obtains a manifold of electron−proton
vibrational states for each electronic state, and the PCET rate
constant includes all charge-transfer channels that arise from
such manifolds, as discussed in the next subsection.

12.2. Electron−Proton States, Rate Constants, and
Dynamical Effects

After definition of the coordinates and the Hamiltonian or free
energy matrix for the charge transfer system, the description of
the system dynamics requires definition of the electron−proton
states involved in the charge transitions. The SHS treatment
points out that the double-adiabatic approximation (see
sections 5 and 9) is not always valid for coupled ET and PT
reactions.227 The BO adiabatic separation of the active electron
and proton degrees of freedom from the other coordinates
(following separation of the solvent electrons) is valid
sufficiently far from avoided crossings of the electron−proton
PFES, while appreciable nonadiabatic behavior may occur in
the transition-state regions, depending on the magnitude of the
splitting between the adiabatic electron−proton free energy
surfaces. Applying the BO separation of the electron and
proton degrees of freedom from the other (intramolecular and
solvent) coordinates, adiabatic electron−proton states are
obtained as eigenstates of the time-independent Schrödinger
equation

Φ

= Φ

H q R X Q Q

E X Q Q q R X Q Q

( , ; , , )

( , , ) ( , ; , , )

i

i i

ep e p

e p e p (12.16)

where the Hamiltonian of the electron−proton subsystem, Hep,
is derived from eqs 12.7 and 12.8:

= ̂ +H T H R X( , )Rep el (12.17)

The eigenfunctions of Hep can be expanded in basis functions,
ψi, obtained by application of the double-adiabatic approx-
imation with respect to the transferring electron and proton:227
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∑ ψΦ =q R X Q Q c q R X Q Q( , ; , , ) ( , ; , , )i
j

ji je p e p

(12.18)

Each ψj, where j denotes a set of quantum numbers {l,n}, is the
product of an adiabatic or diabatic electronic wave function that
is obtained using the standard BO adiabatic approximation for
the reactive electron with respect to the other particles
(including the proton)

ϕ

ε ϕ=

H q R X Q Q

R X Q Q q R X Q Q

( ; , , , )

( , , , ) ( ; , , , )

l

l l

el e p

e p e p (12.19)

and one of the proton vibrational wave functions corresponding
to this electronic state, which are obtained (in the effective
potential energy given by the energy eigenvalue of the
electronic state as a function of the proton coordinate) by
applying a second BO separation with respect to the other
degrees of freedom:

ε χ

ε χ

̂ +

=

T R X Q Q R X Q Q

X Q Q R X Q Q

[ ( , , , )] ( ; , , )

( , , ) ( ; , , )

R l l
n

l
n

l
n

e p e p

e p e p (12.20)

The expansion in eq 12.18 allows an efficient computation of
the adiabatic states Φi and a clear physical representation of the
PCET reaction system. In fact, Φi has a dominant contribution
from the double-adiabatic wave function (which we call ψi) that
approximately characterizes the pertinent charge state of the
system and smaller contributions from the other double-
adiabatic wave functions that play an important role in the
system dynamics near avoided crossings, where substantial
departure from the double-adiabatic approximation occurs and
it becomes necessary to distinguish Φi from ψi. By applying the
same kind of procedure that leads from eq 5.10 to eq 5.30, it is
seen that the double-adiabatic states are coupled by the
Hamiltonian matrix elements

ψ ψ δ ε ψ χ

χ χ

⟨ | | ⟩ = − ℏ ⟨ | ·∇ ⟩

+ ⟨ | ⟩

′ ′ ′ ′
′

′ ′
′

H X Q Q
m

G

d( , , )j j jj l
n

l
n

ll R l
n

R

l
n

ll l
n

R

ep e p

2

p

(ep)

(ep)
(12.21)

where dll′
(ep) and Gll′

(ep) are defined as in eqs 5.18 and 5.31,
respectively, but the derivatives are performed with respect to R
only, and without using mass-weighted coordinates. mp is the
proton mass. The R subscript outside the brackets indicates
integration over the proton coordinate R. These matrix
elements are not neglected in the construction of the mixed
electron−proton vibrational adiabatic states Φi, which are
obtained as in eq 12.18 by solving the eigenvalue equation

=H c cEep (12.22)

where c is the matrix of the coefficients appearing in the
expansion of eq 12.18 and E is the diagonal matrix with
elements Ei. Ultimately, the procedure for obtaining the
electron−proton states consists of (i) calculating the double-
adiabatic states, and hence their matrix elements in eq 12.21,
and (ii) replacing these matrix elements in eq 12.22, which is
solved to obtain the expansion coefficients of Φi in eq 12.18. It
is useful to construct ψj with an adiabatic electronic wave
function if the ET reaction is near the adiabatic regime, while it
is preferable to use a diabatic electronic wave function if the ET
is in the nonadiabatic regime. The diabatic states may be given

directly by the VB model. Moreover, the nonadiabatic states are
related to the adiabatic states by a linear transformation, and eq
5.63 can be used in the nonadiabatic limit.
In deriving the double-adiabatic states, the free energy matrix

in eq 12.12 or 12.15 is used rather than a standard Hamiltonian
matrix.214 In cases of electronically adiabatic PT (as in HAT, or
in PCET for sufficiently strong hydrogen bonding between the
proton donor and acceptor), the double-adiabatic states can be
directly used since dll′

(ep) and Gll′
(ep) are negligible.

In the SHS formulation, particular attention is paid to the
common case of nonadiabatic ET and electronically adiabatic
PT. In fact, this case is relevant to many biochemical
systems191,194 and is, in fact, well represented in Table 1. In
this regime, the electronic couplings between PT states
(namely, between the state pairs Ia, Ib and Fa, Fb that are
connected by proton transitions) are larger than kBT, while the
electronic couplings between ET states (Ia−Fa and Ib−Fb) and
those between EPT states (Ia−Fb and Ib−Fa) are smaller than
kBT. It is therefore possible to adopt an ET-diabatic
representation constructed from just one initial localized
electronic state and one final state, as in Figure 27c. Neglecting
the electronic couplings between PT states amounts to
considering the 2 × 2 blocks corresponding to the Ia, Ib and
Fa, Fb states in the matrix of eq 12.12 or 12.15, whose
diagonalization produces the electronic states represented as
red curves in Figure 27b. Due to the electronically adiabatic
behavior of the PT process, the excited state resulting from
each 2 × 2 block diagonalization (upper red curves in Figure
27b) may be disregarded, so that only the two ground states of
the 2 × 2 block diagonalizations remain (lower red curves in
Figure 27b, reported in Figure 27c). Thus, the reactant and
product states correspond to distinct ET diabatic states. The
pertinent wave functions can be expanded on the basis of wave
functions describing the VB states:

ϕ ϕ ϕ= +q R Q c R Q q c R Q q( ; , ) ( , ) ( ) ( , ) ( )IbI p Ia p Ia Ib p

(12.23a)

ϕ ϕ ϕ= +q R Q c R Q q c R Q q( ; , ) ( , ) ( ) ( , ) ( )F p Fa p Fa Fb p Fb

(12.23b)

Each diabatic electronic state mixes PT states. Hence, the
expansion coefficients depend on the solvent coordinate
associated with the PT process. The dependence of the VB
wave functions on nuclear coordinates is omitted, which is exact
for strictly diabatic states. For the moment, the dependence on
X is not considered explicitly. The energies corresponding to
these diabatic states are191

= + +

− + − +
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2
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(12.24b)

(where Qp results from the semisum of the initial and final
solute−Pin interaction energies and the subtraction of the initial
one). Only the Hgp matrix elements (see eq 12.9) contribute to
the coupling between the two electronic states. The electronic
coupling averages over the reactant and product proton
vibrational states, and it is given by
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where Hgp is the matrix that represents the solute gas-phase
electronic Hamiltonian in the VB basis set. The second
approximate expression uses the Condon approximation with
respect to the solvent collective coordinate Qp, as it is evaluated
at the transition-state coordinate Qp

t . Moreover, in this
expression the couplings between the VB diabatic states are
assumed to be constant, which amounts to a stronger
application of the Condon approximation, giving

= =

= =

= =
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(12.26)

These approximations are useful in applications of the
theory, where VIF

ET is assumed to be the same for pure ET and
for the ET component of PCET reaction mechanisms and VIF

EPT

is approximated to be zero,196 since it appears as a second-order
coupling within the VB theory framework of ref 437 and is thus
expected to be significantly smaller than VIF

ET. The matrix
corresponding to the free energy in the {ϕI,ϕF} basis is191
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Under physically reasonable conditions for the solute−solvent
interactions,191,433 changes in the free energy HJJ(R,Qp,Qe) (J =
I or F) are approximately equivalent to changes in the potential
energy along the R coordinate. The proton vibrational states
that correspond to the initial and final electronic states can thus
be obtained by solving the one-dimensional Schrödinger
equation
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̂ +
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The resulting electron−proton states are

ψ ϕ χ=μ q R Q Q q R Q R Q Q( , ; , ) ( ; , ) ( ; , )k
p e I p I p e

(12.29a)

and

ψ ϕ χ=ν q R Q Q q R Q R Q Q( , ; , ) ( ; , ) ( ; , )n
p e F p F p e

(12.29b)

where k (n) runs over the manifold of initial (final) proton
vibrational states and the sets of quantum numbers μ = {I,k}
and ν = {F,n} were introduced. The vibronic coupling is

χ χ= ⟨ | | ⟩μνW Q V R Q( ) ( , )k k
Rp I IF p F (12.30)

In ref 196, the electronic coupling is approximated as in the
second expression of eq 12.25 and the Condon approximation
is also applied to the proton coordinate. In fact, the electronic
coupling is computed at the value R = 0 of the proton
coordinate that corresponds to maximum overlap between the
reactant and product proton wave functions in the iron
biimidazoline complexes studied. Thus, the vibronic coupling is
written as

χ χ= ⟨ | ⟩ ≡μν μνW Q V V S( ) k k
p
t

IF
ET

I F IF
ET p

(12.31)

This vibronic coupling is used to compute the PCET rate in the
electronically nonadiabatic limit of ET. The transition rate is
derived by Soudackov and Hammes-Schiffer191 using Fermi’s
golden rule, with the following approximations: (i) The
electron−proton free energy surfaces εI

k(Qp,Qe) and εF
n(Qp,Qe)

rresponding to the initial and final ET states are elliptic
paraboloids, with identical curvatures, and this holds for each
pair of proton vibrational states that is involved in the reaction.
(ii) Vμν is assumed constant for each pair of states.
These approximations were shown to be valid for a wide

range of PCET systems,420 and in the high-temperature limit
for a Debye solvent149 and in the absence of relevant
intramolecular solute modes, they lead to the PCET rate
constant
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(12.32)

where Pμ is the Boltzmann distribution for the reactant states.
In eq 12.32, the reaction free energy is

ε εΔ ° = −μν
ν ν μ μG Q Q Q Q( , ) ( , )n k

F p e I p e (12.33)

where (Qp
μ,Qe

μ) and (Qp
ν,Qe

ν) are the equilibrium solvent
collective coordinates for states μ and ν, respectively. The
outer-sphere reorganization energy associated with the μ → ν
transition is

λ ε ε= −μν
μ μ ν νQ Q Q Q( , ) ( , )n n

F p e F p e (12.34)

An inner-sphere contribution to the reorganization energy
generally needs to be included.196 The vibronic coupling
Wμν(Qp) from eq 12.30 is evaluated at the transition-state
coordinate Qp

t that corresponds to the intersection point of the
μ and ν paraboloids along the straight-line reaction path
connecting the minima of the PFESs (see Figure 22c). Thus, eq
12.31 is indeed used. As discussed in sections 5 and 10, the
dependence ofWμν on the chemical structure and conformation
of the system is dominated by the short-range exponential
decrease of Sμν

p with the proton donor−acceptor distance, X,
which is fixed in the derivation of eq 12.32. The theoretical
accuracy of eq 12.32 makes its comparison with experimental
data somewhat unfavorable, but it is particularly powerful where
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it is applicable (see ref 196, where excited proton vibrational
states are included in the analysis).
Equation 12.32 has the multi-charge transfer channel form of

eq 10.16. It differs from eq 11.6 in the attribution of a specific
reorganization energy to each pair of proton vibrational states
involved in the reaction, which reflects the possibility that the
PFES minima are located at different positions for pairs of
diabatic states μ and ν. The attribution of a specific
reorganization free energy to each charge transfer channel
arises naturally within the SHS theoretical framework. De facto,
the major advance of eq 12.32, compared to previous
expressions for this rate constant, is in the evaluation of the
underpinning quantities. For example, the approximation that
all proton vibrational states in one of the differently localized
{χI

k} and {χF
n} manifolds interact in the same way with the

solvent188 is dropped in the SHS treatment. Cukier notes that
the SHS analysis of PCET “has gone beyond this assumption
and constructed a continuum-based theory that accounts for
specific effects of solvation on the various proton states that are
coupled in the transfer”.190 Moreover, all of the involved
quantities (vibronic couplings, reaction free energies, and
reorganization energies) are computed for consistently derived
two-dimensional mixed electron−proton vibrational free energy
surfaces. Within this framework, it is shown that λμν is not
simply the sum of the reorganization energies for pure PT and
ET, because of a term that arises from the interaction of the
change in density caused by one charge transfer process with
the variation of the inertial polarization field resulting from the
change in density produced by the other charge transfer
process. All such features also distinguish eq 12.32 from similar
rate constants previously obtained for pure ET involving
nuclear modes that are treated quantum mechanically.340,342,343

Furthermore, the coupling of the transferring proton with the
solvent, which is critical in PCET, does not allow use of the rate
expression with the quantities computed for the ET problem
just by identifying the proton as an inner-sphere solute mode,
although the formalism developed to tackle the intramolecular
modes in ET systems340,342,343 can be exploited to formulate
PCET rate constants.191

Effects of the intramolecular mode X are introduced in the
SHS treatment in two different ways, depending on the value of
the X vibrational frequency. When the X mode is characterized
by a slow frequency and is not coupled dynamically to the
solvent fluctuations, a parametric dependence of the electron−
proton free energy surfaces, εI

k(X,Qp,Qe) and εI
n(X,Qp,Qe), on X

is included in the SHS analysis. A rate constant for the reactive
system equilibrated at each X value can be written as in eq
12.32, and the overall observed rate is
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The opposite limit of a very fast X mode requires that X be
treated quantum mechanically, similarly to the reactive electron
and proton. Also in this limit X is dynamically uncoupled from
the solvent fluctuations, because the X vibrational frequency
(ω) is above the solvent frequency range involved in the PCET
reaction (in other words, ω is out of the solvent frequency
range on the opposite side compared to the case leading to eq
12.35). This limit can be treated by constructing electron−

proton−X mode states, with the same procedure used to obtain
electron−proton states in eqs 12.16−12.22 but in the presence
of two nuclear modes (R and X). The rate constant for
nonadiabatic PCET in the high-temperature limit of a Debye
solvent has the form of eq 12.32, except that the involved
quantities are calculated for pairs of mixed electron−proton−X
mode vibronic free energy surfaces, again assumed harmonic in
Qp and Qe.
The most common situation is intermediate between the two

limiting cases described above. X fluctuations modulate the
proton tunneling distance, and thus the coupling between the
reactant and product vibronic states. The fluctuations in the
vibronic matrix element are also dynamically coupled to the
fluctuations of the solvent that are responsible for driving the
system to the transition regions of the free energy surfaces. The
effects on the PCET rate of the dynamical coupling between
the X mode and the solvent coordinates are addressed by a
dynamical treatment of the X mode at the same level as the
solvent modes. The formalism of Borgis and Hynes is
applied,165,192,193 but the relevant quantities are formulated
and computed in a manner that is suitable for the general
context of coupled ET and PT reactions. In particular, the
possible occurrence of nonadiabatic ET between the PFES for
nuclear motion is accounted for. Formally, the rate constants in
different physical regimes can be written as in section 10. More
specifically:
(i) In the high-temperature and/or low-frequency regime for

the X mode, ℏω/kBT ≪ 1, the rate is337,345
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The formal rate expression in eq 12.36 is obtained by insertion
of eq 10.17 into the general term of the sum in eq 10.16. If the
reorganization energy is dominated by the solvent contribution
and the equilibrium X value is the same in the reactant and
product vibronic states, so that ΔX = 0, eq 12.35 simplifies
to184
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In the low temperature and/or high frequency regime of the
X mode, as defined by ℏω/kBT≫ 1, and in the strong solvation
limit where λS > |ΔG°|, the rate is
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as is obtained by insertion of eqs 10.18 into eq 10.16. Useful
analysis and application of the above rate constant expressions
to idealized and real PCET systems is found in studies of
Hammes-Schiffer and co-workers.184,225,337,345,421
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12.3. Note on the Kinetic Isotope Effect in PCET

Hammes-Schiffer and co-workers have emphasized that KIE is a
hallmark of concerted PCET reaction mechanisms.184 When
the concerted ET−PT reaction is electronically nonadiabatic
(in contrast to the typically electronically adiabatic HAT), the
PCET rate constant depends on squared vibronic couplings,
which can be approximated as products of (squared) electronic
couplings and overlaps between the reactant and product
proton vibrational functions. For simplicity, we restrict the
discussion here to a pair of vibrational states, for example with
the assumption that only the ground diabatic proton states are
involved in the reaction. According to the rate expressions for
electronically nonadiabatic PCET given in section 12.2, the
ratio of the PCET rate constants for hydrogen (or, in more
rigorous terms, protium), H, and deuterium, D, will depend on
the ratio |SH|

2/|SD|
2, which is significantly larger than unity due

to the difference in the H and D masses and to the exponential
dependence of the wave function overlap on the mass of the
tunneling particle (see eq 7.11). Equation 7.11, written for
arbitrary donor−acceptor distances, also shows that the
difference in mass causes a sharper distance dependence for
SD than for SH, so αD > αH. For systems that are in relatively
rigid reactive conformations (for example, in enzyme active
sites with short hydrogen donor−acceptor distances, less than
the sum of van der Waals radii, which is in the 3.2−3.5 Å
range297), the terms arising from X coordinate thermal
fluctuation (see eqs 12.36−12.38) can be disregarded and the
KIE is determined by |SH|

2/|SD|
2. Thus, in these systems the

KIE essentially does not depend on the temperature. In the
range of validity of eq 12.37, with the further simplifying
assumption that reaction free energy and reorganization energy
isotope effects such as in eq 6.27 are not significant, one finds
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which implies that KIE decreases with increasing temperature.
In this regime, KIE depends on |S ̅H|2/|S ̅D|2, on the frequency ω
of the X mode, and on the X dependence of the vibrational
(and hence vibronic) coupling. Thus, a key role is played by the
X mode characteristics.438 The interpretation of KIEs can be
very complicated, even under the above simplifying assump-
tions, if excited vibrational states are involved in the reaction
mechanism. Moreover, both contributions to KIE in eqs 6.27
and 12.39 generally need to be considered, as is done in ref 438.

12.4. Distinguishing between HAT and Concerted PCET
Reactions

The SHS framework provides a fruitful scheme to distinguish
among different reaction mechanisms involving both ET and
PT. Of particular interest is the distinction between the HAT
and concerted PCET reaction mechanisms. As noted by
Cukier, “Deciding whether electron and proton transfer is a
consecutive or a concerted process can be quite difficult, from
both experimental and theoretical perspectives. Distinguishing
between PCET and HAT also can be difficult.” 190

A clear difference between HAT and EPT is that HAT
involves the same electron and proton donor and acceptor,
while the EPT is characterized by ET and PT between two
different redox pairs. However, strictly speaking, “This criterion
is not rigorous because the electron and proton behave
quantum mechanically and hence are not localized to a specific
point at any given time.” 215 A consistent quantum mechanical
treatment of the electron and proton degrees of freedom would
address this issue, and, at any rate, the mentioned argument
affords in all contexts the major criterion for the differentiation
between the two reactions.
Distinctive features of HAT are the very small value of the

associated solvent reorganization energy due to the correspond-
ingly weak influence of the neutral transferring particle on the
surrounding charge distribution (e.g., in ref 196 a relatively
large outer-sphere reorganization energy indicates that
concerted PCET and not HAT is the mechanism for iron

Figure 48. The two highest occupied electronic Kohn−Sham orbitals for the (a) phenoxyl/phenol and (b) benzyl/toluene systems. The orbital of
lower energy is doubly occupied, while the other is singly occupied. I is the initial diabatic state (charges on the donors), II is the final one (F in the
notation of this review), and TS denotes the transition state. Reprinted from ref 197. Copyright 2006 American Chemical Society.
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biimidazoline complexes) and the electronic adiabaticity of the
reaction that arises from the short ET path for the electron
bound to the proton, at odds with the electronically
nonadiabatic character of several PCET reactions in biological
systems. Both HAT and EPT are usually vibronically
nonadiabatic, due to the small proton wave function overlap
that produces vibronic couplings much less than kBT.

197 In fact,
vibronic nonadiabaticiy is the most frequent case in Table 1
(see the last two columns), where PT is electronically adiabatic
but vibrationally nonadiabatic.
A quantitative discriminator for HAT versus EPT is the

degree of electronic nonadiabaticity for the PT process.195,197

The parameter p (eq 7.4) formulated for EPT reactions195 was
applied by Hammes-Schiffer and co-workers to distinguish
between HAT and EPT. When, in eq 7.10, the time for proton
tunneling is much longer than the time for the electron
transition, the proton sees the mix of the initial and final
diabatic electronic states; namely, the PT occurs on the
electronically adiabatic ground state as expected for HAT. In
the case in which p = τp/τe ≪ 1, an electronically nonadiabatic
reaction is operative, as is expected for concerted electron−
proton transfer with a De−Ae distance much larger than the
Dp−Ap distance. PCET reactions can also be in the
intermediate regime, thus complicating discrimination of the
reaction mechanisms.
The above diagnostic criterion was applied to the phenoxyl/

phenol and benzyl/toluene systems (Figure 48) at their
transition-state geometries. A strong hydrogen bond approx-
imately planar with the phenol rings is observed in the first case,
while a weaker hydrogen bond nearly orthogonal to the
benzene rings is obtained in the second case. The singly
occupied Kohn−Sham molecular orbitals32 are dominated by
2p orbitals perpendicular to the Dp−Ap axis for the phenoxyl/
phenol system, while they are dominated by σ orbitals oriented
along the Dp−Ap axis in the benzyl/toluene system. In ref 32,
this molecular orbital arrangement led to the conclusion that
EPT takes place in the first case, while HAT occurs in the
second case, where the two charges transfer between the same
donor and acceptor groups. This conclusion is confirmed and
quantified by application of the adiabaticity degree parameter p
in ref 197, since p = 1/80 for phenoxyl/phenol and 4 for the
benzyl/toluene system (see also the potential energy curves in
Figures 22a,b).

12.5. Electrochemical PCET

The analysis by Hammes-Schiffer and co-workers has also been
extended to electrochemical PCET, combining the non-
adiabatic PCET rate expression with methods previously
developed for the study of electrochemical ET.357 Figure 49
shows a typical electrochemical PCET system to which the
proposed theoretical setup can be applied. It is composed of a
metal electrode, M, in contact with a solution containing
electrolyte ions and solute molecules (the solute complex in
Figure 49) that can exchange electrons with the electrode and
can carry out a PT along a hydrogen bond inside the complex.
In modeling the system, the ET reaction occurs only after
formation of the solute complex (SC) with the hydrogen bond
scenario of the PT reaction. The PCET mechanism is
characterized by nonadiabatic transitions between reactant
and product vibronic states. An important environmental
coordinate to be included in the analysis is the electrode−SC
distance x. A special value of x is the distance xH of the outer
Helmholtz plane (OHP in Figure 49) from M, which is the

distance of closest approach to the electrode for the solvated
solute complex. Another relevant coordinate is the proton
donor−acceptor distance X (denoted by R in Figure 49, as
reproduced from ref 357, while R is reserved for the proton
coordinate in our review). M is described as a free-electron
reservoir with (unbiased) Fermi level εM. The electrical double
layer determined by the equilibrium distribution of the
electrolyte ions near the electrode−solution interface leads to
the electrostatic potential field ϕs(x) in the absence of SC, and
the zero of this potential is taken in the bulk solution, at
practically infinite distance from the metal: ϕs(x→∞) = 0.
Beyond the OHP, in the diffuse layer, ϕs(x) decreases
exponentially with the distance from the interface as described
by the Gouy−Chapman-Stern model of the double
layer.439−441

The transfer rate or transition probability per unit time
η ε→ x( , , )SC M from the reduced SC to the M level of energy

ε at a given M−SC distance x can be written using one of the
expressions in section 12.2, depending on the temperature and
the frequency of the intramolecular mode X. In the electro-
chemical setup, the expression for the driving force ΔGμν°, now
written as ΔGμν(η,x,ε), reflects the presence of a heterogeneous
interface, involving a metal, and depends on the applied
overpotential η:

η ε ε

η ϕ

Δ = Δ +

− − −
μν μνG x U

e x k T Q Q

( , , )

[ ( ) ln( / )]s B F I (12.40)

In eq 12.40, ΔUμν is the difference between the minima of the
free energy surfaces for the oxidized and reduced SC in bulk
solution, i.e., in the absence of the electrode. QI and QF are the
partition functions of the reduced (initial) and oxidized (final)
SC, respectively, in bulk solution.
Hammes-Schiffer and co-workers assumed that eq 12.36,

with the free energy of reaction given by eq 12.40, is the most
relevant expression for the oxidation rate η ε→ x( , , )SC M . ΔX
has a different sign for the cathodic and anodic currents.
Consequently, the 2αμvkBTΔX term in the effective activation

Figure 49. Schematic representation of the electrochemical PCET
model system of Hammes-Schiffer and co-workers. The filled circles
represent the electrolyte ions in the solution. ϕM denotes the inner
potential of the electrode, while ϕs(x) is the electrostatic potential in
solution at a distance x from the metal surface. xH locates the OHP. R
denotes the proton donor−acceptor distance, which is denoted X
throughout this review. Reprinted with permission from ref 357.
Copyright 2008 American Chemical Society.

Chemical Reviews Review

dx.doi.org/10.1021/cr4006654 | Chem. Rev. 2014, 114, 3381−34653450



energy has opposite signs in the reduction rate
η ε→ + x( , , )M SC and in the oxidation rate η ε→ x( , , )SC M

(which causes asymmetry of the theoretical Tafel plot), and
according to eq 10.4, the respective vibronic couplings, hence
the overall rates, differ by the factor exp(−2αIFΔX).
Introducing the metal density of states ρ(ε) and the Fermi−
Dirac occupation distribution f(ε) = [1 + exp(ε/kBT)]

−1, with
energies referred to the Fermi level, the oxidation and reduction
rates are written in the Gurney442−Marcus122,234−Chidsey443

form:

∫η ε ε ρ ε η ε= −→ →k x d f x( , ) [1 ( )] ( ) ( , , )SC M SC M

(12.41a)

∫η ε ε ε ρ ε η ε=→ →+ +k x d f x( , , ) ( ) ( ) ( , , )M SC M SC

(12.41b)

The anodic, ja, and cathodic, jc, current densities (correspond-
ing to the SC oxidation and reduction processes, respectively)
are related to the rate constants in eqs 12.41a and 12.41b
by357,444

∫η η η=
∞

→j dx C x k x( ) ( , ) ( , )a x
SC SC M

H (12.42a)

∫η η η=
∞

+ → +j dx C x k x( ) ( , ) ( , )
xc SC M SC

H (12.42b)

where denotes the Faraday constant and CSC(η,x) and
CSC

+(η,x) are the molar concentrations of the reduced and
oxidized SC, respectively. Evaluation of eqs 12.42a and 12.42b
has been performed under several simplifying assumptions.
First, it is assumed that, in the nonadiabatic regime resulting
from the relatively large value of xH and for sufficiently low total
concentration of the solute complex, the low currents in the
overpotential range explored do not appreciably alter the
equilibrium Boltzmann distribution of the two SC redox species
in the diffuse layer just outside the OHP and beyond it. As a
consequence,
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where CSC+
0 (η,x) and CSC

0 (η,x) are bulk concentrations. The
vibronic coupling is approximated as VIF

ETSμv
p , with Sμv

p satisfying
eq 9.21 for (0,n) → (μ,ν) and VIF

ET decreasing exponentially
with x as exp(−βETx/2). The Debye length characterizing the
thickness of the diffuse layer357 (or, as a simple alternative, xH)
is assumed to be much larger than βET

−1, and thus in the
allowed x range the current is dominated by the contribution at
xH. Additional approximations are that the double layer effect
can be neglected, the density of states of the electrode can be
approximated with its value ρF at the Fermi level, VIF

ET is
independent of the metal electronic level, and the initial and
final proton states are well described by harmonic oscillators
with equal frequency ωp. The total current density is then
expressed in the form215,357
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The overpotential is referenced to the formal potential of the
redox SC. Therefore, CSC+

0 (η,x) = CSC
0 (η,x) and j(η) = 0 for η =

0.
Reference 357 emphasizes that replacing the Fermi function

in eq 12.44 with the Heaviside step function, to enable
analytical evaluation of the integral, would lead to incon-
sistencies and violation of detailed balance, so the integral form
of the total current is maintained throughout the treatment.
Indeed, the Marcus−Hush−Chidsey integral involved in eq
12.44 has imposed limitations on the analytical elaborations in
theoretical electrochemistry over many years. Analytical
solutions of the Marcus−Hush−Chidsey integral appeared in
more recent literature445,446 in the form of series expansions,
and they satisfy detailed balance. These solutions can be applied
to each term in the sums of eq 12.44, thus leading to an
analytical expression of j without cumbersome integral
evaluation. Moreover, the rapid convergence447 of the series
expansion afforded in ref 446 allows for its efficient use even
when several vibronic states are relevant to the PCET
mechanism. Another rapidly convergent solution of the
Marcus−Hush−Chidsey integral is available from a later
study448 that elaborates on the results of ref 445 and applies
a piecewise polynomial approximation.
Finally, we mention that Hammes-Schiffer and co-workers449

have also examined the definition of a model system-bath
Hamiltonian for electrochemical PCET that facilitates exten-
sions of the theory.
A comprehensive survey of theoretical and experimental

approaches to electrochemical PCET was provided in a recent
review.450

13. CONCLUSIONS AND PROSPECTS
Increasingly powerful interpretative and predictive models for
independent and coupled electron, proton, and atom transfer
have emerged in the past two decades. An “ideal” theory is
expected to have the following characteristics:
(i) Quantum description of the transferring proton(s) and

other relevant degrees of freedom, such as the proton donor−
acceptor distance.
(ii) Relaxation of the adiabatic approximation inherent in the

BO separation of electronic and nuclear motion. In several
cases the nonadiabatic coupling terms neglected in eq 5.8 are
precisely those terms that are responsible for the transitions
between states with different electron charge localizations.
(iii) Capacity to describe the transferring electron(s) and

proton(s) in a similar fashion and to capture situations ranging
from the adiabatic to the nonadiabatic regime with respect to
other degrees of freedom.
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(iv) Consideration of the adiabatic, nonadiabatic, and
intermediate regimes arising from the relative time scales of
the dynamics of active electron(s), transferring proton(s), and
other relevant nuclear modes.
(v) Ability to classify and characterize diverse PCET

reactions, establishing analogies and differences that enable
predictions for novel systems and also suggestions for de novo
designs of artificial systems. The relationship between partition
in subsystems and adiabatic/nonadiabatic behaviors, on the one
hand, and structure/function features, on the other hand, needs
to be suitably addressed.
(vi) Theoretical analysis of the structural fluctuations

involved in PCET reactions leading a system to access different
mechanistic regimes.
(vii) Theoretical connection of various PCET regimes and

pertinent rates, and the related identification of signatures of
transitions from one regime to the other, also in the presence of
fluctuations of the relevant charge transfer media. A very recent
study by Koper185 proposes a theoretical model to compute
potential energy surfaces for electrochemical PCET and to
predict the transition form sequential to concerted electron−
proton transfer induced by a changing overpotential. Regarding
direct molecular dynamics simulation of PCET across multiple
regimes, apart from the well-known surface-hopping meth-
od,119,160,167,451 an interesting recent study of Kretchmer and
Miller186 proposes an extension of the ring polymer molecular
dynamics method452,453 that enables the direct simulation of
PCET reactions across a wide range of mechanistic regimes.
(viii) Identification of robust markers of single-charge

transfer reactions that allow their tracking in complex
mechanisms that involve coupled charge transfer processes.
(ix) Points v−viii may motivate strategies to induce adiabatic

or nonadiabatic behaviors in PCET reactions. Addressing these
many challenging points may require the development of new
theories and computational techniques or a combination of
existing strategies.
(x) Conceptual and analytical simplifications of the theory

may remove unimportant or difficult to observe refinements
that prevent comparison with experiments, in order to define
parameters and signatures outlined in items v−ix. Interplay
between theory and experiment seems essential for achieving all
of these goals.
These 10 aims seem likely to drive developments in the field

of PCET reaction mechanisms. Some of these requirements
were stressed and addressed to some extent in the studies that
were reviewed above. The analyses of Hammes-Schiffer,
Soudackov, and co-workers (refs 160, 164, 167, 182, 184,
191, 194, 196, 214, 215, 225, 227, 337, 345, 357, 420, and
454−461) comprehensively addressed issues i−iv and partially
addressed issues v and vi. Points v and vi and vii−x remain
largely open. A few recent studies185,186 have been focused on
issue vii. Theory that was applied widely to investigate
fluctuations in biological ET316,318,462−472 may be extended
fruitfully to account for items vi and vii. Furthermore, such an
extension may provide support to satisfy aims vii−x. In
particular, point x is a major issue encompassing almost all
other issues. Some authors have recently noted that, “A few
papers have applied versions of Hammes-Schiffer’s multistate
continuum theory, although this is challenging, and simplifica-
tions usually have to be applied because many of the needed
parameters are not easily accessible.” 248 For this reason, the
extended semiclassical Marcus model, based on the Marcus−
Hush−Levich formalism, has been preferred to interpret

experimental data in several applications.450,473 Importantly,
the semiclassical Marcus model can be derived from the
multistate continuum theory with the assumptions that the free
energy depends on a single solvent coordinate and that the
electronic states can be approximated using the two-state model
in the weak-coupling limit.214,336 Previous studies (e.g., see ref
184 and references therein) and our review provide
connections among recent PCET theories and among these
theories and the extended Marcus theory. However, future
efforts in this direction are needed to elaborate analytical PCET
rate expressions that are more inclusive than Marcus’ rate (in
particular, with respect to proton tunneling and specific
treatment of relevant nuclear coordinates) but less compre-
hensive than those provided by Hammes-Schiffer and co-
workers. Such expressions may favor more direct explorations
of experimental data within specific classes of PCET reactions.
Despite the significance of point x above, the importance of

the multistate continuum theory and its developments for
understanding the nature of PCET reaction mechanisms (even
in sophisticated formulations that did not introduce substantial
levels of approximation) was demonstrated by successful
comparisons with experiments in the past decade.196,421,474−481

481 In addition, further development on the experimental side
will continue to allow increasingly detailed and direct
comparisons with theory. Further developments of the
strategies of Cukier, Borgis and Hynes, and Hammes-Schiffer
and co-workers addressing issues v−x would be useful as well.
As discussed in ref 182, the ability to classify PCET reactions
plays a critical role in understanding basic principles underlying
a wide range of natural, engineered, and artificial systems for
energy conversion and of interest in growing efforts to develop
alternative renewable energy sources. In this respect, significant
progress can be made by the systematic investigation of the
limiting forms of equations and rate constants involving
multiple vibronic states and understanding the limits of validity
of the inherent simplifications. It is important to gain a deeper
understanding of the essential features that make the extended
Marcus theory successful for describing charge transfer
reactions (beyond outer-sphere ET reactions), its limitations,
and what generic features (such as eq 6.20 and the rightmost
term in eq 6.25) can be fruitfully specified to extend its
applicability further and to link the theory to recent PCET
theories. A useful example of the connection between the
extended Marcus theory and a more specific treatment of PT is
provided by the way in which eq 6.12 is found again in the
treatment of homogeneous PT by Levich et al.,180 and other
connections are described in our review. The Hopfield
treatment of nuclear modes308 may serve as an “intermediary”
between the Marcus and the Borgis−Hynes and SHS theories
of PCET in regimes where its semiclassical description of the
transition between classical and quantum nuclear motion is
adequate.
A consistent description of quantum effects (including zero-

point energy and nuclear tunneling) is provided by the wave
packet dynamical method through use of ab initio molecular
dynamics combined with the description of the tunneling
particle as a quantum wave packet.482−485 The evolving wave
packet is thus coupled to changes in the surrounding electronic
structure and nuclear geometry.
Even where simplifications to the formalism of the SHS

theory are possible, the framework of system coordinates and
states in the SHS treatment of PCET should be retained,
because it yields a profitable approach to classify PCET
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reactions and to relate them to the experimental context. The
combination of rich and predictive theories with experimental
systems that are absolutely central to molecular bioenergetics
and to solar fuel production are likely to make this direction of
research of increasing significance and impact in the coming
decades.

APPENDIX A
In this appendix, following the analysis in ref 486, we establish
the concept of potential (actually, an effective potential) free
energy surface (PFES) by considering the connection between
energy and free energy and limiting the analysis to a canonical
ensemble and a single nuclear reaction coordinate, separate
from the coordinate of the proton involved in the PCET
reaction.
Consider a system described by the coordinates q and R of

the transferring electron and proton, respectively, a reactive
nuclear coordinate Q, and all other nuclear coordinates, which
are denoted Y ≡ {yα}. The set of all nuclear coordinates is Y′ ≡
{Q,Y}. The set of momenta associated with Y is denoted by P.
We assume that all of the Y coordinates obey classical statistical
mechanics.
Eν(Q,Y,P) is the system energy for a given quantum state ν of

the electron−proton subsystem and a fixed value of the Q
coordinate; hence, the kinetic energy associated with the Q
degree of freedom is not included. Using this energy function,
we construct the partial partition function159,218 (that is, the
partition function for the given quantum state ν and reaction
coordinate value Q):

∫ β= −ν νZ Q
h

E Q Y P Y P( )
1

exp[ ( , , )] d dN (A1)

where h is Planck’s constant, N is the number of Y degrees of
freedom, β = (kBT)

−1, and the other symbols are defined in
section 5. The corresponding partial free energy is

β
= −ν νG Q Z Q( )

1
ln[ ( )]

(A2)

(as is common, the dependence of the free energy on T is not
explicitly indicated). Here, this partial free energy is used
without considering possible issues associated with the validity
of the ergodic hypothesis and the comparison between the time
scales of Y equilibration and the PCET reaction mechanism
(including in the latter the Q change promoting the
reaction).487 The average energy of the Y subsystem for the
given Q and ν is

∫ β

β

β
β

β
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(A3)

Thus, the thermal averaging in eq A3 leads to

= ̅ −ν ν νG Q E Q TS Q( ) ( ) ( ) (A4)

where

= −
∂
∂ν
νS Q

G Q
T

( )
( )

(A5)

is the entropy associated with the Y degrees of freedom, defined
according to Planck−Boltzmann. In fact, the probability density
of {Y,P} conditional on Q is

β= −ν
ν

νf Y P Q
Z Q

E Q Y P( , / )
1
( )

exp[ ( , , )]
(A6)

and

∫= −

= −
∂
∂

ν ν ν

ν

S Q k f Y P Q f Y P Q dYdP

G Q
T

( ) ( , / ) ln[ ( , / )]

( )

B

(A7)

The significance of Gν(Q) as the effective potential energy
for the Q motion is seen by calculating the average force on the
Q degree of freedom arising from the Y nuclear coordinates:

∫
∫
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β
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(A8)

In eq A8, the derivative of Eν(Q,Y,P) with respect to Q is
evaluated using the Hellmann−Feynman theorem if Q
represents an eigenvalue of the position operator of a quantum
degree of freedom.114

Equation A8 shows that the free energy Gν(Q) associated
with the nonreactive environmental degrees of freedom and a
given quantum state of the {q,R} subsystem act as a “potential
of mean force”.488,489 Therefore, the free energy Gν(Q) is an
effective potential for the nuclear motion along the reaction
coordinate Q. Ultimately, as in ref 486 and considering the
general case of more reactive coordinates, we can say that
Gν(Q) describes a “potential free energy surface” (PFES).
It is worth noting that, if the reactive electron−proton

subsystem interacts significantly with the Q coordinate (which
is thus identified as the reaction coordinate) while its direct
interaction with Y is negligible, then the difference Gν(Q) −
Gμ(Q) for two different ν and μ electron−proton states equals
their energy difference. We next illustrate this circumstance in
the simpler case of pure ET.
Using familiar approximations (that is, an explicit treatment

of only the transferring electron as discussed in section 5.2, i.e.,
a single-electron model; a quadratic expansion of the
environmental degrees of freedom in the Hamiltonian; linear
coupling between q and Q), the ET Hamiltonian can be written
as177

= + + +− −H H H H Hq q Q Q Q Y
ET (A9)

where Hq is the one-electron Hamiltonian, Hq−Q is the
electron−nucleus (q−Q) interaction energy, HQ is the
Hamiltonian for the reactive coordinate, and HQ−Y includes
the energy of Y and the Q−Y interaction energy. Substituting
this Hamiltonian into the Schrödinger equation for the
electronic wave function, and adding the Y kinetic energy,
one obtains energy eigenvalues of the form
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ε= +ν νE Q Y P Q U Q Y P( , , ) ( ) ( , , ) (A10)

for a given quantum state ν of the electron and a fixed value of
Q. εν(Q) also contains the q−Q interaction. Using eq A10, one
finds that, for any two quantum states ν and μ

∫
β

β

=

=
−

−

ν μf Y P Q f Y P Q

U Q Y P
U Q Y P dYdP

( , / ) ( , / )

exp[ ( , , )]

exp[ ( , , )] (A11)

Thus, eq A7 yields Sν (Q) = Sμ(Q), and (assuming that the two
electronic states have equal-fold degeneracy)

ε ε− = ̅ − ̅ = −ν μ ν μ ν μG Q G Q E Q E Q Q Q( ) ( ) ( ) ( ) ( ) ( )
(A12)

Equation A12 expresses the fact that, in the approximations
used, the electronic state does not affect the entropy of the Y
subsystem for any given Q, because the electron does not
appreciably interact with the nonreactive nuclear modes. As
such, the PFES reduces to a “mean potential energy surface”
(MPES486).

APPENDIX B

In this appendix, we further examine the equations of motion
for the PCET system (described in terms of the nuclear wave
functions associated with different electronic states in eq 5.40)
using the density matrix formalism. The implications of using
nonorthogonal electronic diabatic states will be discussed. We
will also shed some light on the correlation properties of eq
5.39 and their relationship to graphs such as those of Figure 18.
The analysis is formulated here in terms of a single nuclear
reaction coordinate Q, which may be interpreted as a set of
nuclear coordinates.
The state in eq 5.39 corresponds to the density operator

∫

∑

∑

ρ
ϕ χ χ ϕ χ χ

χ χ χ χ

ϕ ϕ
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,

p p

,
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(B1)

where the decomposition of the identity operator in the
continuous basis generated by the observables R̂ and Q̂ is used
to obtain the expansion in the |ϕn,R,Q⟩ basis. The matrix
elements

ρ ϕ ρ ϕ

χ χ χ χ

= ⟨ | ̂ | ⟩

= *

R Q t R Q t R Q

c t c t R Q R Q

( , , ) , , ( ) , ,

( ) ( ) ( ) ( ) ( ) ( )
kn k n

k n k k n n
p p

(B2)

represent (a) the population of state |ϕn,R,Q⟩ at time t for k = n
(namely, the probability density that at this instant the proton
is at position R and the other nuclei are at Q while the electron
is in state |ϕn⟩) and (b) the coherence between states |ϕk,R,Q⟩
and |ϕn,R,Q⟩, for k ≠ n (i.e., the coherence between the diabatic
electronic states |ϕk⟩ and |ϕk⟩ in the nuclear conformation
{R,Q}).
The other density matrix elements

ρ

χ χ χ χ

′ ′

= * ′ ′

R Q R Q t

c t c t R Q R Q

( , , , , )

( ) ( ) ( ) ( ) ( ) ( )
kn

k n k k n n
p p

(B3)

contain correlations between the conformations {R,Q} in the
electronic state |ϕk⟩ and {R′,Q′} in the electronic state |ϕn⟩.
The evolution of the PCET system is described by the

quantum Liouville equation

ρ ρℏ ̂ = ̂d
dt

t H ti ( ) [ , ( )]
(B4)

Substituting eq B1 into eq B4, averaging over state |ϕn,R,Q⟩,
and substituting eqs B2 and B3 gives (see section 4 in the
Supporting Information)

∑ρ ρ∂
∂

=
ℏ ≠t

R Q t V R Q R Q t( , , )
2

( , ) Im[ ( , , )]nn
k n

nk kn

(B5)

The same equation of motion (eq B5) is obtained by
multiplying eq 5.40 on the left by χn

p(R)ξn*(Q,t) and the
complex conjugate of eq B1 by χn

p(R)ξn(Q,t) and finally
subtracting the two resulting equations. Given the probability
|cn(t)|

2 that the reactive electron is in state |ϕn⟩ and the
probability density [χn

p(R)χn(Q)]
2 that the proton−solvent

subsystem is in the {R,Q} conformation at time t, the evolution
of the system is described by eq B5 and depends on the ET
matrix elements Vnk.
Formulating the quantum dynamics with orthogonal diabatic

electronic states simplifies eqs 5.40 and B1. However, in several
systems of interest the charge transfer reaction involves initial
and final localized distributions of the excess electronic charge
with nonzero overlap.134,135,144,159,490 When a nonorthogonal
diabatic basis set appropriately describes the electronic
structures of reactants and products, the appropriate orthogonal
diabatic electronic set to be used in eqs 5.39a (or 5.39b), 5.40,
and B1 needs144 to be related to the nonorthogonal one by a
Löwdin transformation.491 Instead, when the nonorthogonal
diabatic basis is used, overlaps between the diabatic electronic
states appear in eq 5.40 or similar equations of motion for other
kinds of charge transfer systems (for example, see ref 159 for
pure ET reactions). For a reaction involving two electronic
states, |ϕI⟩ and |ϕF⟩, the electronic transition is induced by the
effective electronic coupling:134,141,144

̃ ≡
−

−
+

V R Q
S R Q

V R Q

S R Q
H R Q H R Q
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1 ( , )
( , )

( , )
( , ) ( , )

2

IF
IF
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(B6)

where SIF = ⟨ϕI|ϕF⟩, VIF = ⟨ϕI|H|ϕF⟩, HII = ⟨ϕI|H|ϕI⟩, and HFF
= ⟨ϕF|H|ϕF⟩. As shown in ref 159 for a multistate ET system,
replacing the electronic coupling VIF with the effective
electronic coupling ṼIF allows treatment of the transition
probability similarly in terms of orthogonal and nonorthogonal
states (thus, extending the analysis in section 5 to non-
orthogonal sets). It was also shown that, within a two-electronic
state model of ET and for sufficiently small diabatic-state
overlap SIF,

144,492 ṼIF and VIF can be given the same functional
dependence on the electronic structure properties of the
diabatic electronic states involved in the ET (even though the
values of these properties depend on SIF

95), which facilitates the
extension of the analysis of PCET in section 5 to
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nonorthogonal electronic diabatic representations. Note that
the electronic coupling must always be (and is, as guaranteed
by the Löwdin transformation) expressible in terms of
orthogonal electronic states.493 Note also that VIF is not
independent of the arbitrary zero of the Hamiltonian when
nonorthogonal diabatic electronic states are used. In this case,
ṼIF represents the correct expression for the coupling and is
clearly independent of the zero of the energy scale.
Knowledge of the system state in terms of orthogonal or

nonorthogonal electronic diabatic states affects the properties
of quantum entanglement494,495 among the relevant compo-
nents: reactive electron, reactive proton, and nuclear collective
coordinates. In other words, considering the system from the
perspective of the quantum measurement of its properties, the
investigations in terms of the orthogonal or nonorthogonal
electronic basis will lead to different information regarding the
system and different characterizations of its subsystems. The
density matrix in eq B1 represents a pure entangled state of a
tripartite system.494,496 Therefore, (i) the system von Neumann
entropy497 (t) = −kB Tr[ρ̂(t) ln ρ̂(t)] is zero irrespective of
the electronic state basis used in the expansion of eq 5.39a or
5.39b, and hence in the density operator of eq B1. (ii) Only for
orthogonal electronic states, the proton−solvent subsystem,
unconditional on the electron subsystem, is in a separable
state,496,498 which is described by the density matrix

∑ρ ρ χ χ χ χ̂ = ̂ = | | | ⟩⟨ | ⊗ | ⟩⟨ |t t c t( ) Tr ( ) ( )R Q q
n

n n n n n{ , }
2 p p

(B7)

The state described by eq B7 is characterized by classical-type
correlations (in contrast, the presence of quantum entangle-
ment can be defined by the impossibility of writing the system
state in the separable form of eq B7, with the resulting unusual
properties of the mutual entropy, i.e., of the information gained
about one subsystem by measurement on the other
subsystem495). This absence of quantum entanglement
between the R and Q subsystems for a given electronic state,
together with the condition of small nonadiabatic coupling
between the proton and solvent dynamics, justifies the use of
the second adiabatic approximation. In turn, the application of
the second adiabatic approximation leads to free energy
landscapes for ensembles of system states as shown in Figure
18.495
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GLOSSARY

|0⟩ vacuum state with respect to the electronic
active space

A, Ae, Ap acceptor, electron acceptor, proton acceptor
AA amino acid
a classical turning point distance relative to a

PES minimum for the H particle in BH
theory

A1, A2 (or A, B) molecular groups involved in hydrogen
atom transfer

Aif
kn PT rate constant prefactor in generalized

Cukier theory, defined by eq 11.24b
ad (nonad) adiabatic (nonadiabatic)
αIF decay factor for the proton wave function

overlap or for the vibronic coupling
α, β spin components or functions in section

12.1
α, β subscripts used to distinguish adiabatic wave functions
BEBO bond energy−bond order method
BLUF blue light using flavin adenine dinucleotide
BH Borgis−Hynes
BO Born−Oppenheimer
Br bridge
b (bt) degree-of-reaction parameter (at the tran-

sition state); see section 6.1
bn bond order in BEBO
bpy 2,2′-bipyridine
β Brønsted, or Leffler, slope in section 6;

(kBT)
−1 in Appendix A

βET decay factor of the squared electronic
coupling

C inefficient precursor complex in eq 8.2
CX (CS) time autocorrelation function for the

fluctuations of the X (S) nuclear mode
CSC (CSC

−) molar concentration of the reduced (oxi-
dized) SC (section 12.5)

ce (cp) coupling of the reactive electron (proton)
charge with the solvent polarization in the
Cukier PES model for ET−PT

cn nth coefficient in the system wave function
expansion

cp Pekar factor
γ electron−proton coupling strength in Cuk-

ier theory
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D, De, Dp donor, electron donor, proton donor

DJ

electric displacement corresponding to the
equilibrium inertial polarization in the J (= I
or F) electronic state

D deuterium
DKL Dogonadze−Kuznetsov−Levich
Δ12 diabatic energy difference in the model of

Figure 24
ΔE° potential energy difference replacing ΔG° in

gas-phase reactions
ΔEel gas-phase electronic structure contribution

to the reaction free energy
ΔE* (ΔG*) activation (free) energy
ΔES reaction free energy, or “asymmetry”, along

the S coordinate (section 10)
ΔEX reaction free energy, or “asymmetry”, along

the X coordinate (section 10)
ΔF proton PES slope difference at Rt in the

Georgievskii and Stuchebrukhov model
ΔG° (ΔGR°) reaction free energy (in the prevailing

medium at mean D−A distance R)
ΔGsolv solvation contribution to the reaction free

energy
ΔH splitting between the H levels in reactants

and products (section 10)
ΔRe proton coordinate range where the electron

transition can occur with appreciable
probability in the Georgievskii and Stuche-
brukhov model

ΔUμν difference between the PFES minima for
the oxidized and reduced SC in bulk
solution (section 12.5)

d distance between the electron D and A
centers in the Cukier ellipsoidal model

d(ep) and G(ep) nonadiabatic coupling matrices defined via
eq 12.21

dkn nonadiabatic coupling vector involving the k
and n electronic functions

dmp 4,7-dimethyl-1,10-phenanthroline
δkn (δ) Kronecker (Dirac) δ
δRn width parameter of the nth proton vibra-

tional wave function χn
p

δX (δS) fluctuation of the X (S) coordinate
ΔX (ΔS) coordinate shift between the free energy

minima along X (S)
Ea activation energy (see section 9)
Ef formation energy of the reactive complex in

the Marcus model using BEBO
Eik (Efn) energy eigenvalue associated with the vibra-

tional function χk
X (χn

X)
En(R,Q) electronic energy for the nth electronic

(basis) state
E̅n(R) average of En(R,Q) over state |χn⟩
E̅n
p(Q) average of En(R,Q) over state |χn

p⟩
total energy

ET electron transfer
EPT electron−proton transfer (concerted

PCET)
ET/PT (PT/ET) coupled, sequential ET and PT, with ET

preceding (following) PT
ET−PT ET/PT, PT/ET, or EPT
e absolute value of the electron charge
ε dielectric constant

εa intrinsic asymmetry parameter (section 6.1)
εs static dielectric constant
ε∞ optical dielectric constant
εJμ or εJμ

p vibrational energy of the μth proton state in
the J (= I or F) electronic state

εM metal Fermi level
Faraday constant

f dimensionless magnitude of the effective
displacement of X (when X is in angstroms)
(used in section 5.3)

f12 dimensionless factor in Marcus cross-
relation, defined by eq 6.6 or 6.10

fα
J fraction of electron charge located at rα in

the J (= I or F) electronic state in Cukier’s
treatment of the reorganization and sol-
vation free energies

fβ
J fraction of proton charge located at rβ in the

J (= I or F) electronic state in Cukier’s
treatment of the reorganization and sol-
vation free energies

f(ε) Fermi−Dirac distribution (section 12.5)
Gkn nuclear kinetic nonadiabatic coupling de-

fined by eq 5.31
GJ
solv(R) equilibrium solvation free energy contribu-

tion to the effective potential for proton
motion in the J (= I or F) electronic state

G free energy
g1, g2 real functions introduced in eq 6.19 and

normalized so that g(1/2) = 1
gj coupling of the jth solvent mode with the

tunneling electron in Cukier theory
ζGROUP active-electron orbital on GROUP = De, Ae,

Dp, or Ap transferring H species
H tunneling particle that may be a proton or a

hydrogen atom
or Htot Hamiltonian

H or Hel electronic Hamiltonian
H0 channel Hamiltonian in the model of Figure

24
H0 Hamiltonian matrix including the gas-phase

solute energy and solute−solvent electronic
polarization interaction in the four-state VB
basis of section 12

Hcont VB matrix yielding the free energy in the
SHS multistate continuum theory

Hmol counterpart of Hcont with molecular descrip-
tion of the solvent

Hep (Hep) Hamiltonian (matrix) for the reactive
electron−proton subsystem

Hg gas-phase solute Hamiltonian (see Cukier’s
model in section 11)

Hgp gas-phase solute electronic Hamiltonian
(see SHS model in section 12.1)

Hp Hamiltonian associated with the proton in
Cukier’s theory

ℏ reduced Planck constant
HAT hydrogen atom transfer
H2bim 2,2′-biimidazoline
HOH water
η overpotential
1 or I index initial electronic state
2 or F index final electronic state
i (f) index initial (final) proton state (section 11)
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ja (jc) anodic (cathodic) current density

JIF
flux correlation in BH expression of the
current

K12 equilibrium constant for Ox1 + Red2 ⇌
Red1 + Ox2

KSE kinetic solvent effect
kB Boltzmann constant
kd diffusion constant
kREACTION rate constant for REACTION = ET, PT,

HAT, and PCET
kH (kD) protium (deuterium) transfer rate constant
|kI⟩ (|nF⟩) proton vibrational state associated with the

I (F) electronic state
κ factor in the Georgievskii and Stuchebru-

khov expression of the vibronic coupling,
defined in eq 7.3

κel electronic transmission coefficient
L reorganization energy matrix in the SHS

multistate continuum theory
LBHB low-barrier H-bond
Lt truncated reorganization energy matrix in

the SHS multistate continuum theory
Λ total reorganization energy in BH and SHS

treatments including fluctuations of the
charge-transfer nuclear medium

λ reorganization energy
λα coupling reorganization energy for i → j VB

charge-state transition
λH (λD) reorganization energy associated with hy-

drogen (deuterium) transfer
λij
0 inner-sphere reorganization energy for the i

→ j reaction
M nuclear mass; more specifically, mass

associated with the X nuclear mode in
sections 9−12

M metal electrode
MLCT metal-to-ligand charge transfer
MS mass associated with the collective solvent

mode S
MS-EPT multiple-site electron−proton transfer
m electronic mass
met Fe(III)Fe(III) state of the diiron cofactor
mH mass of the tunneling proton or hydrogen

atom in BH theory
mp proton mass
NHE normal hydrogen electrode
ν vibrational frequency
νn effective nuclear frequency for the reaction

coordinate motion
νel ET frequency in the activated complex (eq

5.28b)
ξ set of solvent degrees of freedom (section

12)
ξn cnχn
OHP outer Helmholtz plane
p proton adiabaticity parameter in the Geor-

gievskii and Stuchebrukhov model
P nuclear momentum
(Pin,J)PJ (inertial or orientational) polarization in the

J (= I or F) electronic state
PCET proton-coupled electron transfer
PES (effective) potential energy surface
PFES (effective) potential free energy surface

Pμ Boltzmann probability of the μth proton
state in the reactant electronic state

pn power of bn in the Marcus equations using
BEBO

P(X) thermally averaged X probability density
(section 11)

PT proton transfer
Q (q) nuclear (electronic) coordinate
Qe collective solvent coordinate driving ET
Qp collective solvent coordinate driving PT
Qpe overall solvent reaction coordinate in EPT

mechanisms
Qt transition state coordinate
±q0 average electron position in its I (−) and F

(+) equilibrium states (section 11)
qi coordinates of core electrons
qS coordinates of “infinitely” fast solvent

electrons
R (Rt) coordinate of the transferring proton (at the

transition state)
±R0 equilibrium proton position in the I (−)

and F (+) electronic states (section 11)
RA···B or RAB proton donor−acceptor distance
RC reaction center
r position vector
r edge-to-edge distance between the electron

donor and acceptor (section 8)
rs radius of the spheres that represent the

electron donor and acceptor groups in the
continuum ellipsoidal model adopted by
Cukier

rij, rαβ, riα distances between electronic, nuclear, and
electronic−nuclear positions

ρ one-electron density
ρcl(X) probability density of an X classical

oscillator
ρ(ε) metal density of states (section 12.5)
RNR ribonucleotide reductase
S collective solvent coordinate

self-energy of the solvent inertial polar-
ization in multistate continuum theory

̃ transformed , namely, as a function of
the coordinates in eqs 12.3a and 12.3b

SC solute complex (section 12.5)
SHS Soudackov−Hammes-Schiffer
Skn (Skn

p ) overlap between the χk (χk
p) and χn (χk

p)
vibrational wave functions

SRPH solution reaction path Hamiltonian
σ̂x, σ̂z Pauli matrices
T temperature
t1/2 half-life

IF transition probability density per unit time,
eq 5.3

Tn (Tn
p) nuclear kinetic energy in state |χn⟩ (|χn

p⟩)
T̂Q, T̂R, T̂ξ, T̂q nuclear, reactive proton, solvent, and

electronic kinetic energy operators
τel lifetime of the initial (before ET) electronic

state
τp proton tunneling time
θ rotation angle connecting two-state diabatic

and adiabatic electronic sets
θp dimensionless nuclear coupling parameter,

defined in eq 9.8
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uif
kn PT Landau−Zener parameter
V potential energy
VB valence bond
Vc potential energy at PES crossing in the

Georgievskii and Stuchebrukhov model
VIF (effective) electronic coupling
ṼIF effective electronic coupling between non-

orthogonal diabatic electronic states
in(r) electrostatic potential field generated by the

inertial polarization field
V∞ interaction potential between solute and

solvent electronic degrees of freedom
VJ
g(R) gas-phase potential energy for proton

motion in the J (= I or F) electronic state
−Vn bond energy in BEBO for bn = 1
Vs potential of interaction between solute and

solvent inertial degrees of freedom
Vss solvent−solvent interaction potential
vt proton “tunneling velocity” consistent with

Bohm’s interpretation of quantum mechan-
ics

n gas-phase solute energy plus solute−solvent
interaction energy in the multistate con-
tinuum theory

WIF vibronic coupling
WKB Wentzel−Kramers−Brillouin
WOC water-oxidizing complex
wr (wp) work terms required to bring the ET

reactants (products) to the mean D−A
distance in the activated complex

wnn = wnn
r = wnn

p work terms for a self-exchange reaction
X coordinate characterizing the proton D−A

system, usually the D−A distance
x {R,Q} set, or only R in the Georgievskii and

Stuchebrukhov model; distance from the
metal surface in section 12.5

xH distance of the OHP from the metal surface
xt {Rt,Qt}, namely, x value at the transition

state
Φ (ϕ) total (basis) electronic wave function
ϕkn
ad (ϕ̃kn

ad) ground (excited) adiabatic electronic state
corresponding to the k and n diabatic
electronic states in the two-state approx-
imation

ϕs(x) double-layer electrostatic potential field in
the absence of SC in section 12.5

φ total nuclear vibrational function, χpχ
χ (χp) wave function for nuclei (for the trans-

ferring proton)
χk
X (χn

X) kth (nth) X mode vibrational wave function
in the initial (final) proton state

Ψ wave function of the full system
ψjn electron−proton basis wave functions
Z bimolecular collision frequency
ZI
p partition function for the proton state in the

reactant electronic state
Ωj angular frequency of the jth solvent mode in

Cukier theory
ω (or ω0) effective frequency for nuclear motion; X

mode frequency in sections 9−12
ωe effective electronic frequency
ωn nuclear mode frequency
ωp effective frequency for proton motion

ωS characteristic or effective frequency for the
collective solvent mode S
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