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  Abstract
  The purpose of this article is to provide a concise, broad and readily accessible overview of lon-

gitudinal data analysis methods, aimed to be a practical guide for clinical investigators in neu-

rology. In general, we advise that older, traditional methods, including (1) simple regression of 

the dependent variable on a time measure, (2) analyzing a single summary subject level number 

that indexes changes for each subject and (3) a general linear model approach with a fixed-

subject effect, should be reserved for quick, simple or preliminary analyses. We advocate the 

general use of mixed-random and fixed-effect regression models for analyses of most longitu-

dinal clinical studies. Under restrictive situations or to provide validation, we recommend: 

(1) repeated-measure analysis of covariance (ANCOVA), (2) ANCOVA for two time points, (3) gen-

eralized estimating equations and (4) latent growth curve/structural equation models.

  Copyright © 2011 S. Karger AG, Basel

  Introduction

  Purpose and Background 
  This paper provides a broad didactic survey of methods for statistical analysis of longi-

tudinal, clinical, observational and experimental data, illustrated by applied examples, 
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aimed to be of practical utility for clinical researchers with little background in statistical 
modeling. Substantively, the special focus is on neurological conditions, especially demen-
tia, but the methods are more broadly relevant. We feel there is too often a general lack of 
understanding and confusion concerning appropriate longitudinal data analysis methods 
that has bred insecurity towards or prejudice against the use of newer, advanced and more 
powerful methods among some clinical researchers and journal reviewers of neurological 
literature. This lack of understanding can lead to inappropriate or inefficient analysis, inac-
curate results, and simplistic or wrong interpretations, conclusions, and judgments. While 
we emphasize that sophisticated and advanced analytic models cannot, and should not, 
compensate for poor study design and execution, we also maintain that solely using simplis-
tic analytic methods can scuttle detection of important signals and effects, even in well-
designed and -conducted studies. In this review, we provide, using an informal and straight-
forward style, an organized overview of the types of methods available and suggest ap-
proaches for situations under which they may be appropriate. While we assume familiarity 
with basic methods of descriptive and inferential statistics for the biological, medical, and/
or behavioral sciences (e.g., analysis of variance, ANOVA, and regression/correlation), our 
approach does not require specialized or advanced knowledge of statistics or modeling. To 
be accessible to a wide audience, our format leans toward verbal, intuitive, and graphical 
presentation with examples, software suggestions, and programming code/scripts in SAS 
 [1]  and MPlus  [2]  software. For readers wanting user-friendly drop-down menus, SPSS  [3] 
 and JMP  [4]  software provide analysis options with some of the advanced modeling tech-
niques reviewed here (e.g., repeated-measure analysis of covariance, ANCOVA, and mixed-
effect models).

  In our discussions, we focus more on longitudinal observational research (prospective 
and retrospective), and to a lesser extent on randomized interventions or randomized clini-
cal trials. By ‘longitudinal research’, we generally restrict ourselves here to data sets where 
typically each of a moderate/large number of subjects (10 to hundreds) has a relatively small 
number of repeat readings on a single, continuous, interval-level, numeric measure across 
time, usually 2–30 observations per subject over time. Depending on the method, the num-
ber of observations within subjects can vary across subjects, and the time intervals between 
observations can vary within as well as between subjects (in examples from our longitudinal 
studies, observations are often months to  1 1 year apart).

  We also primarily focus examples on characterizing and modeling progression, i.e., 
assessing different forms of progression, not just computing ‘rates’ of change that presup-
pose only linear trajectories over time. Moreover, we focus mostly on research designs in 
which the dependent variable (outcome) is an essentially continuous numeric variable, the 
most common case, and where only one is studied at a time (univariate, not multivariate 
analysis with respect to the dependent variable). Extensions to categorical, binary, count, 
and ordinal dependent variables can often be dealt with through generalized linear model 
variants of the longitudinal methods we present, or essentially embedding logistic regres-
sion, Poisson models, or log-linear techniques, for example, within the methods we dis-
cuss, employing intrinsically nonlinear models, and/or other methods beyond the scope of 
our paper.

  Emphasis of This Review and Further Reading
  Although we aim for coverage of all major relevant methods of analysis, no review of 

longitudinal methods can hope to exhaustively cover every specialized, custom-built, ad hoc 
or improvised analysis method developed for this kind of research. Neither does this paper 
attempt to discuss all the methodological and design issues relevant to longitudinal studies, 
but focuses primarily on data analysis and those methodological issues closely tied to that. 
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Further, measurement issues not intimately connected to our analysis methods cannot be 
pursued here because of space limitations, though we feel they are important and too often 
overlooked by clinical researchers.

  We do not emphasize research designs that involve a very large number of measurements 
(e.g.,  1 50) across time on just one or a handful of entities – e.g., groups where values at each 
time point are averages across people, and where an intervention commences at a point part-
way through time, and whose effects are of interest. Such data are suitable for Box-Jenkins-
Type Time Series Analysis approaches. Similarly, Event History Methods, which analyze 
time  until some clinically meaningful event , often death, e.g., ‘survival analysis’, are not 
stressed here. While time series and event history analyses are powerful methods, they are 
also relatively more developed and established techniques with a long history of abundant 
literature on their use and interpretation, and are also not usually applicable to the focus of 
examining predictive effects on a numeric variable assessed on relatively few observations 
across time for each of many subjects. We touch upon these and other methods for the sake 
of completeness, contrast, and clarification of which niche each method does and does not 
fill across a broad constellation of methods, and include them within a general flow chart of 
longitudinal methods.

  We give priority to breadth of coverage over depth. Many important details, including 
mathematical derivations and formulas, can be pursued in references and elsewhere in the 
literature. We provide a systematic perspective on old and newly emerging techniques in the 
rapidly developing area of longitudinal research. While our primary purpose is to present a 
review of existing methods and not to introduce new techniques, we describe, mainly for il-
lustrative purposes, some of our own variations and extrapolations in the application of these 
methods.

  Another reason for writing this article is that we feel there is an, as yet, unmet need for 
a review in the clinical neuroscience literature that covers a broad overview of longitudinal 
analysis methods in a deliberate manner that is accessible to researchers without an ad-
vanced background in statistics or modeling. There are many examples of applications of 
longitudinal analysis, and methodological papers on longitudinal statistical techniques that 
are intended for statistically advanced audiences  [5, 6]  are more narrow in breadth in terms 
of the methods discussed  [7–10]  or are more focused on the specific concerns of a more re-
stricted substantive area of neurological research  [11] . An excellent article by Petkova and 
Teresi  [12]  provides a sophisticated discussion of random-effect models, but is more techni-
cal and less broad in coverage. Gibbons et al.  [13]  provide a more accessible treatment of the 
same techniques as Petkova and Teresi  [12]  within the context of psychiatric research. There 
are some excellent new or recently updated textbooks on longitudinal data analysis  [14, 15] , 
which we highly recommend for reference and further reading.

  Pre-Data Analysis: Data Quality Assurance and Pre-Processing 
  The first step in analysis is data quality assurance (QA). Countless hours and days of ‘re-

analysis’ will be saved by ensuring your data are proofed, clean, complete (e.g., merging of 
data sets and creation of subject and visit level variables needed in the analysis), and in the 
format required for the software to be used before you start data analysis. While data QA and 
pre-processing are laborious and unexciting, they are essential first steps to ensure proper 
and efficient data modeling – if one cannot spare the time to redo everything, then one must 
give sufficient attention to QA up-front. Data cleaning includes thorough examination of 
missing data, searching for duplicate records, statistical and graphical screens, and setting 
up programming checks to alert you to improper data values due to input or transcription 
errors or outliers to be considered.
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  Importance of Iterative Graphical Data Analysis before, during and after Modeling Steps
  Graphs should not just be limited to figures in manuscripts or slides in a presentation to 

illustrate a point. Graphical data analysis is a necessary component of good research meth-
odology  [16, 17] . Exploratory and confirmatory graphical analysis of raw and transformed 
data should be done preliminary to, concurrently with, and after numerical analysis. Pre-
liminary graphs can serve in the QA process to screen raw data by highlighting obvious data 
errors that may otherwise be missed, like needles in a haystack of tabular data. Graphical 
displays go hand in hand with different steps in the analysis process. For example, graphs of 
residuals from a regression model plotted against predicted values are informative of model 
fit and whether assumptions of significance tests are met (e.g., normally distributed residuals 
with homogeneous variance across the predicted surface). Ideally, during analysis, an itera-
tive cycle of graphical and numerical computations should be conducted. Post-analysis 
graphs can render numerical results that are difficult to interpret more understandable. For 
example, graphs of model-predicted values overlaid on raw data can make very intuitive what 
an ‘adjustment’ in ANCOVA means. Often, complex multiple regression models involving 
curvilinear terms, interactions, and combinations thereof are difficult to visualize even for 
mathematically sophisticated researchers, and frequently only a graph of predicted values 
can elucidate the nature of the model. Using the estimated model function to compute and 
plot predicted values at illustrative strata of covariate levels or scores held constant can be 
helpful.

   Information richness  is a key concept in good graphical analysis. Examples of informa-
tion-rich graphs are scatterplots, side-by-side group dot plots, stem-leaf graphs, comparative 
frequency histograms, box-whisker plots, and 3D scatter- or surface plots. A simple two-
dimensional scatterplot of raw data, for example, provides a wealth of information on: the 
univariate and bivariate distributions of the variables [Are they normal? Is there skewing? 
(important for consideration of assumptions of statistical tests or need for transformations,  
e.g., log or square root for positive skewing/powers for negative skewing)], whether there is 
any relation between the variables, and if so, whether the relation is linear or nonlinear, and 
what kind of nonlinear, the distribution of residuals from any relation, and whether they ap-
pear to meet assumptions of tests, a rough idea of the degree of correlation, the means/me-
dians of the variables, modality, variability, and relative variability, whether there are ceilings 
or floors for the two variables, whether there are outliers which may be having a strong in-
fluence on statistics, out of range or nonsensical values indicating data errors, whether there 
are clusters that may have substantive meaning, or unexpected phenomena, for example. Fit-
ted regression lines, polynomial curves, nonparametric smoothing curves (e.g., SAS Proc 
Loess), horizontal/vertical reference lines or a diagonal line where vertical and horizontal 
scores are equal can be overlaid on the scatterplot where relevant as visual aids. Incorporat-
ing group information into the scatterplot provides a quantum jump in information and can 
illustrate well ANCOVA or multivariate numerical results. Different groups can be indicated 
in a single graph with different symbols and/or colors for their respective points or a separate 
panel displayed for each group with uniform cross-panel horizontal and vertical axis ranges 
for easy group comparisons. An important concern in scatterplots (and dot plots) is whether 
multiple observations at the same spatial location are manifest or hidden. The latter can be 
dangerously misleading although many graphical software packages produce graphs with 
hidden observations without even warning the viewer that it is happening. Using different 
letters to indicate multiplicity of observations at a point is one way to avoid the problem 
(‘a’ = 1 observation, ‘b’ = 2, etc., as is done by default in the SAS plot procedure), or it might 
be advisable to add a slight random perturbation to values for purposes of the graph (‘jitter-
ing’ the data) so that multiple points at the same location are offset a little and at least partly 
distinguishable to convey a sense of the multiplicity in that region.
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  An example of an information-poor graph is a bar chart of group means. Even with er-
ror bars, they hide more than they reveal, though they may be helpful when there are many 
categories or variables. Box-whisker plots are usually an improvement.

  With regard to longitudinal research, the value of graphical analysis becomes even more 
paramount. Our research group often examines ‘spaghetti plots’ of raw longitudinal data 
preliminary to data analysis, employing the Gplot procedure of SAS Graph software or the 
JMP interactive version of SAS ( fig. 1 a; Appendix). These graphs are essentially scatterplots 
of dependent variable scores versus the time variable with a separate line for each person 
connecting his/her scores over time. Spaghetti plots suggest likely models, especially wheth-
er effects are linear or not, whether there are ceiling or floor asymptotes, and in addition to 

  Fig. 1.   a  A ‘spaghetti plot’ of raw longitudinal data (example from Dodd et al.  [28] ). Raw BDS vs. years in 
study for 493 AD patients, each having 3–14 observations over time (years in study). The BDS score is the 
number of errors made on a measure of cognition (higher score means the patient is performing worse). 
Thin lines connect scores for an individual person. The thick straight solid line is the OLS regression line, 
and the thick dashed line is the OLS quadratic curve (this graph was produced with SAS Graph software, 
Proc Gplot).  b  The same data after removal of the pure time or visit level random error via a random-effect 
model, leaving subject level random quadratic and linear time terms and fixed effects.  c  The same data 
after additionally removing the subject level random quadratic and linear effects, leaving only fixed ef-
fects which included an interaction between baseline level of the BDS and a quadratic effect of time, shown 
in the figure as a predicted accelerating increase for subjects with low baseline levels but a decelerating 
increase for those with high baseline levels.
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all the information provided by scatterplots noted above, they provide information on with-
in-subject versus between-subject effects, and subjects who are outliers in terms of their pat-
tern of progression, even if not in terms of the levels of the values themselves. As in the case 
of cross-sectional analyses, graphs of predicted means from a fitted longitudinal model are 
important and necessary when complex terms are significant which are difficult or impos-
sible to understand or visualize otherwise ( fig. 2 ). A picture is worth a thousand words as 
well as a thousand summary statistics.

  Assessing and Modeling Linear versus Nonlinear Changes 
  A general consideration applicable to all the methods discussed below concerns the issue 

of whether change over time is linear or nonlinear. ‘ Rate of change  over the entire range of a 
dependent variable’ assumes a linear model or one that is nearly so. Whether a change is 
nonlinear should always be raised as an initial question during the design of the study and/

  Fig. 2.   a  Illustrative mean ADL values vs. years in study, predicted by best-fitting longitudinal mixed-
effect model for 382 AD patients treated with various medication regimens and starting at different initial 
mean ADL values (0, 25, 50). Score = Dependency (%) on other people; square = no medication;  !  = cho-
linesterase inhibitors only; dot = combination of cholinesterase inhibitors and memantine. Baseline ADL 
values and their linear/nonlinear interaction with time were included as fixed predictors. Note the differ-
ing trajectories depending on the baseline level, and superimposed on that is a medication group effect 
whereby the combination therapy apparently dampens clinical progression as measured by the ADL (from 
Atri et al.  [29] ).  b  Illustrative mean BDS scores across time predicted by the fitted mixed model in the 
longitudinal analysis for log plasma CRP for 122 AD patients, for selected levels of baseline log CRP and 
example time span. Illustrative levels of log CRP were chosen to correspond to the 1st, 25th, 50th (median), 
75th and 99th percentiles of its distribution (from Locascio et al.  [30] ).
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or analysis. Rich, exploratory graphical analyses of raw data go hand in hand with address-
ing this concern. Often a nonlinear model is suggested by preliminary graphical analysis, or 
else it may simply be desirable to do tests to rule it out. Nonlinearity may be related to ceiling 
or floor effects. Sometimes a transformation of the data, e.g., logarithmic, is sensible and re-
parameterizes the model to a linear one that simplifies analysis, though complications may 
then occur during interpretation, unless results are transformed back to the original scale of 
the variable after analysis or the transformed data actually have more substantive meaning 
than the original. (Transformations can also be conducted for purely theoretical, substan-
tive, and mechanistic reasons, and transformations are occasionally necessary to meet dis-
tributional assumptions of significance tests.)

  Nonlinear models can be broadly classified as to whether they are  intrinsically  nonlinear 
or not. The latter or  ‘curvilinear’  type may be changed into a linear model by a simple trans-
formation of one or more predictor variables in the model, followed by analysis with straight-
forward linear methods. The variables are then transformed back into the original variables 
during interpretation. For example, a curvilinear quadratic polynomial model which by def-
inition has no more than a single bend can depict accelerating or decelerating change, but is 
not intrinsically nonlinear. A single predictor variable may be so modeled by simply squar-
ing the predictor and entering the original variable (e.g.,  x ) and its square (e.g.,  x  2 ) into a si-
multaneous multiple regression analysis just as if they were two different predictors. These 
predictor variables (e.g.,  x  and  x  2 ) will of course often be highly correlated, but the analysis 
will adjust for that. The chosen estimation method used to find parameter values that opti-
mize model fit can be ordinary least squares [OLS; e.g., using the SAS regression procedure, 
Proc Reg, or the Proc GLM (general linear model procedure)] or can consist of maximum 
likelihood methods. In this example, the software is indifferent to the fact that one predictor 
is the square of the other and treats them like it would any other two (possibly correlated) 
predictors. Higher-order polynomials are handled similarly, e.g., a cubic (two-bend) model 
requires the addition of the cubed predictor  (x  3  )  along with the squared and linear corre-
sponding variables ( x  and  x  2 ). An intrinsically nonlinear model is one that cannot be trans-
formed, at least not in any straightforward manner, into a linear one, e.g., exponential (ac-
celerating, decelerating, or asymptoting), or logistic or probit (‘S’- or sigmoid-shaped curve) 
models.

  Moving from common between-subject or ‘cross-sectional’ analyses to longitudinal 
methods, which include between- and within-subject and time effects (and their interac-
tions), can involve a quantum jump in complexity. In the case of intrinsically nonlinear 
models, fairly specialized fitting methods and software (e.g., SAS Proc Nlin or Proc 
NLMixed) may be required, and in these cases getting iterative algorithms to converge on 
a solution can sometimes be difficult. Under specific situations and trade-offs, there may be 
an advantage to modeling nonlinearity with more simple polynomial transformations. 
Polynomial functions are more mathematically tractable, and can be fit using simpler pro-
cedures (e.g., SAS Proc Mixed). Thus, if the specific and detailed nature of the model func-
tion is not of paramount substantive interest (e.g. the model is not mechanistically explana-
tory) and having less complexity is more important than perfect fit, then the trade-off may 
favor a curvilinear over an intrinsically nonlinear approach even though the latter may be 
closer to a given true latent relation. For example, in such a scenario, data fitting using a 
quadratic function/model with adequate fit may be chosen over an exponential accelerating 
or decelerating model that fits the data only marginally better. Another example would be 
to utilize a cubic polynomial for an apparent sigmoid relation with floor and ceiling asymp-
totes, even when a logistic function may fit slightly better.  Figure 3  displays simulated data 
generated to follow a logistic sigmoid curve with error variability incorporated and a floor 
and ceiling effect. However, as depicted, predicted values from a cubic function also fit the 



337

Dement Geriatr Cogn Disord Extra 2011;1:330–357

 DOI: 10.1159/000330228 

E X T R A

 Locascio and Atri: Longitudinal Analysis Methods 

www.karger.com/dee
 © 2011 S. Karger AG, Basel 

 Published online: October 26, 2011     

data well within the range of interest. A caveat to be heeded is that a polynomial model (e.g., 
quadratic or cubic function) may produce a slight non-realistic ‘bend’ where a monotonic 
asymptote ought to be, at the extremes of the range of the independent variable (due to the 
nature of the polynomial). These unrealistic predicted values should be recognized as a lo-
calized method artifact, and accounted for as such in interpretation and extrapolation of 
results.

  If, for whatever reason, it is desired to fit an intrinsically nonlinear random-effect lon-
gitudinal model, and problems with convergence occur in using SAS Proc NLMixed, for ex-
ample, it may be possible even for this intrinsic nonlinear situation to perform analyses in a 
series of less complex stages involving only linear modeling that produce essentially the same 
final result. We have had some success, e.g., in modeling sigmoid curves, by first transform-
ing the dependent variable into a quasi-logit function based on the proportion each value is 
of its range of scores, which are then analyzed fairly easily with linear or polynomial random-
effect models, using SAS Proc Mixed, for example. The final random and fixed predicted 
values from this latter model are then post-transformed with an appropriate exponential 
function back into sigmoid functions which fit the raw data well.

  In all modeling, including modeling nonlinear relations, it is important to be explicitly 
mindful that even when a model fits well, the evidence is only supportive that the model is 
‘sufficient’ to describe the results – it does not prove that model is ‘necessary’ – and it has been 
shown to fit only within a specified range of predictor values in the data. For example, a qua-
dratic function may fit an asymptoting, decelerating relation well, but extrapolating beyond 
the limits of the observed data may incorporate a bend in the predicted curve that was not 
part of the fitted data model. Such a scenario may result in both poor as well as possibly non-
sensical predictions based on the quadratic model for distant extrapolations. Most non-
threshold-like relations can be estimated to be linear within a small enough data range (i.e., 
can be fit with a straight line for some small enough range of independent variables). Also, 
nonlinear models should be applied with caution when they are used to fit data that have a 
clear, sharp floor or ceiling, and not merely asymptotes. More sophisticated methods of deal-
ing with floor and ceiling phenomena have been proposed  [18, 19] . How to deal with these 
situations is best decided on a case-by-case basis depending on the questions being asked, 
study objectives, the nature and range of the observed data, and the overall goals of interpre-
tation and prediction.

  Allowing for nonlinear models in longitudinal studies may provide supportive evidence 
of or serve for exploration of theoretically driven or mechanistic considerations. For exam-
ple, decelerating trajectories of symptom improvement in a medication treatment/interven-

  Fig. 3.  Fitting sigmoid data with a cubic model. 
Data were created to approximate a sigmoid 
shape with a floor, ceiling, and some normally 
distributed random error (error std. dev. = 2). 
Best-fitting cubic and logistic curves are shown. 
Note the cubic curve bends slightly at tails in 
contrast to the logistic curve, a difference which 
may be trivial or unacceptable depending on the 
situation. The cubic function accounted for 
95.2% of the variance in the dependent variable, 
and the logistic model accounted for 95.4%. 
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tion patient group, in contrast to the lack of the same in an untreated patient group, may 
further suggest an actual disease modification effect in the treatment group, whereas non-
significant nonlinearity and only a significant change in intercept of a linear progression 
might be more suggestive of treatment effects on symptom reduction only. Tests of interac-
tions of groups with differential linear and curvilinear terms could be sensitive to subtle and 
complex effects, missed by a linear analysis alone. 

  Analysis Methods

  Overview
   Figure 4  provides a general flow chart to assist the researcher in deciding what kind of 

analysis is appropriate to the specifics of his/her longitudinal study.  Figure 4  is self-explan-
atory or will become so as one reads the remainder of the paper. 

  In the following, we discuss the different kinds of longitudinal analysis methods, not 
necessarily in the order they appear in the flow chart. Older, more traditional methods will 
be discussed first, followed by methods we consider most useful (random-coefficient, gener-
alized estimating equation, GEE, and latent growth curve models, LGCM), and lastly we give 
briefer treatment to techniques that are more specialized or slightly out of the scope of re-
search situations we are trying to cover. The methods below are not exhaustive of the full 
array of techniques for analysis of longitudinal data or methods closely related to them, but 
they are the most well-known and widely used ones.

  Older, Traditional Methods
  Simple Regression of the Dependent Variable on Time
  Occasionally, researchers simply pool all the multiple records from multiple subjects 

and then just regress the dependent variable on the pertinent time measure using conven-
tional OLS regression methods. Each observation point for each subject is simply treated as 
a separate record with the analysis being blind as to which scores are from the same or dif-
ferent persons. This method is not recommended, except perhaps to obtain a quick explor-
atory sense of anything striking. Although coefficient estimates may be unbiased with re-
spect to parameters in the analogous referent population, conventionally computed stan-
dard error estimates can be very biased (up or down), and, as a result, so are tests of 
statistical significance based on them, because autocorrelation of scores within each subject 
is completely ignored and the assumption of the significance tests that observations are in-
dependent is grossly violated. In addition, effects of interest may be obscured with this 
method because relations within and between subjects, which could be very different, are 
just indiscriminately pooled. (Random-Coefficient Methods can avoid this problem as well 
as the others.)

  Repeated-Measure Analysis of (Co)Variance
  AN(C)OVA is used to analyze data with a continuous numeric dependent variable and 

one or more categorical/discrete predictor variables with the optional inclusion of some con-
tinuous numeric ‘covariates’ whose linear or nonlinear relations to the dependent variable 
are statistically separated from their otherwise confounded admixture with the other predic-
tor variable effects. Classical repeated-measure ANCOVA, and variations thereof  [20, 21] , are 
suitable for longitudinal research designs that generally are well balanced, have the same, 
relatively few, and usually evenly spaced time points for each subject, with no missing values 
(various kinds of contrasts can address any uneven spacing within subjects). (The SAS GLM 
procedure with the repeated-statement option can perform these kinds of analyses.) For ex-
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ample, a ‘one-way’ repeated-measure ANOVA might involve testing each of 30 subjects on 
each of 6 consecutive days on the same test of memory. The same dependent variable on the 
same scale is assessed at each ‘level’ (days here) of the repeated-measure factor. Nonlinear 
change over time, e.g., polynomial contrasts, can be included as part of the analysis or as-
sessed post hoc to it. There may be one repeated-measure factor or two or more crossed ones 
(factorial repeated-measure ANOVA), e.g., period of assessing some performance measure 
(a baseline and 4 follow-ups at 6-month intervals) may be crossed with a laterality (left vs. 
right) brain measure for each subject. There may also be various combinations of within-

  Fig. 4.  Flow chart for deciding which method to use to analyze longitudinal data (with continuous nu-
meric outcome) in neurological research. This flow chart should be considered only a rough guide; not all 
possible situations, exceptions, and combinations or variations of methods could be included. 
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subject (repeated-measure) and between-subject crossed factors. For example, between-sub-
ject factors of medication group (those who receive a treatment drug versus others who re-
ceive only a placebo) and of gender might be crossed with each other and each also crossed 
with the within-subject factor of period of assessment. All combinations of multiway inter-
actions among within-, among between-, and across within- and between-subject factors can 
be tested, in addition to all the main effects of the respective within- and between-subject 
factors. Subject level numeric covariates that are constant across time, e.g., years of educa-
tion, might be incorporated into these designs (with interactions with other factors) or even 
covariates that vary across time, e.g., blood measures. Cross-over and parallel-group designs, 
as employed in many clinical trials, can be thought of as variations in repeated-measure 
ANOVA. An advantage of repeated-measure ANOVA over between-subject (‘cross-section-
al’) ANOVA is that having each subject ‘act as his/her own control’ usually increases preci-
sion and permits more power for assessment of effects with less subjects.

  A fundamental and common problem with repeated-measure ANOVA is that the re-
peated observations across a single subject can generate a correlation structure that violates 
an important assumption of ordinary between-subject ANOVA. This assumption is that the 
observations should not be correlated at all, in this case within subjects, or the correlations 
should be homogeneous across all pairs of levels of the within-subject factor(s). (If the with-
in-subject factor has only two levels, as in a paired t test, or for other single degree of freedom 
effects, the assumption does not apply.) This assumption goes by various names, the most 
common being ‘sphericity’, ‘compound symmetry’ or non-correlated error. The issue is usu-
ally not a concern if the within-subject factor has levels that are not tied to time, there is 
little likelihood of any carryover effects from one level to another, the ordering of the levels 
for a subject does not matter, and/or the levels are randomized or counterbalanced across 
subjects, e.g., equivalent forms of a memory test known to show no practice effects are ad-
ministered in 1-hour intervals in a high-facilitating, a low-facilitating and no-facilitation 
condition, for each subject in a random order with level of facilitation, not time, being the 
within-subject factor of interest. However, there is generally a problem in longitudinal re-
search where the within-subject factor is by definition time or a variable tied to it, e.g., age 
or duration of illness. Usually, within-subject factor levels close in time have higher positive 
correlations than those more separated in time. Some software provides tests of whether the 
sphericity assumption is violated and if so, various methods are employed to eliminate the 
problem or adjust for it. Sometimes a model for the correlation is fit (e.g., autoregressive) and 
removed, but the more commonly employed methods are: (1) to re-parameterize the model 
so the within-subject levels are modeled as multiple variables in a multivariate (multiple de-
pendent variable) analysis where any pattern of correlation would be permissible, or (2) an 
adjustment is made to the degrees of freedom (d.f.) of the within-subject factor(s) based on 
an estimate of the correlation structure of the within-subject factor(s), which lowers the d.f., 
essentially to allow for the fact that because there is time-to-time correlation, there are less 
actual d.f. than the nominal value indicates. We find the multivariate approach tends to be 
a little less powerful than the d.f. adjustment technique and is conceptually more confusing. 
Two variations in the d.f. adjustment method are the Greenhouse-Geisser  [22]  method and 
the slightly more liberal Huynh-Feldt  [23]  method, both of which in our experience almost 
always give the same result in terms of whether the effect is significant or not (see Girden 
 [21]  for when one is preferred over the other). SAS and SPSS software provide both these ad-
justment methods (as well as the multivariate technique).

  The big disadvantage of repeated-measure ANOVA for longitudinal research is that it is 
usually restricted to only certain types of situations, e.g., few time points (usually  ! 10), and 
well-balanced data – the same number of very similarly spaced time points across subjects. 
Most software algorithms do not allow missing values, i.e., if a subject is missing a value for 
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even one of a number of time points,  all  that subject’s data are removed from the analysis 
(‘listwise deletion’).

  Analysis of a Single Number per Subject That Indexes Change
  In this approach, the problem of analyzing longitudinal data is solved by summarizing 

the relevant aspect of longitudinal change for each subject with a single numeric value that 
can then be further analyzed with any of the traditional between-subject methods. For ex-
ample, for each subject, the simple difference of a follow-up score minus a baseline score can 
be computed. Then a t test on these differences can be performed comparing a group of 
medication-treated patients with another group of patients receiving only placebo to see if 
these groups differ in their mean baseline to follow-up differences. Such a difference in two 
time points is generally a poor method of longitudinal analysis unless there are only two 
points of information available for each subject, and the time difference between them is 
fairly uniform across subjects or not thought to matter, or is adjusted for with a time interval 
covariate, for example. If there are more than two time points of data available for subjects, 
using only the two boundary points wastes hard-earned information and is blind to anything 
going on in between them, including any nonlinearity that might be of interest.

  As single summary measures go, the slope of the OLS regression line of the dependent 
variable on the time variable fit separately for each subject is usually a better index of change 
than just subtracting let us say each person’s first from last score (e.g., the Reg procedure in 
SAS will compute these subject-specific regression slopes with subjects as a ‘by variable’). 
The intercept for each subject might also be of interest. Nonlinear change can be indexed 
by a summary measure if the coefficient of the quadratic term in a regression or the coef-
ficient for a log-transformed variable is used as the summary measure of change, for ex-
ample. There is still a major drawback with these regression methods in that the coefficient 
for a subject with only a few time points is given the same weight in the subsequent analyses 
and assumed just as reliable as the coefficient for a subject with many more time points. 
Adjusting for this somehow with some sort of weighting algorithm seems like more trouble 
than it is worth given that Random-Coefficient Models (discussed below) automatically 
avoid this problem.

  Unusual circumstances notwithstanding, all of these summary measure methods seem 
sufficiently flawed to preclude recommending any of them, except possibly as a quick explor-
atory technique or to provide some reassuring confirmation of a more sophisticated, but less 
intuitively accessible approach.

  GLM with Fixed-Subject Effects
  This method is conceptually related to the repeated-measure ANOVA approach above 

though it is more flexible with regard to data imbalances, and unequal number of time points 
and spacings across subjects. A GLM (essentially a flexible ANCOVA) can be conducted with 
subjects as a fixed categorical variable (with d.f. = number of subjects – 1), using the SAS 
GLM procedure with the subject identifier in a Class or Absorb statement, for example. Lev-
el effects corresponding to subjects, and interactions of subjects with time measures if spec-
ified, are removed, and any correlation of scores due to their being from the same subject are 
taken into account on that basis. (A further estimation and adjustment for correlated error 
within subjects may be needed.) The problem with this method is that by treating subjects 
as a ‘fixed’, as opposed to a ‘random’, factor, strictly speaking, results are restricted to only 
those particular people in that study, and even though there may be many of them in the 
study, results are not considered formally reflective of a larger universe from which these 
people were (usually) randomly drawn. Since the point of most research is to generalize to a 
very large referent universe of primary interest, of which the sample is a convenient, hope-
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fully representative, extract, there is a conceptual problem here. (There may also be compu-
tational and software issues because one is essentially analyzing a categorical variable, i.e., 
subjects, with a number of levels usually far in excess of common fixed-effect analyses.)

  More Recent, Advanced Methods 
  Random-Coefficient Models
  One of the variations of this broadly defined method is used for longitudinal data anal-

ysis. The method is often referred to as ‘random-effect modeling’ although for longitudinal 
analysis, the models are probably better labeled as ‘mixed-fixed and random-coefficient re-
gression models’ because in longitudinal designs, fixed coefficients are almost always in-
cluded in the model in addition to the random, and in fact the fixed are usually the coeffi-
cients of primary interest  [14, 15, 24] . These models, in some of their variations, are also often 
termed ‘multi-level’ or ‘hierarchical regression models’  [25–27]  when some data are natu-
rally nested within other levels of the data. In the case of longitudinal designs, observations 
of a subject across time can be considered to be   nested within the subject level of the data 
hierarchy, and subjects are then sometimes further nested within various groups, e.g., diag-
nostic groups or treatment/control groups, as a still higher level of the hierarchy. Applied to 
longitudinal analysis, this approach essentially deals with the mass of between- and within-
subject data by specifying a model in which each subject is assumed to have his/her own 
unique functional relation between the dependent variable and time-related predictor(s). A 
straight regression line (if linearity is assumed) or curve that optimally fits the data for each 
given person is estimated. The fit is generally not perfect partly because there is assumed to 
be random, normally distributed error variation in the dependent variable at each time point 
for each person. The coefficients describing these lines or curves, e.g., intercept and slope 
(rate) in the case of straight lines or perhaps polynomial coefficients (e.g., quadratic or cubic) 
for curves, are assumed to vary randomly in the population of subjects according to a mul-
tivariate normal distribution (and may or may not be intercorrelated). This is in contrast to 
the fixed nature of the coefficients in the method of GLM with Fixed-Subject Effects (with 
its associated problems in inference) discussed above. The random-effect algorithm com-
putes ‘empirical Bayesian estimates’ of each person’s coefficients which are based both on 
that individual person’s own data as well as the average corresponding coefficients for the 
entire sample of subjects or subgroup/covariate strata within which the subject is nested. If 
the subject has a relatively large number of observations across time relative to what other 
subjects have, a comparatively high weight is given to that person’s own data in estimating 
his/her coefficients, whereas if the subject has relatively few observations, relatively greater 
weight is given to that subject’s group/stratum average in computing the coefficient estimates 
for the subject. This method of estimation is superior to basing the coefficients solely on the 
subject’s own data blind to how numerous or few the observations are for each respective 
subject (such a weakness was mentioned above as applying to the Analysis of a Single Num-
ber per Subject That Indexes Change). Usually corresponding to each random effect, there 
is a ‘fixed’ effect that is often of primary interest, e.g., in linear models, each subject has his/
her own random regression coefficient that estimates rate of change for that person, but there 
is a single group (or subgroup) ‘fixed’ coefficient computed that indexes the average rate for 
the whole group (or subgroup/covariate strata).  Figure 5  provides a graphic illustration of a 
random-effect model. The same kind of terms that could be introduced in an ANOVA situ-
ation can be included in the design of a random-effect model, e.g., between- and within-
subject crossed factors, subject level (i.e., constant for a subject) fixed covariates (e.g., demo-
graphics or baseline clinical variables), or within-subject time-varying fixed or random co-
variates (e.g., time-varying physiological readings), interactions, polynomial terms, and 
other effects. One of a number of variations in maximum-likelihood methods using an it-
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erative algorithm is usually employed to make the estimates. A widely used statistical routine 
for performing random-effect analyses is the SAS Mixed procedure (Proc Mixed) and there 
is an NLMixed procedure (Proc NLMixed) in SAS that handles random effects for intrinsi-
cally nonlinear models. 

  Besides the advantages noted above for this longitudinal analysis method, the method is 
very flexible in allowing for imbalanced data, missing values, differing number of time 
points from subject to subject, and unequal spacing of time point intervals within a given 
subject as well as across subjects. As in most other analysis methods, however, if missing val-
ues are not missing at random, biased results may be obtained (see the Missing Values sec-
tion). It is also possible to include subjects in the analysis who have only one observation 
across time as this provides partial information. However, common sense suggests that when 
effects  within  subjects are of interest, most subjects should have two or more observations for 
reliable assessment of linear effects, three or more for quadratic relations, four or more for 
cubic, and so forth (in addition to any baseline score on the dependent variable that might 
be used as a subject level covariate). A disproportionately high number of these minimum 
frequencies is also undesirable, e.g., fitting a linear model to only 2 points per subject pro-
vides little advantage over a simple change score analysis or ANCOVA of ‘posttest’ covarying 
‘pretest’.

  Note that this method deals with the correlation of scores within a person by basically 
separately modeling each person’s data, fitting the overall elevation of a given subject’s data 
(person average) with a random intercept, the slope or rate of change over time for that sub-
ject with a random slope, the degree of curvature of progression for that person with random 
polynomial coefficients or parameters of an intrinsically nonlinear model, and so on. Gen-
erally, the random terms included in the model are a random intercept, a random time-re-

  Fig. 5.  Illustration of a random-effect model. Simple, simulated longitudinal data illustrate what a mixed-
fixed and random-coefficient model does in the case of a simple linear model. Values on the dependent 
variable (Dep_Var) are indicated by circles with a thin solid line connecting scores for the same subject. 
The thick solid line in the middle is the estimated overall group regression line (a ‘fixed’ term). The dot-
ted straight lines are the regression lines with random slopes and intercepts fit to the subjects’ data, re-
spectively. Note that when a subject has only a few observations, like the subject at the upper left, the slope 
and intercept of his regression line is weighted to be similar to the overall group average, whereas when a 
subject has relatively many observations, like the subject at the bottom of the graph, the regression line is 
more weighted in accordance to that subject’s own values.



344

Dement Geriatr Cogn Disord Extra 2011;1:330–357

 DOI: 10.1159/000330228 

E X T R A

 Locascio and Atri: Longitudinal Analysis Methods 

www.karger.com/dee
  © 2011 S. Karger AG, Basel

 Published online: October 26, 2011   

lated variable, e.g., time in the study, duration of illness, age, and possibly corresponding 
random polynomial terms, e.g., a quadratic coefficient. Even more than one distinct variable 
can be made random in a given model, e.g., age as well as duration of illness, but too many 
random terms can cause failure of the estimation iterations to converge because of the com-
plexity of the model, number of parameters to estimate, and possible difficulty in pulling 
apart random variables that are highly correlated especially within subjects.

  Within the mixed-effect framework, methods can be used to separate out between- and 
within-subject relations, in case they are different – often it is the latter that are of greatest 
interest in a longitudinal study. Effects of time in the study, age and duration, for example, can 
be separated, if desired, by choosing one as the random term, e.g., time in the study, and then 
using the others as fixed-subject level baseline constants, e.g., age at baseline and/or duration 
at baseline. Care should be taken in deciding before the analysis how within- and between-
subject effects are going to be disentangled and even greater care exercised when interpreting 
various relevant subject and time level coefficients after analysis. We find, for example, that 
separating a random variable indexing time in the study from fixed-subject level baseline age 
and baseline duration of illness predictors often works well. During interpretation of results, 
one must remember  time in the study increments in tandem with age and duration of illness 
within a subject and consider whether something happens within a subject during the study 
additive to or in conflict with effects of aging and duration of illness as evidenced by between-
subject relations. It is quite possible for between- and within-subject effects to differ or even 
be opposite in direction. For example, a biological variable may tend to decline with age, as 
suggested by its negative between-subject relation to baseline age, whereas a treatment applied 
during the study may cause increases within each subject in that same biological variable in 
opposition to the effect of increasing age within the same subject. Furthermore, linear/non-
linear baseline  dependent -variable level adjustments can also be incorporated into a model as 
well as interactions of the same with the key time predictor, which may be a good way to mod-
el floor, ceiling and asymptoting trends tied to extreme baseline levels.

  When the only random term in a model is the intercept, the correlations between depen-
dent-variable scores at all pairs of time points are assumed to be the same (‘compound sym-
metry’), but when the linear term for a time variable and possibly additional polynomial 
terms are introduced as random, heterogeneous correlations across time are modeled. SAS 
Proc Mixed can also optionally fit and allow estimation of correlations among the random 
coefficients themselves, thus permitting further complexity to be introduced into the model. 
Proc Mixed provides significance testing of these correlations (or identically of covariances) 
as well as tests as to whether the variances of the random terms are significantly different 
from zero as an aid in deciding which terms need to be considered random. (Strictly speak-
ing, any sample variability rejects the zero variance null hypothesis, but the test can serve as 
a principal indicator of whether variance is substantial enough that an improvement in mod-
el fit will be worth the added complexity of introducing the pertinent random terms.) In our 
experience with complex models, our group usually finds it preferable to start with a fairly 
saturated fixed and random model and then use backward elimination of nonsignificant 
(p  1  0.05) terms, one at a time, for both. However, depending on the situation, forward, step-
wise, and other selection methods, with suitable cutoffs, may be advisable.

  A brief description of some of our recent applications of longitudinal mixed-effect mod-
els may help to clarify what these models can do. The data displayed in  figure 1  are from a 
study  [28]  in which we tried to determine, among other things, whether baseline levels of a 
clinical cognitive performance measure (the Blessed Dementia Scale Total; BDS) predicted 
differential trajectory of change in that same cognitive measure for 493 Alzheimer’s disease 
(AD) patients, each having 3–14 observations over time.  Figure 1 a displays a ‘spaghetti plot’ 
of the raw longitudinal data for the BDS (a higher number indicates worse cognitive perfor-
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mance), where each thin line connects the scores for each respective subject over time (years 
in study). The thick solid line and dashed curve are the linear and quadratic OLS regression 
fits. It is apparent that the OLS straight line tends to underestimate the incline of  within -
subject trajectories and the quadratic is also misleading as an indicator of within-subject 
trajectories because both are blind to within- and between-subject distinctions, whereas a 
random coefficient analysis takes these distinctions into account.  Figure 1 b shows the same 
data after the time point level error variance in the BDS is statistically removed, leaving a 
fixed quadratic effect of time, dependent on the baseline level of BDS, i.e., an interaction of 
baseline BDS and the quadratic component of time. We tried to use this interaction to more 
realistically model the tendency for people starting at high baseline BDS to decelerate to a 
ceiling asymptote, whereas those starting at relatively low baseline values tended to acceler-
ate (curve upward), perhaps partly due simply to their greater opportunity to increase in 
score. In addition, a subject level random component of this quadratic trajectory (a quadrat-
ic coefficient that varied randomly from subject to subject) is also meshed into  figure 1 b. 
 Figure 1 c removes this latter subject random effect leaving only the fixed baseline by qua-
dratic time interaction which was of more substantive interest.

  As another example,  figure 2 a shows illustrative mean progression curves predicted by 
a best-fitting longitudinal mixed-coefficient model for data for a measure of daily function-
ing (Activities of Daily Living Scale, ADL; higher scores indicate worse functioning) for 382 
AD patients, each with 3–13 observations over time (years in study) and each in one of three 
mutually exclusive medication regimen treatment groups, indicated by the  ! s, the dots, and 
the squares in the graph, respectively  [29] . Our model here again included a fixed effect for 
the interaction of baseline level of ADL with the quadratic component of time as well as in-
teractions of medication group with the quadratic component of time. Subject level random 
intercept, linear, and quadratic effects of time were also modeled. In this case, we felt the 
clearest visual explication of the important, estimated fixed-effect portion of the model 
would be obtained by taking the mathematical model which we estimated based on the ac-
tual data, but plugging into it a few simulated representative predictor values selected to pro-
duce predicted values of ADL which would be most illustrative of the nature of the model 
within the range of the actual predictor data and graphing those. (By contrast, the predicted 
values in  figure 1  are the dependent-variable scores predicted on the basis of the actual, not 
simulated, predictor data, though in both cases the model used to make the predictions was 
estimated from real data.) One can see in  figure 2 a an interaction of baseline levels of ADL 
with the quadratic curvature of the trajectories over time, as well as a significant medication 
group effect superimposed on that, which was of special interest in the study (and was sta-
tistically significant).

  The last example is from a study  [30]  in which, among other things, we estimated the 
predictive relation of baseline levels of a continuous numerically measured biomarker (log 
of plasma C-reactive protein; CRP) to trajectory of change in BDS over time for 122 AD pa-
tients, each with at least 2 to up to 25 observations across as much as a decade. Fixed and 
random quadratic effects of time were again estimated here. In  figure 2 b, predicted values 
across time (here shown in terms of duration of AD illness) were produced in a manner 
analogous to that of  figure 2 a. Illustrative levels of the log CRP predictor were chosen for the 
graph to correspond to the 1st, 25th, 50th (median), 75th and 99th percentiles of its distribu-
tion. (Thus, the spacings between the lines reflect the shape of the log CRP distribution, 
positive skewing in this case – lower lines correspond to higher values of log.) A significant 
fixed interaction effect of baseline CRP to the quadratic component of change in BDS over 
time is evident in the graph.

  The Appendix gives an illustrative example of a SAS program which runs a random-
effect model.
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  Generalized Estimating Equations
  In a sense, GEE models  [31]  approach the problem of longitudinal data analysis from the 

‘top-down’ in contrast to random-coefficient models that might be viewed as a ‘bottom-up’ 
method. Random-effect analysis basically focuses on individual subjects, modeling what is 
happening to them, and in the process is then able to assess average effects of interest, all of 
this done in essentially one big equation. GEE, on the other hand, is considered a ‘marginal’ 
longitudinal method. It directly tries to get an overview of the mean relations of interest on 
the one hand, i.e., how the mean dependent variable changes over time, while separately deal-
ing with the nuisance covariances among the observations within subjects in order to re-
move the latter to get a better estimate and valid significance tests of the former. GEE esti-
mates two different equations, one for the mean relations and one for the covariance struc-
ture. The SAS Genmod procedure with the repeated-statement option can be used for GEE 
analyses. The user can choose a variety of within-subject correlation models (e.g., autoregres-
sive) to test, estimate, and remove, and most of these basically specify that positive correla-
tions between temporally adjacent observations within subjects taper off as the observations 
get farther and farther away from each other in time. SAS users can now download an SAS 
‘macro’ module that assesses which covariance structure seems to provide the best fit to the 
data (the quasi-likelihood independence criterion or QIC macro  [32] ).

  An advantage of GEE over random-effect models is that it does not require the depen-
dent variable to be normally distributed. However, a disadvantage of GEE is that it is less 
flexible and versatile – commonly employed algorithms for it require a small-to-moderate 
number of time points evenly (or approximately so) spaced, and similarly spaced across sub-
jects. Nevertheless, it is a little more flexible than repeated-measure ANOVA because it per-
mits some missing values and has an easy way to test for and model away the specific form 
of autocorrelation within subjects. Evenly spaced intervals are required because the user 
must specify a covariance (correlation) structure for the time point by time point covariance 
matrix which presupposes the same time points across subjects, and evenly spaced. Our tests 
seem to indicate that if the time points at least clump so they are mostly evenly spaced with-
in and across subjects, the GEE is not severely effected, but it is unclear how to handle severe 
and numerous unevenness. In employing GEE to analyze data from studies with varying 
number of observations per subject, the estimated working covariance matrix has dimen-
sions equal to the maximum number of observations any subject has.

  We compared performance of GEE models for the study by Atri et al.  [29]  correspond-
ing to  figure 2 a and the study by Locascio et al.  [30]  corresponding to  figure 2 b to that of the 
random-effect models we originally used for both and found very similar results for the Atri 
study but only moderately similar findings for the Locascio study. The divergence for the lat-
ter case may have occurred because time points were not quite as homogeneously separated 
as for the former, as assumed by the GEE procedure. For Atri et al.  [29]  about 2/3 of test-retest 
intervals were within 1 month of the median of 6 months, whereas for the Locascio study, 
only about 60% were. What may have been even more important is the fact that the focus of 
the latter study was to examine longitudinal effects of a variable that varied very incremen-
tally across subjects (numeric biomarker levels) as opposed to testing large group effects in 
the Atri study, and as mentioned, random-effect models are meant to focus more on what is 
happening at the individual subject level.

  Latent Growth Curve Models
  LGCM  [19, 33, 34]  can be thought of as re-parameterizing random-effect models to spec-

ify latent variables that affect measures at time points in a kind of structural equation model 
(SEM)  [35] . More commonly employed SEM show variables having predictive (or some say 
‘causal’) effects on other variables (denoted by arrows) with coefficients indexing the strength 
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and direction of the predictive relation. However, LGCM rearranges terms in a random-effect 
model so that what would have been coefficients in the classical SEM, e.g., intercepts and lin-
ear slopes, become the random variables in the LGCM and their impacts on measures across 
time are often prefixed.  Figure 6  depicts a diagram of a simple linear LGCM. 

  Of the longitudinal methods discussed here, LGCM is the most recently developed and 
is still being further enhanced. Many procedures in the Mplus software package  [2]  are al-
gorithms specifically for LGCM, and SAS is now introducing procedures explicitly for 
LGCM, e.g., the TCalis procedure, though some of its older methods [e.g., the Mixed and 
Calis (covariance analysis of linear structures) procedures] can be used to perform certain 
variations of it. (There is also a related SAS user-developed procedure, not supported by SAS, 
called Proc Traj.) One of the useful features of LGCM is that ‘finite mixture models’  [36]  can 
be incorporated into them which, in the case of longitudinal analysis, basically look for un-
derlying latent classes of subjects who have similar trajectories of change over time within 
each given class, but where trajectories differ across classes. A very useful application of this 
method might be in analyzing effects of medication (or other treatment intervention) on 
longitudinal change. If, among all medicated people, distinct clusters can be found which 
have significantly different mean trajectories of change, it might then be possible to explore 
characteristics on which the clusters differ and then use that information to decide which 
patients might benefit most from the drug. A profile of best responders might be developed 
across a number of demographic, clinical, and other variables. A different profile might ap-
ply to different drugs allowing the clinician to maximize the most beneficial drug for each 
patient. There is great flexibility in what LGCM can be used for. Perhaps the only drawback 
to this method is that it is relatively new with less available software, and it can be difficult 
to understand conceptually. Our group uses primarily random-effect models for longitudi-
nal research though we are starting to experiment with LGCM. In any case, for very imbal-
anced ‘messy’ data, the LGCM provides similar or identical results to that of the random-
effect analysis.

  ANCOVA for the Special Case of Only Two Time Points per Subject
  When there are only two time points of assessment for each subject, such as in a simple 

pre-/posttreatment or baseline to single follow-up design, ANCOVA, and variations of it, 
may be suitable to answer important research questions. For example, if the researcher wants 
to know if two medication groups with different mean symptom levels at baseline change 
differentially in their symptom levels from baseline to follow-up, ANCOVA indicates if they 
differ on the follow-up (the dependent variable), holding the baseline (covariate) constant, 

  Fig. 6.  A simple LGCM illustrated as SEM. Circles 
denote latent random variables, squares are ob-
served measures, straight arrows are predictive ef-
fects, and the double-headed curved arrow denotes 
a possible correlation between the random intercept 
and random slope latent variables. Numbers are co-
efficients applied to the predictors (intercept and 
slope). (Measurement error terms pointing at each 
observed measure are not shown for simplicity.) 
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statistically, i.e., it is assessing differential group  change . In some cases, a simple difference 
score (‘change score’) analyzed as a dependent variable without using the baseline as a co-
variate might be appropriate, but generally ANCOVA is superior in that the former can be 
thought of as a specific instance of ANCOVA where the linear regression of follow-up on 
baseline is assumed to have a slope of one, which may not be true. In fact, the baseline versus 
follow-up relation may even be nonlinear, which can be accommodated in an ANCOVA 
model. (But see Locascio and Cordray  [37]  for a situation in which ANCOVA and difference 
score analysis disagree and it is the standard ANCOVA solution that is wrong.) This kind of 
analysis assumes the time difference between baseline and follow-up is the same (or nearly 
so) for each subject or that it is irrelevant whether it is or not. If that is not the case, the time 
difference can be accounted for by introducing it as another covariate and looking for inter-
actions in which the relation of follow-up and baseline differs depending on the time differ-
ence (perhaps the baseline to follow-up relation and correlation becomes increasingly at-
tenuated as the time difference becomes greater). Classical ANCOVA may be too constrain-
ing in a given situation, and more flexible GLM or multiple regression variations of it might 
be employed instead. These kinds of analyses can test for group differences in the relation of 
baseline to follow-up (i.e., an interaction of group and baseline; conventional ANCOVA as-
sumes this relation is homogeneous across groups), and/or how some predictors, like levels 
of a biomarker, predict change, and demographic variables (e.g., age, duration of illness, and 
years of education) can be covaried or entered as classification variables (e.g., gender) crossed 
and possibly interacting with a group factor, and so on. Scatterplots of follow-up versus base-
line data within groups are very helpful, if not necessary, as part of the analysis. Predicted 
values from the model can be overlaid on the scatterplots to see more clearly the nature of 
the predicted model and get a visual sense of fit to actual scores.

  Sometimes ANCOVA can be employed in the context of a ‘regression discontinuity de-
sign’. This design can provide compelling evidence for a treatment intervention effect even 
in a nonrandomized study when ethical constraints require that the treatment, e.g., a medi-
cation rather than placebo, be given to those who seem to be in most immediate need of it at 
baseline, thus producing a confounding effect. This may be the case if it is felt that the treat-
ment has a good chance of providing benefit, but the purpose of the study is to confirm this 
or assess the magnitude of the benefit, or in the case of a secondary analysis of a retrospec-
tive, observational study. See  figure 7  for an illustration of a regression discontinuity design.

  Other Related Methods and Designs 
  Space limitations prevent us from treating the methods below in greater detail. There is 

an abundance of literature on them in textbooks and journal articles.

  Event History Methods
  When a study is ‘longitudinal’ in the sense that the dependent variable is time to some 

event of interest, e.g., time to death, to recurrence of a disease, to institutionalization for de-
mentia, or until diagnosis of dementia for patients who originally had only ‘minimal cognitive 
impairment’, event history methods are often employed  [38, 39] . For example, a researcher 
might study whether a new medication treatment for memory impairment given to a group of 
patients admitted to a memory disorder clinic is associated with a longer time from entry into 
the clinic up until a formal diagnosis of dementia, as compared to what happens to patients 
given a standard medication. Such data cannot usually be handled with more conventional 
methods of analysis like ANOVA, primarily because of a problem termed ‘censored data.’ This 
problem occurs when, as is usually the case, subjects are not all entered into the study at the 
same time and not all of them are followed all the way until the event of interest takes place – 
some subjects drop out before that for various reasons, or the study must end before they have 
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reached the event perhaps because they were one of the last ones entered into the study. The 
actual time to the event for these subjects is unknown and called ‘censored,’ although partial 
information is available in that it is at least known that they lasted up until the last assessment 
for them for whatever length of time that was into the study for them. (There is a distinction 
between ‘right’ and ‘left censored’ data; we discuss only the more common ‘right censored’ 
here.) It is undesirable to waste data, reduce power to detect effects, and possibly bias results by 
simply removing censored data from the analysis. Event history analysis tries to incorporate 
the partial information of the censored data together with the full information of subjects who 
reached the event of interest, to make optimal estimates of relations and effects of interest.

  The oldest, classical form of event history analysis is ‘survival analysis’ in which the event 
being studied is death, as the name implies, but this label is also generally used for analyses that 
look at whether two or more groups differ in their mean time to events other than death  [40] . 
‘Kaplan-Meier product-limit’ survival curves are commonly used to graph predicted survival 
patterns; they display declining step functions of the estimated percent of subjects surviving 
across time for a given group (incorporating information from both complete and censored 
data). In 1972, David Cox  [41]  introduced a semi-parametric method of analysis usually called 
the Cox proportional hazard model or simply Cox regression model, which analyzes event his-
tory data in a much more flexible and general manner than traditional survival analysis does. 
Predictors in the model are related to a hazard function, which is the instantaneous risk of the 
event occurring among those who have still not experienced it as yet. Comparing classic sur-

  Fig. 7.  Regression discontinuity design (ANCOVA) – illustrative example. Ellipses denote swarms of data 
points for two respective groups (e.g., medication-treated and placebo groups) in a scatterplot of follow-up 
symptom severity versus baseline symptom severity scores (higher numbers = more severe). Solid diago-
nal lines are regression lines for the groups. Here the slope of the regression lines, and orientation and 
shape of the ellipses indicate an expected strongly positive correlation of follow-up symptom severity to 
baseline symptom severity within each group. For ethical reasons, the medication treatment is given to 
anyone above a cutoff on symptom severity at baseline (this may especially be the case if the treatment is 
in limited supply or very expensive). (Perhaps the treatment, if shown effective, might be given to the pla-
cebo group at a later time.) Note the treated group has worse mean symptoms than the placebo group at 
baseline as well as at follow-up. However, the discontinuous drop in the regression line in moving from 
the placebo to the treated group strongly suggests a beneficial effect of the treatment which, if strong 
enough, would be reflected in a significant group effect on follow-up symptom severity in ANCOVA with 
the baseline symptom severity as the linear covariate.
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vival analysis to a Cox regression is like comparing a t test or ANOVA to multiple regression 
or GLM, the former being specific instances of the latter, applicable only to restricted situa-
tions. The Cox model easily incorporates subject level and time-varying covariates, as well as 
group terms and the full array of interaction and other complicated predictor terms. Allison 
 [38] , Cox and Oakes  [41] , and Lee  [40]  cover the Cox model well. The SAS Phreg (proportion-
al hazard regression) procedure performs Cox model regressions, and the SAS Lifetest proce-
dure does more traditional survival analysis and plots Kaplan-Meier graphs.

  Box-Jenkins Time Series Analysis
  These methods  [42–45]  are appropriate for situations in which there are very many time 

points of observations (at least 50 are recommended as a rule of thumb) on just a few or even 
one subject or entity (e.g., a group). An applicable example might be the number of newly di-
agnosed cases of AD in a large geographical region, recorded each week for 2 years (see Locas-
cio et al.  [46]  for an introduction to time series analysis and an application in functional MRI). 
Not surprisingly, these time series methods originated in econometrics, decades ago, where 
the applications were usually that of trying to forecast stock market prices. In a variation com-
monly employed in behavioral and medical research, the ‘interrupted time series design’, some 
sort of intervention has typically occurred about midway in the time series and the researcher 
is interested in whether this intervention has had any effect on the recorded dependent vari-
able (usually on the mean level) after the point of intervention. To continue with the previous 
example of the AD study, suppose a region-wide program to improve dieting and exercise of 
vulnerable people is initiated at the beginning of the 2nd year of the study and the research 
question is whether this has had a beneficial effect on reducing the frequency of diagnosed 
cases of AD from the point of initiation of the program onward. It might appear that a simple 
t test or nonparametric test comparing the 52 weekly counts of AD before versus the 52 after 
the intervention would answer the question; however, a fundamental assumption of these sig-
nificance tests (and most statistical significance tests) is violated in that the observations are 
almost certainly not independent of each other (within the pre-/postintervention epochs). A 
random error deviation at one time point may very well carry over to some extent onto the 
next few time points, i.e., the observations are serially correlated, usually positively so, with 
decreasing correlation the further apart two given observations are temporally. Although this 
lack of independence may not bias the estimated effect of interest, it will bias error variance 
estimates and consequently the results of a test of statistical significance of the effect (the p 
value), too, usually making it appear more significant than is truly the case.

  Another related method is a ‘bivariate time series analysis’ in which the relation between 
two time series is examined to test, for example, if one of them might be causing or at least 
predicting the other one and if so, to estimate the approximate time lag across which this is 
occurring. Basically, the values of the two time series are paired by concurrent time points 
and a correlation is computed, then recomputed after lagging one of the time series forward 
and backward more and more with reference to the other series until hopefully an optimal 
correlation is reached that suggests the direction of prediction and at what lag. However, the 
significance levels for such an analysis are biased for the same reason as for the interrupted 
time series, i.e., the observations are not independent within each of the time series.

  The solution employed by time series analysis to deal with the problem of serial correla-
tion is to try to model, estimate, and then remove the nuisance autocorrelation component, 
so that the effects of primary interest can be validly tested for statistical significance. Two 
common models are used for this purpose – the autoregressive model, in which each value 
of a time series variable is assumed to be a linear function of one or more values of the same 
variable lagged back in time, and the moving average model, in which a weighted average of 
past error terms across a specific shifting window of time is postulated as contributing to the 
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value of each time series variable score. Evidence as to which of these models fits best and its 
specific nature (how far back in time past observations impact the current one and via what 
set of weights) is obtained by examining the pattern of time point to time point correlations 
and (partial correlations) of the given time series as it is shifted numerous lags forward and 
backward relative to itself (the pattern of correlations is displayed in a ‘correlogram’ graph). 
Once the autocorrelation components are assessed, hopefully identified, estimated, and sub-
tracted out, and a test confirms that the remaining residuals are not significantly different 
from independent, uncorrelated ‘white noise’, essentially a traditional significance test pro-
cedure can be applied (e.g., t tests, ANOVA, regression, or correlation) to the residuals to 
answer the research question of primary interest.

  Besides often being termed dynamic regression models or Box-Jenkins Time Series 
Analysis according to its early developers  [42] , these types of time series analyses are some-
times referred to as time series analyses ‘in the time domain’ to distinguish them from time 
series analyses ‘in the frequency domain’, also called ‘spectral analysis’, which involves meth-
ods that try to decompose a time series into component frequencies of oscillation that sum 
to the fluctuations that are observed  [47] . Spectral analysis is usually less applicable to the 
type of research situations in neurology which we have been discussing here, but may be use-
ful, e.g., in some areas of analysis of image data taken over time.

  SAS provides two procedures for time series analyses in the time domain, such as we 
have described – the Arima procedure and the Autoreg procedure, both of which are in a 
separate battery of SAS algorithms called Econometric Time Series programs  [48] . (The 
Spectra procedure in the same battery may be used for spectral analysis.)

  Panel Data
  By panel data, we loosely mean situations in which two, occasionally more, variables are 

measured at approximately the same time at two or more time points, but usually no more 
than three or four, for all subjects, without missing values, and the researcher is interested in 
causality between the variables or at least reliable antecedent/subsequent predictive relations 
simultaneously and at various lags. The data are structured as a kind of series of cross-sec-
tional sets  [49] . There is a great variety of methods to analyze such data (e.g., the cross-lagged 
correlation technique  [50] ) usually involving some kind of multiple regression and/or partial 
correlation approach. They can be handled generally with ‘path analysis’ or SEM  [35, 51–55] , 
e.g., using the SAS Calis procedure. Panel design data and the techniques used to analyze 
them have a developed, sound methodology, but are limited in terms of situations to which 
they apply and questions they answer.

  Miscellany

  Missing Values 
  Some of the methods above, as noted, allow for small-to-moderate numbers of missing 

values, i.e., it is not necessary to remove all of a subject’s data from the analysis because of a 
missing value at one or a few time points for that person (‘listwise deletion’). For example, 
random-effect models allow the use of whatever dependent variable data are available for 
each given subject without the need for balanced data, equal intervals within and across sub-
jects, or equal numbers of observations per subject. However, all of the methods above as-
sume, as do most other analyses, that missingness of a dependent variable value is  not  re-
lated to what that value would have been if present. If it is, serious bias can result if nonmiss-
ing data are then analyzed and interpreted as if they are fully representative of referent 
populations. It is usually permissible for the missingness in the dependent variable to be re-
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lated to values of  predictor  variables. This distinction is often made by employing the terms 
MCAR (missing completely at random), for situations in which the missingness is not re-
lated to any variable, as contrasted to MAR (missing at random), where it may be related to 
independent/predictor variables though not to the dependent variable. If missing values sat-
isfy neither of these conditions, they are termed ‘nonignorable’ and although there are some 
newly developed methods for dealing with nonignorable missingness, these techniques have 
strong assumptions and must be used with caution  [56] .

  If missing data are MCAR or MAR, new methods of maximum likelihood estimation 
and especially ‘multiple imputation’ (MI) can be usefully employed to provide very reason-
able estimates of the missing values, thereby allowing the analysis to have greater power  [56] . 
The MI methods cleverly use all available data and their observed interrelations to impute 
what all the missing values are likely to be, while at the same time introducing some random 
variation to mimic the uncertain element of the data and avoid attenuating error variance 
estimates. Multiple data sets are produced (only 5–10 seem to be necessary in most cases), 
each with possibly slightly different imputed values. After separate analyses of these data 
sets, separate estimates of relevant parameters are combined in an appropriate algorithm 
producing single values with associated valid significance tests. For longitudinal data with 
reasonably similar intervals for each subject, missing values can be imputed by structuring 
the data set so that different time points appear as columns like different variables would; 
then the MI algorithm uses information on the intercorrelations among time points to esti-
mate the missing values at various time points.

  We should also mention that when data are known to be missing for reasons that suggest 
meaningful approximate substitute values, for example, the condition of the patient was known 
to be too severe for him/her to be able to take the test measuring a variable (e.g., too demented 
to follow instructions for a cognitive test), that fact might be incorporated into the imputation 
algorithm in some way to obtain more reasonable estimates (see Locascio et al.  [30] , for an ex-
ample of this). Care should be taken though that such estimated values are not constants car-
ried forward repeatedly in longitudinal data to create an artificial plateau that may give a mis-
leading impression of lack of progression, or at least that such results be properly interpreted 
for what they are.

  The SAS MI procedure performs MI as the name implies. The multiple data sets produced 
are then analyzed separately by the relevant analysis procedure as ‘by groups’, and finally the 
MIAnalyze procedure combines the resulting separate output estimates for the relevant pa-
rameter in an appropriate way and provides a single estimate and a significance test for it.

  Lastly, we have been experimenting recently with using empirical Bayesian estimated 
random trajectories (see Random-Coefficient Models ) for each subject in a longitudinal 
analysis based on available nonmissing data, to obtain reasonable estimates for interim and 
extrapolated missing values for a given subject. Such a method might be useful for dealing 
with problems of study attrition also. Results seem promising but are as yet unclear.

  Power Analysis
  Power analysis is well developed and software available for more traditional analyses like 

ANCOVA and multiple regression, however, it is harder to find or is nonexistent for specialized 
longitudinal analysis methods. There are some packages that provide power for repeated-mea-
sure ANOVA  [57] . SAS has Power and GLMPower procedures for an array of cross-sectional 
kinds of analyses, but not as yet for repeated-measure ANOVA. The power methods for cross-
sectional data might provide rough estimates for the longitudinal case if conservative param-
eters are used. Cohen and Cohen  [58]  discussed power computation for within-subject designs.

  Fortunately, powerful and fast modern computers permit a reasonable method of esti-
mating power for virtually any complex analysis method, including random-effect models, 
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using ‘Monte Carlo methods’. One simply writes a computer algorithm that creates random 
simulation data with an embedded target effect size of interest, random variation of the kind 
and degree expected, perhaps based on past research, and a large number of randomly vary-
ing replications (at least 100, but better 1,000 or more) of the data set, each of which is ana-
lyzed with the longitudinal method at issue. The proportion of computed p values less than 
or equal to  �  is the estimated power level. The Mplus software has programs that perform 
Monte Carlo-type power analysis for different kinds of analyses, but it is not difficult to 
manually program the necessary algorithms, e.g., using SAS, to produce the simulated data 
and carry out the Monte Carlo tests with the SAS Mixed or NLMixed procedures.

  Software
  We have emphasized SAS software through most of the above because of its great breadth 

and depth of techniques, wide recognition of its reliability, and frankly because we are most 
familiar with it. The SAS Mixed procedure for random-effect models, the Genmod proce-
dure for GEE models, the GLM procedure for ANCOVA and repeated-measure ANOVA, and 
the SAS Gplot procedure in SAS Graph software for graphing longitudinal data have been 
powerful work horses for us. We have also begun to experiment with LGCM via the SAS 
TCalis and Calis procedures. We have suggested many other SAS procedures above in the 
contexts where they were relevant. Online documentation for SAS can be found at http://
support.sas.com/onlinedoc/913/docMainpage.jsp. Descriptions of SAS procedures always 
include at least a brief theoretical introduction to the statistical methods involved in the pro-
cedure. Information and downloading of the non-SAS supported Proc Traj for LGCM can 
be found at http://www.andrew.cmu.edu/user/bjones/.

  Mplus is very good software for LGCM and many other methods. SPSS is an excellent 
general statistical battery which does mixed-effect models, and LISREL and EQS are espe-
cially intended for SEMs. Random-effect models are being increasingly incorporated into 
other statistical software products.

  Summary and Conclusions

  The purpose of this article was to present clinical researchers in neurology with an over-
view and practical guide to data analysis methods for longitudinal research. Older, tradi-
tional methods were covered and methods that are closely related to what are convention-
ally  considered longitudinal methods, but emphasis was on more recently developed, ad-
vanced methods for analyzing data on a numeric, continuous, interval scale variable 
collected on a moderate-to-large number of subjects (10 to hundreds) with a small-to-mod-
erate number of repeated assessments on each (2–10, 20 or 30). We generally do not recom-
mend older methods such as: (1) simple regression of the dependent variable on the time 
measure, (2) analyzing a single summary number that indexes change for each subject, or 
(3) a GLM approach with a fixed-subject effect. We recommend the following, though only 
under restrictive situations: (1) repeated-measure ANCOVA, (2) ANCOVA for two time 
points, (3) GEE, and (4) latent curve growth models. In more general cases, we advise using 
(5) random-effect models.
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  Appendix

  Illustrative SAS Program Code to Run a Random-Effect Longitudinal Analysis
  The SAS program below produces a preliminary raw data ‘spaghetti longitudinal scat-

terplot’, and then runs a random-effect analysis to test if the relation of a dependent variable 
to time (years) in the study is different for a group of patients treated with an experimental 
medication versus those given only a placebo. The underlying progression is tested as to 
whether it is also nonlinear (follows a quadratic function). Nonsignificant terms are to be 
removed in backward elimination (see SAS documentation for details).

  Assume in the Program Below:
   Group Level Variables: 
  Group = the treatment group classification variable 
  (either ‘medication’ or ‘placebo’)
   Subject Level Variables: 
  Subject_ID = a unique subject identifier (a character variable)
  Education = years of education
  Age_Baseline = age of subject at initial visit
  Dur_Baseline = duration of illness (in years) at initial visit
   Visit Level Variables: 
  Years_in_Study = years in the study (the random time variable)
  Years_in_Study_Sq = the square of years in the study (to determine 
quadratic curvilinear effects)
  Dep_Var = the dependent variable
  
  Therefore, the rectangular data set to be analyzed, sorted by Visit Date within Subject_

ID within Group, would look like the below with one row for each visit for each subject:

 

 Group  Subject
  ID 

 Edu-
  cation 

 Age
  base 

 Duration
  base 

 Year 
  study 

 Year study 
square  

 Dependent
  variable 

 Other variables
  (visit date, sex, etc.) 

 Medication
  Medication
  Medication
  Medication
  Medication
  Medication
  Medication
  etc.
  
  
  Placebo
  Placebo
  Placebo
  Placebo
  Placebo
  etc. 

 1
  1
  1
  3
  3
  3
  3
  
  
  
  2
  2
  4
  4
  4
 

 12
  12
  12
  20
  20
  20
  20
  
  
  
  16
  16

8
8
8

 

 65
  65
  65
  81
  81
  81
  81
  
  
  
  85
  85
  72
  72
  72
 

 3
  3
  3
  2
  2
  2
  2
  
  
  
  5
  5
  1
  1
  1 

 0
  1
  2
  0
  2
  4
  7
  
  
  
  0
  1
  0
  2
  3 

0
1
4
0
4

  16
  49
  
  
  

0
1
0
4
9 

 12
  14
  22

3
5
3
7

  
  
  

9
  11

5
  (missing)

7
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SAS Program:

*First make a “spaghetti plot” of the raw data vs Years in
Study. (You could also make ones vs. Age at Visit or Duration
of Illness at Visit);

Goptions dev=emf   ftext='Arial'  htext=1  gsfname=grafout
nofileonly  hsize=6 in  vsize= 5 in ;

Filename grafout ‘(the path to the file directory goes here)' ;     

Proc Sort;
  By  Subject_ID  Years_in_Study ;

Proc gplot data= (SAS data set name goes here) ;    
  Plot  Dep_Var*Years_in_Study=Subject_ID  / nolegend
     haxis= … to …  by …     vaxis= … to …  by …  ;
  Symbol  value=circle  interpol=join   repeat=5000(any arbitrarily 
high number);       
  Title ‘Spaghetti Plot of Raw Longitudinal Data……………….';

*Run the Random effects analysis;

*The terms with asterisks are interactions of Group with the 
linear and quadratic terms for years in the study;
*Both the linear and quadratic terms for years in study are 
indicated as random effects in the Random statement. If the 
variance of the quadratic term is nonsignificant, it will be 
dropped from the random statement, and subsequently also if
the linear term is not significant;
*Type=un specifies an “unstructured” covariance matrix of the 
random terms. If the covariances of the random terms are not 
significant, an uncorrelated covariance matrix will be
specified with Type=vc (variance components);

Proc Mixed covtest noclprint data=(data set name goes here) ;    
  Class  Subject_ID  Group ;
  Model  Dep_Var =
           Education
           Age_Baseline  Dur_Baseline
           Years_in_Study  Years_in_Study_Sq
           Group
           Group*Years_in_Study  Group*Years_in_Study _Sq / s ;
  Random  Intercept    Years_in_Study   Years_in_Study_Sq
                /  Subject=Subject_ID(Group)  Type=un  Gcorr ;
  Title ‘Random Effects Longitudinal Analysis……………………………..';
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